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Abstract We study the approximation of stochastic differential equations on
domains. For this, we introduce modified Itô–Taylor schemes, which preserve approxi-
mately the boundary domain of the equation under consideration. Assuming the exis-
tence of a unique non-exploding solution, we show that the modified Itô–Taylor scheme
of order γ has pathwise convergence order γ − ε for arbitrary ε > 0 as long as the
coefficients of the equation are sufficiently differentiable. In particular, no global Lip-
schitz conditions for the coefficients and their derivatives are required. This applies
for example to the so called square root diffusions.

Mathematics Subject Classification (2000) 65C30 · 60H35

1 Introduction

In this article, we study the approximation of the Itô stochastic differential equation

dx(t) = f (x(t)) dt + g(x(t)) dW (t), t ≥ 0, x(0) = x0, (1)
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42 A. Jentzen et al.

which takes values in a domain D ⊂ R
d . Here, f : D → R

d , g : D → R
d,m ,

W = (W (t), t ≥ 0) is a m-dimensional Brownian motion adapted to a filtration
F = (Ft , t ≥ 0) on a probability space (Ω,A , P), and x0 is a F0-measurable
random variable, which is independent of W .

In many applications, the drift- or diffusion coefficients of Eq. (1) have a simple
structure, e.g. polynomial, but fail to satisfy a global Lipschitz condition.

For example, the stochastic Volterra–Lotka system

dx(t) = diag(x1(t), . . . , xd(t)) [(A + Bx(t)) dt + Cx(t) dW (t)] , (2)

where A ∈ R
d , B, C ∈ R

d,d and (W (t), t ≥ 0) is a one-dimensional Brownian
motion, see, e.g. [17], has polynomial coefficients and scalar noise. Another example
with polynomial coefficients is the stochastic Duffing–van der Pol equation (see [3])

dx1(t) = x2(t) dt,

dx2(t) = (αx1(t) + βx2(t) − x3
1(t) − x2

1 (t)x2(t) − σ 2
1

2
x1(t) − σ 2

2

2
x2(t)) dt (3)

+σ1x1(t) dW (1)(t) + σ2x2(t) dW (2)(t) + σ3 dW (3)(t),

where α, β, σ1, σ2, σ3 ∈ R and W (1), W (2) and W (3) are three independent scalar
Brownian motions.

Moreover, in mathematical biology and financial mathematics, see, e.g. [14,21],
particular interest has been given to stochastic differential equations of the so called
Cox–Ingersoll–Ross type

dx(t) = κ (λ − x(t)) dt + θ
√|x(t)| dW (t), (4)

where κ, λ, θ ≥ 0. Here the diffusion coefficient neither satisfies a global Lipschitz
condition nor is differentiable at x = 0. However, if κλ ≥ θ2/2 and x0 ∈ (0,∞),
then the boundary zero is unattainable. Hence in this case the solution of Eq. (4) never
leaves the set D = (0,∞) and the coefficients are infinitely differentiable on D. For
further examples, we refer to [2,3,14,17,21].

In this article, we will consider the approximation of Eq. (1) with respect to the
pathwise maximum error in the discretization points

sup
i=1,...,n

|x(ti , ω) − x(ti , ω)|, ω ∈ Ω, (5)

where t1, . . . , tn are the nodes of the discretization. This error criterion is in particular
appropriate for equations with a non-integrable initial value and for stochastic dyna-
mics, since the theory of random dynamical systems is of pathwise nature. Approxima-
tion methods for stochastic differential equations with respect to pathwise error criteria
have been considered, e.g. in [6,8,9,16,24]. While in [16,24] pathwise convergence
rates for several approximation schemes (including the standard Itô–Taylor schemes)
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Higher order pathwise convergence rates for non-global Lipschitz SDEs on domains 43

under classical assumptions on the coefficients are determined, first results on the
pathwise approximation under non-global Lipschitz assumptions are given in [6,9].

Assuming the existence of an appropriate Lyapunov function for Eq. (1) and that
f and g are locally Lipschitz continuous, it is shown in [9] that the standard Euler
method has pathwise order of convergence 1/2 − ε for arbitrary small ε > 0. This
pathwise convergence rate of the explicit Euler method is also obtained in [6], in
which the assumption on the Lyapunov function is replaced by the existence of a
unique non-exploding solution. In [6] also the explicit Milstein method is considered
and is shown to be pathwise convergent, if f , g and their first derivatives are locally
Lipschitz continuous.

Here, we will consider the approximation of Eq. (1) by modified Itô–Taylor methods,
assuming only that Eq. (1) has a unique solution x = (x(t), t ≥ 0), whose sample
paths are contained in a domain D ⊂ R

d , i.e.

P(x(t) ∈ D for all t ≥ 0) = 1.

For this, we will modify the standard Itô–Taylor schemes by introducing auxiliary
drift and diffusion functions for the case that the numerical scheme leaves the domain
D. Unless D = R

d , the modification of the standard Itô–Taylor schemes is required,
since the coefficients of the equation may not be differentiable or even well defined
outside D, and therefore the standard Itô–Taylor schemes are not applicable to these
equations. This modification turns out to be a flexible method, which we will illustrate
by several examples. In particular, since D is a domain and thus open, the boundary of
D is often a reflecting barrier for Eq. (1). So the auxiliary drift and diffusion functions
should reproduce this reflection property of the boundary.

Our main result is that the modified Itô–Taylor method of order γ has pathwise order
of convergence γ −ε, if the coefficients of the equation are 2γ +1-times continuously
differentiable on D and the auxiliary drift and diffusion coefficients are 2γ − 1-times
continuously differentiable outside of D .

Thus, we recover the pathwise convergence rate γ − ε of the standard Itô–Taylor
method of order γ , which has been derived under classical assumptions in [16]. Moreo-
ver the case D = R

d , in which the modified Itô–Taylor schemes and the standard
Itô–Taylor schemes coincide, illustrates that the pathwise convergence rates of the
standard Itô–Taylor schemes are very “robust” in the sense that they can be retained
under almost minimal assumptions.

