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Abstract In this work we study the convergence of the fixed pivot techniques
(Kumar and Ramkrishna Chem. Eng. Sci. 51, 1311–1332, 1996) for breakage pro-
blems. In particular, the convergence is investigated on four different types of uniform
and non-uniform meshes. It is shown that the fixed pivot technique is second order
convergent on a uniform and non-uniform smooth meshes. Furthermore, it gives first
order convergence on a locally uniform mesh. Finally the analysis shows that the
method does not converge on a non-uniform random mesh. The mathematical results
of convergence analysis are also validated numerically.

Mathematics Subject Classification (2000) 65R20

1 Introduction

Population balances for breakage are widely known in high shear granulation, crystal-
lization, atmospheric science and many other particle related engineering problems.
The temporal change of particle number density, f (t, x) ≥ 0, of particles of volume
x ∈ R>0 at time t ∈ R≥0 in a spatially homogeneous physical system undergoing brea-
kage and aggregation processes is described by the following well known population
balance equation, see e.g. [27]

∂ f (t, x)

∂t
=

∞∫

x

b(x, ε)S(ε) f (t, ε) dε − S(x) f (t, x), (1)
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with

f (0, x) = f in(x), x ∈]0,∞[.

The first and second terms on the right hand side of the Eq. (4) are called the birth
and death terms respectively. The breakage function b(x, ε) is the probability density
function for the formation of particles of size x from particles of size ε. The selection
function S describes the rate at which particles are selected to break. The breakage
function has the following properties

x∫

0

b(ε, x) dε = ν(x), b(ε, x) = 0, for ε > x, (2)

and

x∫

0

εb(ε, x) dε = x . (3)

The function ν(x) represents the number of fragments obtained from the breakage
of particle of size x . For the total mass in the system to remain conserved during
fragmentation events, b must satisfy the Eq. (3). It states that the total mass of the
fragments equals the original mass when a particle of mass x breaks.

The mathematical results on existence and uniqueness of solutions of Eq. (1) can be
found in [4,18,19,21,22] for rather general breakage and selection functions. However,
for the sake of simplicity in our analysis we consider them to be twice continuously
differentiable functions. The above PBE (1) can only be solved analytically for very
simple forms of the breakage and selection functions, see [3,27,28]. This certainly
leads to a discussion of numerical methods for solving PBE. Numerical methods
fall into several categories: stochastic methods, [20,23], finite element methods, [5],
moment methods [9,10], asymptotic solution techniques [11], and sectional methods,
[12,13,16,17].

In the population balance equation (1) the volume variable x ranges from 0 to ∞.
In order to apply a numerical scheme for the solution of the equation a first step is to
fix a finite computational domain. In this work we consider the following truncated
equation

∂n(t, x)

∂t
=

xmax∫

x

b(x, ε)S(ε)n(t, ε) dε − S(x)n(t, x), (4)

with

n(0, x) = nin(x), x ∈ � :=]0, xmax[.
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Convergence analysis of sectional methods for solving breakage population balance equations 83

Here the variable n(t, x) denotes the solution to the preceding truncated equation.
The truncated equation has been discussed in the literature by various authors. For a
detailed discussion on it readers are referred to [1,2,4,6].

The stochastic methods (Monte-Carlo) are very efficient for solving multi-
dimensional population balance equations, since other numerical techniques become
computationally very expensive in such cases. A wide variety of finite element met-
hods, finite volume methods, weighted residuals, the method of orthogonal collocation
and Galerkin’s method are also used for solving breakage population balance equa-
tions. These methods may give very good prediction of number density but poor pre-
diction of moments, see Kumar et al. [15]. Other disadvantages of using higher order
methods include stability problems and higher computational cost. In the moment
method, the population balance equation is transformed into a system of ODEs des-
cribing the evolution of the moments of the particle size distribution. The moment
methods indeed predict very accurate the moments of the distribution but are unable
to give precise information about the density distribution. In recent times, the sectional
methods have become computationally very attractive because they do not only predict
some selected moments of the distribution very accurately but also give satisfactory
results for the complete density distribution.

Several sectional methods for breakage PBE have been proposed by Hill and Ng [7],
Kumar and Ramkrishna [16,17], Kumar et al. [12,13] as well as Vanni [25]. A detai-
led review of sectional methods has been given by Vanni [26]. Among all sectional
methods, the fixed pivot technique is the most widely used method these days due
to its generality and robustness. The technique predicts the first two moments of the
distribution very accurately. Despite the fact that the numerically calculated first two
moments are fairly accurate, the fixed pivot technique consistently over-predicts the
results of number density as well as its higher moments. A step to improve the fixed
pivot technique by preserving all advantages of the existing sectional methods has
been recently made by the authors in the cell average technique [12,13].