The remainder of this article is structured as follows: In the next section, we will
introduce our modified Itô–Taylor schemes and we will state our main result. Moreover,
several examples are given for illustration and we will comment briefly on results on
the weak and strong approximation of stochastic differential equations under non-
standard assumptions. Finally, in Sect. 3 we give some numerical examples, while the
proofs are postponed to Sect. 4.

We will use the following notation: For D ⊂ R
d we will denote by Cr (D; R

p)

the set of all functions from D to R
p, which are r -times continuously differentiable.

Moreover, we will use the notation Cr
b(D; R

p) for the set of all functions, which
belong to Cr (D; R

p) and are bounded together with their first r -derivatives.
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44 A. Jentzen et al.

2 Modified Itô–Taylor schemes

Throughout this article, we will impose the following general assumption on the sto-
chastic differential equation, which we want to approximate:

(A) Equation (1) has a pathwise unique strong solution x = (x(t), t ≥ 0) with

P(x(t) ∈ D for all t ≥ 0) = 1,

i.e. almost all solution sample paths never leave the set D for all t ≥ 0.

Recall that a process x = (x(t), t ≥ 0) is called a solution of Eq. (1), see, e.g. [15],
if

(i) almost all sample paths of x are continuous and x is F -adapted,
(ii) P(x(0) = x0) = 1,

(iii)

t∫

0

| f (x(s))| ds +
m∑

j=1

t∫

0

|g j (x(s))|2 ds < ∞

with probability one for all t ≥ 0 and
(iv)

x(t) = x0 +
t∫

0

f (x(s)) ds +
m∑

j=1

t∫

0

g j (x(s)) dW j (s), t ≥ 0

holds with probability one, where g j denotes the j th column of the diffusion
matrix g.

Thus, we allow in particular the case that the solution x of Eq. (1) is not integrable,
i.e. E|x(t)| = ∞ for some t ≥ 0.

For convenience, we first recall the standard Itô–Taylor schemes.

2.1 Itô–Taylor schemes

These approximation schemes are defined as follows, see, e.g. [17]: Let

M =
{
α = ( j1, . . . , jl) ∈ {0, 1, 2, . . . , m}l : l ∈ N

}
∪ {v}

be the set of all multi-indices. The length of a multi-index α = ( j1, . . . , jl) is defined
as l(α) = l and v is the multi-index of length 0. Moreover, let n(α) be the number of
entries of α, which are equal to 0. For α = ( j1, . . . , jl) and 0 ≤ s ≤ t < ∞ we define

Iα(s, t) =
t∫

s

· · ·
τ2∫

s

dW j1(τ1) · · · dW jl (τl)
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Higher order pathwise convergence rates for non-global Lipschitz SDEs on domains 45

with the convention that dW 0(τ ) = dτ . We also introduce the operators

L0 =
d∑

k=1

f k ∂

∂xk
+ 1

2

d∑
k,l=1

m∑
j=1

gk, j gl, j ∂2

∂xk∂xl

and

L j =
d∑

k=1

gk, j ∂

∂xk

for j ∈ {1, . . . , m}. Here f k , gk, j are the kth components of f and g j , respectively.
Finally, we define for γ = 0.5, 1.0, 1.5, . . . the sets of multi-indices

Aγ =
{
α ∈ M : l(α) + n(α) ≤ 2γ or l(α) = n(α) = γ + 1

2

}

and let be

0 = t0 < t1 < · · · < tn = T

a discretization of [0, T ] with T ∈ (0,∞).
Then the Itô–Taylor scheme of order γ is given by

xγ
n (t0) = x0,

xγ
n (ti+1) = xγ

n (ti ) +
∑

α∈Aγ \{ν}
hα(xγ

n (ti )) · Iα(ti , ti+1)

for i = 0, . . . , n − 1, where

hα(x) = L j1 · · · L jl−1 g jl (x), x ∈ R
d

for α = ( j1, . . . , jl) and g0 = f .
However, these schemes may not be well defined, if the coefficients of Eq. (1) are

only given on D: the approximations computed by these schemes may leave the set
D, while the exact solution does not. To avoid this problem, we will introduce in the
next section an appropriate modification of the coefficients of Eq. (1).

2.2 Modified Itô–Taylor schemes

Now assume that the coefficients of Eq. (1) are r -times continuously differentiable on
D, i.e. f ∈ Cr (D; R

d) and g ∈ Cr (D; R
d,m) with r ∈ N. Moreover set E = {x ∈

R
d : x /∈ D}.
To define our modified Itô–Taylor schemes, we now choose two auxiliary functions

a ∈ Cs(E; R
d) and b ∈ Cs(E; R

d,m) for s ∈ N and define
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46 A. Jentzen et al.

f̃ (x) = f (x) · 1D(x) + a(x) · 1E (x), x ∈ D ∪ E,

g̃(x) = g(x) · 1D(x) + b(x) · 1E (x), x ∈ D ∪ E .

For x ∈ ∂ D set

f̃ (x) = lim
y→x; y∈D

f̃ (y), g̃(x) = lim
y→x;∈y∈D

g̃(y),

if these limits exist. Otherwise define f̃ (x) = 0, respectively g̃(x) = 0 for x ∈ ∂ D.
(Note that the Itô–Taylor schemes in general hit the boundary of D with probability
zero, so the values of the coefficients on the boundary do not matter.)

Moreover, we also need the following “modified” derivative for a function h :
R

d → R
d . For l = 1, . . . , d set

∂xl h(x) = ∂

∂xl
h(x), x ∈ D ∪ E

and for x ∈ ∂ D define

∂xl h(x) = lim
y→x; y∈D

∂xl h(x),

if this limit exists. Otherwise set ∂xl h(x) = 0 for x ∈ ∂ D.
These modifications of the coefficients and the modified derivatives may seem

rather technical, but all one has to do is the following:

(1) Keep the original coefficients on D.
(2) Define new coefficients on E , which is the complement of the closure of D.
(3) Define the coefficients and their derivatives appropriately on ∂ D.

Using the above notations and conventions the operators

L̃0 =
d∑

k=1

f̃ k ∂xk + 1

2

d∑
k,l=1

m∑
j=1

g̃k, j g̃l, j ∂xk ∂xl

and

L̃ j =
d∑

k=1

g̃k, j ∂xk

for j ∈ {1, . . . , m} are well defined. Our modified Itô–Taylor method of order γ based
on the auxiliary functions a and b is now given by

x̃γ
n (t0) = x0,

x̃γ
n (ti+1) = x̃γ

n (ti ) +
∑

α∈Aγ \{ν}
h̃α(̃xγ

n (ti )) · Iα(ti , ti+1)
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Higher order pathwise convergence rates for non-global Lipschitz SDEs on domains 47

for i = 0, . . . , n − 1, where

h̃α(x) = L̃ j1 · · · L̃ jl−1 g̃ jl (x), x ∈ R
d

for α = ( j1, . . . , jl) and g̃0 = f̃ .
The purpose of the auxiliary drift- and diffusion coefficients is twofold:

(i) to obtain a well-defined numerical method,
(ii) to “reflect” the numerical scheme back to D, if it has left D.

In particular, one can always choose the auxiliary functions to be affine or even
constant, in which case these schemes have a simple structure outside of D.

The modified Itô–Taylor method of order γ is well defined as long as the coefficients
of the equation are 2γ − 1-times differentiable on D and the auxiliary functions are
2γ −1-times differentiable on E . Hence the assumptions in the following theorem are
almost minimal. For simplicity, we will choose an equidistant discretization of [0, T ],
i.e. ti = iT/n for i = 0, 1, . . . , n.

Theorem 1 Let γ = 0.5, 1.0, 1.5, . . .. Assume that

f ∈ C2γ+1(D; R
d), g ∈ C2γ+1(D; R

d,m)

and

a ∈ C2γ−1(E; R
d), b ∈ C2γ−1(E; R

d,m).

Moreover let x̃γ
n be the modified Itô–Taylor method based on the auxiliary functions a

and b. Then for all ε > 0 there exists a finite and non-negative random variable ηa,b
γ,ε

such that

sup
i=0,...,n

∣∣x(iT/n, ω) − x̃γ
n (iT/n, ω)

∣∣ ≤ ηa,b
γ,ε(ω) · n−γ+ε

for almost all ω ∈ Ω and all n ∈ N.

Thus, the modified Itô–Taylor methods obtain pathwise convergence order γ − ε

for arbitrarily ε > 0, regardless which auxiliary functions are chosen. However, the
constant in the error bound clearly depends on the auxiliary functions and there are
“natural choices” for the auxiliary functions, which we will illustrate in the following.

2.3 Examples

(i) We consider first the Cox–Ingersoll–Ross process

dx(t) = κ (λ − x(t)) dt + θ
√|x(t)| dW (t), t ≥ 0, x(0) = x0, (6)
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48 A. Jentzen et al.

with κλ ≥ θ2/2 and x0 > 0. Here we have D = (0,∞) and f, g ∈ C∞(D; R), since

f (x) = κ (λ − x) , g(x) = θ
√

x, x ∈ D.

As auxiliary functions we can choose, e.g.

a(x) = b(x) = 0, x ∈ E

or

a(x) = κ (λ − x) , b(x) = 0, x ∈ E .

The first set of auxiliary functions “kills” the numerical approximation as soon as
it reaches a negative value. However, the second set of auxiliary functions is more
appropriate, since if the scheme would take a negative value, the auxiliary functions
force the numerical scheme to be positive again after the next steps, which better
recovers the positivity of the exact solution. (In the case of the Euler scheme for
Eq. (6) a detailed discussion on the choice of the auxiliary functions can be found in
[19].)

Another possibility to retain the positivity of the numerical approximation to Eq. (6)
in the case κλ ≥ θ2/2 and x0 > 0 is to use the Lamperti transformation: the process
y(t) = √

x(t), t ≥ 0, satisfies the stochastic differential equation

dy(t) =
(

κλ

2
− θ2

8

)
1

y(t)
dt − κ

2
y(t) dt + θ

2
dW (t), t ≥ 0. (7)

Here we have again

P(y(t) ∈ D for all t ≥ 0) = 1, (8)

and we thus can use a modified Itô–Taylor scheme of order γ to approximate Eq. (7).
Transforming back, we obtain the strictly positive approximation

(ỹγ
n (iT/n, ω))2, i = 0, . . . , n,

to the original equation (6). Moreover, as a straightforward consequence of Theorem 1
we have that for all ε > 0 there exists a finite and non-negative random variable η̃a,b

γ,ε

such that

sup
i=0,...,n

∣∣∣x(iT/n, ω) − (ỹγ
n (iT/n, ω))2

∣∣∣ ≤ η̃a,b
γ,ε(ω) · n−γ+ε

for almost all ω ∈ Ω and all n ∈ N. In view of (8) one should also here choose the
auxiliary functions for these “squared Itô–Taylor methods” appropriately.

Due to its applications in financial mathematics particular attention has been given
recently to the weak and strong (structure preserving) approximation of the Cox–
Ingersoll–Ross, see, e.g. [1,4,5,10,13,19,23]. While weak convergence rates of order 1
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Higher order pathwise convergence rates for non-global Lipschitz SDEs on domains 49

have been obtained for several schemes [1,4], a strong convergence rate has been
derived—up to our best knowledge—only for a symmetrized Euler scheme under
very restrictive assumptions on the parameters λ, κ and θ , see [4].