In the literature, the numerical analysis of sectional methods is missing and therefore
the objective of this work is to perform some numerical analysis of sectional methods.
In this work we mainly concentrate on the work of Kumar and Ramkrishna [16] as a
first step. In the next article of this series we will give the numerical analysis of the cell
average technique. The outline of this paper is as follows. Next section briefly presents a
general idea of sectional methods as well as some useful definitions and theorems used
in further analysis of these methods. The Sect. 3 presents the mathematical formulation
of the fixed technique followed by the consistency, stability and convergence analysis.
Numerical experiments are carried out in Sect. 4. Finally, some conclusions are made
in the last section.

2 The sectional methods

The sectional methods can be described by the following general mathematical deriva-
tion. The sectional methods approximate the total number of particles in finite number
of cells. As a first step, the continuous interval � := ]0, xmax[ is divided into small
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xi−1/2 xi+1/2

xi−1 xi+1xi
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23 +3/2

Fig. 1 A discretized size domain

number of cells

�i :=]xi−1/2, xi+1/2], i = 1, . . . , I,

with

x1/2 = 0, xI+1/2 = xmax, �xi = xi+1/2 − xi−1/2 ≤ �x .

The representative of each size, usually the center of each cell xi = (xi−1/2 +
xi+1/2)/2, is called pivot or grid point. Such type of partitioning of the spatial domain is
known as cell centered representation of the mesh. A typical cell centered partitioning
of the domain is shown in Fig. 1. The integration of the Eq. (4) over each cell yields
a semi-discrete system in R

I

dN
dt

= B − D, (5)

N(0) = Nin.

Here we consider Nin, N, B, D ∈ R
I whose semi-discrete i th components are defined

as

Ni (t) =
xi+1/2∫

xi−1/2

n(t, x)dx, (6)

N in
i =

xi+1/2∫

xi−1/2

nin(x)dx,

Bi =
xi+1/2∫

xi−1/2

xI+1/2∫

x

b(x, ε)S(ε)n(t, ε) dεdx, (7)

and

Di =
xi+1/2∫

xi−1/2

S(x)n(t, x)dx . (8)
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Various sectional methods for the numerical solutions of the Eq. (4) can be obtained
from different choices of numerical approximations of Bi and Di in terms of Ni (t).
Finally the sectional methods take the following spatially discretized form

dN̂
dt

= B̂(N̂) − D̂(N̂), (9)

N̂(0) = Nin, (10)

where B̂, D̂ ∈ R
I are some functions of N̂. The i th component, N̂i (t) of the vector N̂

is the numerical approximation of the total number in i th cell Ni (t).
Before we proceed to next section to discuss the fixed pivot technique in details,

it is convenient to review some useful theorems and definitions at this point, see
Hundsdorfer and Verwer [8].

Definition 2.1 The spatial truncation error is defined by the residual left by substi-
tuting the exact solution N(t) into Eq. (9) as

σ(t) = dN(t)

dt
−
(

B̂ (N(t)) − D̂ (N(t))
)

. (11)

The scheme (9) is called consistent of order p if, for �x → 0,

‖σ(t)‖ = O(�x p), uniformly for all t, 0 ≤ t ≤ T .

Definition 2.2 The global discretization error is defined by ε(t) = N(t) − N̂(t). The
scheme (9) is called convergent of order p if, for �x → 0,

‖ε(t)‖ = O(�x p), uniformly for all t, 0 ≤ t ≤ T .

Definition 2.3 The logarithmic norm of a matrix A in C
m×m is defined as, see

Hundsdorfer and Verwer [8],

µ̃(A) = lim
τ→0

‖I + τA‖ − 1

τ
.

The logarithmic norm of a matrix A corresponding to certain 1−norms on R
m is given

by

µ̃1(A) = max
j

⎛
⎝Re(a j j ) +

∑
i �= j

|ai j |
⎞
⎠ . (12)

We denote the real part of a complex number z by Re(z)

The following theorem is useful for estimating the norm of the exponential of a
matrix.
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Theorem 2.4 If A ∈ C
m×m and ω ∈ R then we have

µ̃(A) ≤ ω ⇐⇒ ‖etA‖ ≤ etω, for all t ≥ 0.

Proof See Hundsdorfer and Verwer [8], Chap. 1, Theorem 2.4. 
�
Now we include a useful definition and theorem for stability and convergence from

Hundsdorfer and Verwer [8]. In case of pure breakage (linear) problem the Eq. (9)
takes the following linear semi-discrete form

dN̂
dt

= AN̂(t). (13)

The matrix A will be defined later.

Definition 2.5 The semi-discrete system (13) is called stable if we have on all grids

‖etA‖ ≤ K eωt for 0 ≤ t ≤ T, (14)

with constant K ≥ 1 and ω ∈ R both independent of �x .

Theorem 2.6 (Hundsdorfer and Verwer [8]). Consider the linear semi-discrete system
(13) and assume the stability condition (14) is valid. Suppose further that ‖σ(t)‖ ≤
C�xq for 0 ≤ t ≤ T (consistency of order q) and ‖ε(0)‖ ≤ C0�xq with constant C,

C0 > 0. Then we have convergence of order p = q with the error bounds

‖ε(t)‖ ≤ K C0eωt�xq + K C

ω

(
eωt − 1

)
�xq if ω �= 0, 0 ≤ t ≤ T,

and

‖ε(t)‖ ≤ K C0�xq + K Ct�xq if ω = 0, 0 ≤ t ≤ T .