(ii) The coefficients of the stochastic Volterra–Lotka equation

dx(t) = diag(x1(t), . . . , xn(t)) [(A + Bx(t)) dt + Cx(t) dW (t)] , t ≥ 0, (9)

are infinitely differentiable on R
d , hence there is no need for a modification of the

coefficients and one can use the standard Itô–Taylor schemes. On the other hand it
was shown by Mao et al. [20] that the solution never leaves the set D = (0,∞)d , if
the initial value satisfies x0 ∈ (0,∞)d and if the entries of the diffusion matrix are
positive with the diagonal elements strictly positive. Thus, it is also favorable for this
equation to use the introduced modified Itô–Taylor methods with D = (0,∞)d and,
e.g.

ak(x) = −2|Ak |xk1{xk<0}(x), bk, j (x) = 0, x ∈ E

for k = 1, . . . , d, j = 1, . . . , m, where Ak is the kth element of the vector A.
(iii) The diffusion limit of the Wright–Fisher model, see, e.g. [14], is another popular

(one-dimensional) stochastic differential equation in mathematical biology:

dx(t) = f (x(t)) dt + √|x(t)(1 − x(t))| dW (t), t ≥ 0. (10)

The drift coefficient is typically a polynomial and this equation takes values in the
interval [0, 1]. Here, in general (depending on the structure of f ) the solution attains
the boundaries {0, 1}, i.e. we have

τ{0,1} = inf{t ∈ [0, T ] : x(t) /∈ (0, 1)} < T

with a positive probability. Thus, we can not directly use Theorem 1 to approximate
Eq. (10). However, if we apply nevertheless the modified Itô–Taylor method x̃γ

n with
the auxiliary functions a = 0 and b = 0 to (10), then we obtain the error bound

sup
i=0,...,n

∣∣y(iT/n, ω) − x̃γ
n (iT/n, ω)

∣∣ ≤ ηγ,ε(ω) · n−γ+ε

for almost all ω ∈ Ω and all n ∈ N, where

y(t, ω) = x(t, ω)1{t<τ{0,1}(ω)}, t ≥ 0, ω ∈ Ω.

Thus, we can use these modified Itô–Taylor methods for the approximation of the
Wright–Fisher equation up to the first hitting time of the boundary.
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2.4 Weak and strong approximation under non-standard assumptions

To our best knowledge, weak and strong approximation of stochastic differential equa-
tions under non-standard assumptions has been studied in very few articles so far.

Yan [25] gives necessary and sufficient conditions for the weak convergence of
the Euler method. In the one-dimensional case, he obtains also an upper bound for
the convergence rate, if the drift coefficient is Lipschitz continuous and the diffu-
sion coefficient is Hölder continuous. (Note that Theorem 1 clearly implies the weak
convergence of the modified Itô–Taylor schemes.)

Weak approximation for equations with non-global Lipschitz coefficients is also
considered in [22]. Here it is used that for a suitable class of test functions trajectories,
which leave a sufficiently large sphere, can be ignored up to a prescribed approximation
accuracy.

For strong approximation under non-Lipschitz assumptions, mainly Euler-type
methods have been analyzed [11,12,18].

In [11], it is shown that the explicit Euler method converges in the mean square
sense, if the drift and diffusion coefficients are locally Lipschitz continuous and the
Euler method and the exact solution satisfy a moment condition. The same holds true
for an adaptive Euler method given in [18], which is designed for long-time integration
of stochastic differential equations.

Mean square convergence rates for Euler methods have been established under the
additional assumptions that the drift coefficient has a polynomial behavior, satisfies a
one-sided Lipschitz condition

〈a − b, f (a) − f (b)〉 ≤ µ · |a − b|2, a, b ∈ R
d (11)

with µ ≥ 0, and the diffusion coefficient is globally Lipschitz. Under these assump-
tions, it is shown in [11] that the drift-implicit Euler method and the split-step Euler
method have mean square order of convergence 1/2. A similar result for the drift-
implicit Euler method is also given in [12].

In [11,12], the implicitness helps in particular to control the moments of the
approximation schemes. Thus, it would be a natural question also to analyze the
pathwise convergence rates of drift-implicit Itô–Taylor methods under weak assump-
tions. However, drift-implicit methods may not be well defined assuming only that
the coefficients of the equation are sufficiently differentiable. Consider, e.g. the one-
dimensional Volterra–Lotka equation (also called stochastic Verhulst equation)

dx(t) = (λx(t) − x2(t)) dt + σ x(t) dW (t), t ≥ 0, x(0) = x0 (12)

with λ, σ, x0 > 0. Then the drift-implicit Euler method for this equation is given by

xn(ti+1) = xn(ti ) + (λxn(ti+1) − x2
n(ti+1))∆i + σ xn(ti )∆i W

with ∆i = ti+1 − ti and ∆i W = W (ti+1) − W (ti ). The corresponding quadratic
equation for xn(ti+1) has the following solutions:
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Higher order pathwise convergence rates for non-global Lipschitz SDEs on domains 51

xn(ti+1) = 1 − λ∆i

2∆i

(
−1 ±

√
1 + 4∆i xn(ti )

(1 − λ∆i )2 (1 + σ∆i W )

)
.

Here, the negative solution can be discarded, since the solution of (12) is positive for
all t ≥ 0. However, the expression under the square-root can be negative, even for
very small step sizes, and thus the drift-implicit Euler method for this stochastic dif-
ferential equation is not well defined for non-adaptive discretizations. (Even adaptive
discretizations would require very small step sizes with positive probability.) So, at
least a one-sided Lipschitz condition as (11) is required for drift-implicit Itô–Taylor
methods to be well defined.

3 Numerical examples

In this section we illustrate our results with several numerical examples. The first
equation we consider is the Cox–Ingersoll–Ross process given by

dx(t) = (1 − x(t)) dt + √
x(t) dW (t), t ∈ [0, 1], x(0) = 1

5
. (13)

The corresponding stochastic differential equation for y(t) = √
x(t), t ∈ [0, 1], reads

as

dy(t) = 3

8

1

y(t)
dt − 1

2
y(t) dt + 1

2
dW (t), t ∈ [0, 1], y(0) = 1√

5
. (14)

Figure 1 shows for four different sample paths ω ∈ Ω the maximum error in the
discretization points, i.e.

sup
i=0,...,n

|x(ti , ω) − xn(ti , ω)|,

which we call “pathwise maximum error” in what follows, of

(i) the Euler scheme (−) for (13) with auxiliary functions a(x) = 1 − x , x < 0
and b(x) = 0, x < 0,

(ii) the “squared Euler scheme” (− · −), compare Sect. 2.3, for the reduced equa-
tion (14) with auxiliary functions a(y) = − 1

2 y, y < 0 and b(y) = 0, y < 0,
(iii) the “squared Wagner–Platen scheme” (− −) for the reduced equation (14) with

auxiliary functions a(y) = − 1
2 y, y < 0 and b(y) = 0, y < 0.

Since Eq. (13) has no known explicit solution, we have discretized it with very small
step size in order to estimate the pathwise maximum error for the above approximation
schemes. For this we apply scheme (iii).

In Fig. 1 we use log–log-coordinates. Thus, the dotted lines correspond to the
convergence orders 0.5, 1 and 1.5, respectively. The pathwise convergence rates of
all three approximation schemes are in very good accordance with the theoretically
predicted rates, also for moderate stepsizes. Moreover, the singularity in the drift
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Fig. 1 Example (13): pathwise maximum error versus step size for four sample paths

coefficient of Eq. (14) turns out to be “unproblematic” in the pathwise numerical
simulations.

The second example we consider is the one-dimensional Volterra–Lotka equation

dx(t) = x(t)

(
2 − 5

2
x(t)

)
dt + 3

2
x(t) dW (t), t ∈ [0, 1], x(0) = 2. (15)

The explicit solution of this equation is given by

x(t) = 2 exp
( 7

8 t + 3
2 W (t)

)
1 + 5

∫ t
0 exp

( 7
8 s + 3

2 W (s)
)

ds
, t ∈ [0, 1],

which we discretize with very small step size in order to estimate the pathwise maxi-
mum error. Here we will concentrate on comparing different auxiliary functions: Fig. 2
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Fig. 2 Example (15): pathwise maximum error versus step size for four sample paths

shows for four different sample paths ω ∈ Ω the maximum error in the discretization
points for

(i) the Euler–Maruyama scheme (−) with auxiliary functions a(x) = 2x − 5
2 x2,

x < 0 and b(x) = 3
2 x , x < 0 (“no auxiliary functions”, i.e. the standard Euler

method applied to Eq. 15),
(ii) the Euler–Maruyama scheme (− · −) with auxiliary functions a(x) = −4x ,

x < 0, b(x) = 0, x < 0 (“reflecting auxiliary functions”).

The error of the standard Euler scheme with no auxiliary functions tends to explode
for large step sizes, which is due to the quadratic term in Eq. (15). For smaller stepsizes
the standard Euler approximation remains strictly positive and in this case the error
of both schemes coincide and is in good accordance with the theoretically predicted
order 0.5 − ε. (The dotted line corresponds to the convergence order 0.5.)
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The third example is the stochastic Duffing–van der Pol equation

dx1(t) = x2(t) dt,

dx2(t) = (x1(t) + 2x2(t) − x3
1(t) − x2

1 (t)x2(t)) dt (16)

+0.5 dW (1)(t) + 2x2(t) dW (2)(t)

with x1(0) = 1, x2(0) = 1. Here we consider the Euler scheme and the Milstein
scheme using no auxiliary functions. Note that the entries of the diffusion matrix of
Eq. (16) do not commute, since we have

(
0
0

)
= L2

(
0
1
2

)
�= L1

(
0

2y

)
=

(
0
1

)
.

Thus, we also have to approximate the iterated integrals

(i+1)/n∫

i/n

W (1)
t dW (2)

t , i = 0, . . . , n − 1,

which appear in the Milstein scheme. For this we will use the Riemann sums

n−1∑
l=0

W (1)

i/n+l/n2(W (2)

i/n+(l+1)/n2 − W (2)

i/n+l/n2), i = 0, . . . , n − 1,

see, e.g. [7] for a similar approximation of this iterated integral. (In a forthcoming
article we will analyze the pathwise approximation of the iterated integrals systema-
tically.)

To avoid the cumbersome computation of a “reference solution” using the Milstein
scheme with very small stepsize, we will use the quantities

e( j) = sup
i=0,...,2 j

∣∣∣x2 j (i/2 j , ω) − x2 j+1(i/2 j , ω)

∣∣∣ , j = 1, 2, . . .

to estimate the pathwise convergence rates.
Figure 3 shows for four different sample paths ω ∈ Ω the quantities log2(e( j))

versus j for

(i) the Euler scheme (−) and
(ii) the Milstein scheme (− · −).

The dotted lines correspond to the convergence orders 0.5 and 1, respectively. Thus the
estimated convergence rates are in accordance with the theoretically predicted rates.

4 Proofs

We first state some auxiliary results, which will be required.
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Fig. 3 Example (16): estimated convergence rates for four sample paths

4.1 Preliminaries

The following Lemma is a consequence of the Borel–Cantelli Lemma and will provide
a relation between the convergence rates in the pth mean and the pathwise convergence
rates. For a proof, see, e.g. [16].

Lemma 1 Let α > 0 and K (p) ∈ [0,∞) for p ≥ 1. In addition, let Zn, n ∈ N, be a
sequence of random variables such that

(E|Zn|p)1/p ≤ K (p) · n−α

for all p ≥ 1 and all n ∈ N. Then for all ε > 0 there exists a finite and non-negative
random variable ηε such that
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|Zn| ≤ ηε · n−α+ε a.s.

for all n ∈ N.

For the proof of Theorem 1 we will work with the following time-continuous ver-
sions of the Itô–Taylor schemes and of the modified Itô–Taylor schemes, respectively:

xγ
n (0) = x0, (17)

xγ
n (t) = xγ

n (iT/n) +∑
α∈Aγ \{ν} hα(xγ

n (iT/n)) · Iα(iT/n, t), t ∈(iT/n, (i + 1)T/n],

and

x̃γ
n (0) = x0, (18)

x̃γ
n (t) = x̃γ

n (iT/n) +∑
α∈Aγ \{ν} h̃α(̃xγ

n (iT/n)) · Iα(iT/n, t), t ∈(iT/n, (i +1)T/n],

for i = 0, . . . , 2n − 1. Note that the above schemes are based on the discretization

ti = iT/n, i = 0, 1, . . . , 2n

of the interval [0, 2T ] and their restrictions to the nodes ti = iT/n, i = 0, . . . , n − 1,
coincide with the (modified) Itô–Taylor schemes introduced in Sects. 2.1 and 2.2. (The
extension of the original schemes to the interval [T, 2T ] is required for the stopping
time argument we use in the proof of Theorem 1.)

The next result we require is the well known upper bound for the error in the pth
mean of the Itô–Taylor schemes under standard assumptions, see, e.g. [17].

Proposition 1 Let γ =0.5, 1.0, 1.5, . . . and f, g j ∈C2γ+1
b (Rd; R

d) for j =1, . . . , m.
Moreover, assume that E|x0|p < ∞ for all p ≥ 1 and let xγ

n be given by (17). Then,
there exists for every p ≥ 1 a constant K (p) > 0 such that

E sup
t∈[0,2T ]

|x(t) − xγ
n (t)|p ≤ K (p) · n−γ p.

Combining Lemma 1 and Proposition 1 we obtain the following result on the
pathwise convergence rates of the Itô–Taylor method given by (17).

Proposition 2 Let γ =0.5, 1.0, 1.5, . . . and f, g j ∈C2γ+1
b (Rd; R

d) for j =1, . . . , m.
Moreover, assume that E|x0|p < ∞ for all p ≥ 1 and let xγ

n be given by (17). Then
there exists for every ε > 0 a finite and non-negative random variable ζγ,ε such that

sup
t∈[0,2T ]

∣∣x(t) − xγ
n (t)

∣∣ ≤ ζγ,ε · n−γ+ε a.s.

for all n ∈ N.

The proof of our main result is based on a localization procedure similar to the one
used in [9]. Before we start with the proof, we give a description of its strategy.
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Step 1. Here we choose an appropriate sequence of open and bounded sets Dq ⊂ D,
q ∈ N, such that

. . . ⊂ Dq ⊂ Dq+1 ⊂ . . .

and

∪q∈N Dq = D.

Moreover, we define the stopping times τ (q) and τ
(q)
n , which are the first exit times of the

solution x from Dq and of the modified Itô–Taylor scheme x̃n from Dq , respectively.

Step 2. Now we construct smooth coefficients fq and gq with compact support, which
coincide with f and g on Dq (“truncated” coefficients). Moreover, we also truncate

the initial value appropriately to x (q)
0 .

Step 3. For the new truncated coefficients fq , gq and the truncated initial value x (q)
0

we define the corresponding “truncated” SDE, whose solution we denote by x (q).
Moreover we also define the corresponding standard Itô–Taylor scheme x (q)

n of order
γ for x (q).
Since the drift coefficients f , fq and the diffusion coefficients g, gq coincide on Dq ,

the first exit times of the numerical schemes x̃n and x (q)
n from Dq are identical (Eq. 22).

Moreover, we also show that the solution of the original SDE, i.e. x , leaves Dq earlier
or at the same time than the solution x (q) of the truncated SDE (Eq. 24).

Step 4. Using Proposition 2, we obtain that the Itô–Taylor scheme x (q)
n converges

pathwise on [0, 2T ] to the solution x (q) of the truncated SDE with order γ − ε. (The
coefficients of this SDE are smooth with compact support.)
Now recall that the truncated coefficients are identical to the untruncated coefficients
on Dq . Thus, as a consequence of Eq. (22), i.e. the coincidence of the first exit times, the

modified Itô–Taylor scheme x̃n and the Itô–Taylor scheme x (q)
n coincide on [0, τ

(q)
n ).

Moreover, since the solution x of the original SDE leaves Dq earlier or at the same time
than the solution x (q) of the truncated SDE (Eq. 24), we have that x and x (q) coincide
on [0, τ (q)). Hence on the interval [0, τ

(q)
n ∧ τ (q)) the solutions of the original and the

truncated SDE coincide and also the modified Itô–Taylor scheme for the original SDE
and the Itô–Taylor scheme for the truncated SDE coincide. So we can conclude that
x̃n converges pathwise to x with order γ − ε on [0, τ

(q)
n ∧ τ (q)), see Eq. (27).

Step 5. However, asymptotically the modified Itô–Taylor scheme x̃n does not leave
the set Dq earlier than the exact solution x (Eq. 28). This follows from the pathwise

convergence of the Itô–Taylor scheme x (q)
n to the solution x (q) of the truncated SDE

and the comparison of the first exit times for the numerical schemes x̃n , x (q)
n and for

the SDE solutions x , x (q).
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Step 6. As a consequence of the previous step, which gives pathwise τ
(q)
n ≥ τ (q) for

n → ∞, we have that x̃n converges pathwise to x with order γ − ε on every compact
interval contained in [0, τ (q)), see Eq. (29) and the following remark.

Step 7. However, τ (q) is the first exit time of x from Dq . Since x never leaves D and
Dq converges to D, we have pathwise τ (q) > T for q → ∞. Hence, the assertion of
the theorem follows, i.e. the modified Itô–Taylor scheme x̃n converges pathwise to x
with order γ − ε on [0, T ].

4.2 Proof of Theorem 1

Now fix γ ∈ {0.5, 1.0, . . .} and let f, g j ∈ C2γ+1(D; R
d). For convenience in notation

we drop the index γ in what follows.
(Step 1) For q ∈ N set

Dq = {x ∈ D : |x | < q and d(x, ∂ D) > 1/q}, (19)

where

d(x, ∂ D) = inf{|x − y| : y ∈ ∂ D}

for x ∈ R
d . Moreover, define the stopping times

τ (q) = inf{t ≥ 0 : x(t) /∈ Dq} ∧ 2T

and

τ
(q)
n = inf{t ≥ 0 : x̃n(t) /∈ Dq} ∧ 2T,

where x̃n is the modified Itô–Taylor method on [0, 2T ] of order γ given by (18) with
auxiliary functions a and b.

Since the sample paths of x are continuous functions, which are contained in D by
assumption (A), we have that

lim
q→∞ τ (q) = 2T a.s.

(Step 2) Moreover, for all q ∈ N there exists a function ϕq ∈ C∞
b (Rd ; R) such that

0 ≤ ϕ(x) ≤ 1 and

ϕq(x) =
{

1 for x ∈ Dq ,

0 for x ∈ R
d \ D2q .

Using these functions, set

fq = f · ϕq , g1
q = g1 · ϕq , . . . , gm

q = gm · ϕq . (20)
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Clearly, we have fq , g j
q ∈ C2γ+1

b (Rd ; R
d). We also need to truncate the initial value.

Here we set

x (q)
0 (ω) =

{
x0(ω) if |x0(ω)| < q,

q
|x0(ω)| x0(ω) otherwise

for ω ∈ Ω .
(Step 3) Now, denote by x (q)

n the Itô–Taylor approximation on [0, 2T ] given by
(17) of order γ applied to the truncated equation

dx (q)(t) = fq(x (q)(t)) dt +
m∑

j=1

g j
q (x (q)(t)) dW j (t), t ≥ 0, (21)

x (q)(0) = x (q)
0 .

First note that clearly

τ
(q)
n = inf{t ≥ 0 : x̃n(t) /∈ Dq} ∧ 2T = inf{t ≥ 0 : x (q)

n (t) /∈ Dq} ∧ 2T . (22)

We moreover have

x(t ∧ τ (q))1{τ (q)>0} = x (q)(t ∧ τ (q))1{τ (q)>0}, t ≥ 0, (23)

almost surely, which implies

τ (q) = inf{t ≥ 0 : x(t) /∈ Dq} ∧ 2T ≤ inf{t ≥ 0 : x (q)(t) /∈ Dq} ∧ 2T (24)

almost surely. Relation (23) is without doubt known, but since we could not find a
suitable reference, we give a proof of it in the next subsection.

(Step 4) From Proposition 2 it follows that for every ε > 0, there exists a finite and
non-negative random variable ζ

(q)
ε such that

sup
t∈[0,2T ]

|x (q)(t) − x (q)
n (t)| ≤ ζ (q)

ε · n−γ+ε a.s. (25)

for all n ∈ N. Since clearly

x (q)
n (t ∧ τ

(q)
n )1{τ (q)>0} = x̃n(t ∧ τ

(q)
n )1{τ (q)>0}, t ∈ [0, 2T ], (26)

almost surely and

x(t ∧ τ (q))1{τ (q)>0} = x (q)(t ∧ τ (q))1{τ (q)>0}, t ∈ [0, 2T ],

almost surely, see (23), we obtain

sup
t∈[0,τ (q)∧τ

(q)
n )

|x(t) − x̃n(t)| ≤ ζ (q)
ε · n−γ+ε a.s. (27)

123



60 A. Jentzen et al.

for all n ∈ N.
(Step 5) Note that (25) in particular implies that

lim
n→∞ sup

t∈[0,T ]
|x (q)(t, ω) − x (q)

n (t, ω)| = 0

for almost all ω ∈ Ω , which yields

lim inf
n→∞ τ

(q)
n ≥ inf{t ≥ 0 : x (q)(t) /∈ Dq} ∧ 2T a.s.

Since

τ (q) ≤ inf{t ≥ 0 : x (q)(t) /∈ Dq} ∧ 2T a.s.

by (24), we obtain

lim inf
n→∞ τ

(q)
n ≥ τ (q) a.s. (28)

(Step 6) By (27) and (28) we have

lim sup
n→∞

sup
t∈[0,τ (q)(ω)−T/2]

nγ−ε|x(t, ω) − x̃n(t, ω)| ≤ ζ (q)
ε (ω)

for almost all ω ∈ Ω . Hence we obtain that

η(q)a,b
γ (ω) := sup

n∈N

sup
t∈[0,τ (q)(ω)−T/2]

nγ−ε|x(t, ω) − x̃n(t, ω)| < ∞ (29)

for almost all ω ∈ Ω . (Note that (29) holds true for any interval [0, τ (q)(ω) − δ] with
δ > 0. The choice δ = T/2 is for simplicity only.)

It is only here that the auxiliary functions a and b contribute to the error bound: In
fact, we have the decomposition

η(q)a,b
γ (ω) = sup

n∈N

(
sup

t∈[0,τ (q)(ω)−T/2]
nγ−ε|x(t, ω) − x̃n(t, ω)|1{τ (q)

n (ω)≤τ (q)(ω)}

+ sup
t∈[0,τ (q)(ω)−T/2]

nγ−ε|x(t, ω) − x̃n(t, ω)|1{τ (q)
n (ω)>τ(q)(ω)}

)
,

which splits the error in the parts, where x̃n leaves Dq earlier than x (first summand)
or not (second summand). Only in the first case the auxiliary functions matter.

(Step 7) Now define

Ωq = {ω ∈ Ω : τ (q)(ω) ≥ 3T/2}.
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Since limq→∞ τ (q) = 2T almost surely, it follows

P
(∪q∈NΩq

) = 1.

Now set ηa,b
ε (ω)=η

(1)a,b
ε (ω) for ω∈Ω1 and ηa,b

ε (ω)=η
(q)a,b
ε (ω) for ω∈Ωq \Ωq−1,

q ≥ 2. Then, we finally obtain

sup
t∈[0,T ]

|x(t) − x̃n(t)| ≤ ηa,b
ε · n−γ+ε

almost surely, which shows the assertion of Theorem 1. �

4.3 Proof of identity (23)

Set z(t) = x(t) − x (q)(t) and apply Itô’s formula to |z(t)|2, t ∈ [0, 2T ]. We obtain

|z(t)|2 = |z(0)|2 + 2

t∫

0

〈z(s), f (x(s)) − fq (x (q)(s))〉 ds +
m∑

j=1

t∫

0

|g j (x(s))−g j
q (x (q)(s))|2ds

+ 2
m∑

j=1

t∫

0

〈z(s), g j (x(s)) − g j
q (x (q)(s))〉 dW j (s), t ∈ [0, 2T ],

almost surely. Now define h(t) = z(t ∧ τ (q))1{τ (q)>0}, t ∈ [0, 2T ], and note that

sup
t∈[0,2T ]

|h(t)| ≤ 3q a.s.

due to the definition of τ (q) and x (q). Moreover, we have

|h(t)|2 = 2

t∧τ (q)∫

0

〈z(s), f (x(s)) − fq(x (q)(s))〉 1{τ (q)>0} ds

+
m∑

j=1

t∧τ (q)∫

0

|g j (x(s)) − g j
q (x (q)(s))|2 1{τ (q)>0}ds

+2
m∑

j=1

t∧τ (q)∫

0

〈z(s), g j (x(s)) − g j
q (x (q)(s))〉 dW j (s) 1{τ (q)>0}, t ∈ [0, 2T ],

almost surely.
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By Proposition III.2.10 and the remark on page 147 in [15] we have

1{τ (q)>0}
m∑

j=1

t∧τ (q)∫

0

〈z(s), g j (x(s)) − g j
q (x (q)(s))〉 dW j (s)

= 1{τ (q)>0}
m∑

j=1

t∫

0

〈z(s), g j (x(s)) − g j
q (x (q)(s))〉1{s≤τ (q)} dW j (s) a.s.

for any t ∈ [0, 2T ]. Since τ (q) is a stopping time, the random variable 1{τ (q)>0} is
F0-measurable, and we obtain

1{τ (q)>0}
m∑

j=1

t∫

0

〈z(s), g j (x(s)) − g j
q (x (q)(s))〉1{s≤τ (q)} dW j (s)

=
m∑

j=1

t∫

0

〈z(s), g j (x(s)) − g j
q (x (q)(s))〉1{0<s≤τ (q)} dW j (s) a.s.

for any t ∈ [0, 2T ]. (Compare, e.g. Exercise 2.30 in [15].) Now, note that the integrand
on the right hand side of the above equation is uniformly bounded. Hence it follows

E
m∑

j=1

t∧τ (q)∫

0

〈z(s), g j (x(s)) − g j
q (x (q)(s))〉 dW j (s) 1{τ (q)>0} = 0, t ∈ [0, 2T ]

by Proposition III.2.10 in [15], and we have

E|h(t)|2 = 2E

t∧τ (q)∫

0

〈z(s), f (x(s)) − fq(x (q)(s))〉 1{τ (q)>0} ds

+
m∑

j=1

E

t∧τ (q)∫

0

|g j (x(s)) − g j
q (x (q)(s))|2 1{τ (q)>0}ds

≤ 2E

t∫

0

|z(s ∧ τ (q))|| f (x(s ∧ τ (q))) − fq(x (q)(s ∧ τ (q)))| 1{τ (q)>0} ds

+
m∑

j=1

E

t∫

0

|g j (x(s ∧ τ (q))) − g j
q (x (q)(s ∧ τ (q)))|2 1{τ (q)>0}ds
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for t ∈ [0, 2T ]. Recall that

f (x) = fq(x), g1
q(x) = g1(x), . . . , gm

q (x) = gm(x)

for x ∈ Dq . Thus it follows

E|h(t)|2 ≤ 2E

t∫

0

|z(s ∧ τ (q))|| fq(x(s ∧ τ (q))) − fq(x (q)(s ∧ τ (q)))| 1{τ (q)>0} ds

+
m∑

j=1

E

t∫

0

|g j
q (x(s ∧ τ (q))) − g j

q (x (q)(s ∧ τ (q)))|2 1{τ (q)>0}ds

for t ∈ [0, 2T ]. Since fq , g j
q ∈ C2γ+1

b (Rd; R
d) we obtain

E|h(t)|2 ≤ C1

t∫

0

E|z(s ∧ τ (q))|21{τ (q)>0} ds + C1

m∑
j=1

t∫

0

E|z(s ∧ τ (q))|21{τ (q)>0} ds

≤ C2

t∫

0

E|h(s)|2 ds

for t ∈ [0, 2T ] with C1, C2 > 0. Now, Gronwall’s Lemma yields that

E|h(t)|2 = 0, t ∈ [0, 2T ],

and the continuity of the sample paths of x implies that

h(t) = 0, t ∈ [0, 2T ],

almost surely, which shows (23). �
Acknowledgments The authors would like to thank the referees for their valuable comments and remarks.
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