Proof See Hundsdorfer and Verwer [8], Chap. 1, Theorem 4.1. 
�
Theorem 2.7 (Hundsdorfer and Verwer [8]). The solution of the linear semi-discrete
system (13) is non-negative iff

ai j ≥ 0, for all, j �= i.

Proof See Hundsdorfer and Verwer [8], Chap. 1, Theorem 7.2. 
�
Before proceeding to the next section it should be mentioned here that in this work

we consider the following L1 error norm

‖N‖ =
I∑

i=1

|Ni |.
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3 The fixed pivot technique

The fixed pivot technique is also based on the idea of birth modification. According
to Kumar and Ramkrishna [16], the Eq. (4) is modified to

d

dt

xi+1/2∫

xi−1/2

n(t, x)dx ≈
xi+1∫

xi

λ+
i (x)

xmax∫

x

b(x, ε)S(ε)n(t, ε) dεdx

+
xi∫

xi−1

λ−
i (x)

xmax∫

x

b(x, ε)S(ε)n(t, ε) dεdx −
xi+1/2∫

xi−1/2

S(x)n(t, x)dx,

where

λ±
i (x) = x − xi±1

xi − xi±1
. (15)

Now substituting the number density approximation

n(t, x) ≈
I∑

i=1

Ni (t)δ(x − xi ),

into the preceding equation, we obtain the following discretized equation

d Ni (t)

dt
=

I∑
k=i

ηik S(xk)Nk(t) − S(xi )Ni (t), i = 1, . . . , I. (16)

Here the function η is described by

ηik =
xi+1∫

xi

λ+
i (x)b(x, xk) dx +

xi∫

xi−1

λ−
i (x)b(x, xk) dx, i, k = 1, . . . , I, k ≥ i.

The first and second integral terms reduce to zero for i = k and i = 1, respectively.
Note that the first term is zero for i = k due the the property (2). In the rest of the
paper we set Si = S(xi ). The above system of ordinary Eq. (16) can be written in the
matrix form (13) with

A =

⎡
⎢⎢⎢⎢⎣

η11S1 − S1 η12S2 . . . η1I SI

0 η22S2 − S2 . . . η2I SI

. .

. .

0 0 . . . ηI I SI − SI

⎤
⎥⎥⎥⎥⎦ . (17)
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The fundamental concept behind the fixed pivot technique can be summarized as
follows. Suppose a new particle of a size which is not a representative of any cell
appears due to breakage of larger particles. The particle has to be divided to neighboring
representatives in such a way that number and mass are conserved. In this process
numerical diffusion is of course possible due to the assignment of particles to the
representatives to whom they do not really belong. Nevertheless, quite satisfactory
results can be obtained by this technique. Moreover, we will see later that the fixed
pivot technique is a zero order method on non-uniform random mesh for breakage
problems. Let us first check the positivity of the solution by the fixed pivot technique.

Proposition 3.1 The numerical solution by the fixed pivot technique is non-negative.

Proof Theorem 2.7 directly implies non-negativity of the solution since ai j ≥ 0 for
all j �= i in the matrix (17). 
�

3.1 Consistency

We now consider a fundamental lemma useful for investigating the consistency of the
fixed pivot technique. We take C2 ([a, b]) to be the two times continuously differen-
tiable functions on ]a, b[ with finite limits of the functions and their first as well as
second derivatives at a and b.

Lemma 3.2 Consider a function f (x) ∈ C2 ([0, xmax]) and a cell centered parti-
tioning of the continuous domain 0 = x1−1/2 < · · · < xi−1/2 < xi+1/2 < · · · <

xI+1/2 = xmax with xi = (xi−1/2 + xi+1/2)/2 and �x ≥ �xi = (xi+1/2 − xi−1/2) for
all i . If λ+

i (x) and λ−
i (x) are given by the relations (15), then the following approxi-

mations can be obtained

xi+1/2∫

xi−1/2

f (x) dx =
xi+1∫

xi

λ+
i (x) f (x) dx +

xi∫

xi−1

λ−
i (x) f (x) dx

+ f (xi )

2

[
�xi −

(
�xi−1 + �xi+1

2

)]

− f ′(xi )

12

[
(�xi+1 − �xi−1)

{
�xi +

(
�xi−1 + �xi+1

2

)}]

+O(�x3), i = 2, . . . , I − 1,
xi+1/2∫

xi−1/2

f (x) dx =
xi∫

xi−1

λ−
i (x) f (x) dx + f (xi )

2

[
�xi − �xi−1

]+ O(�x2), i = I,

xi+1/2∫

xi−1/2

f (x) dx =
xi+1∫

xi

λ+
i (x) f (x) dx + f (xi )

2

[
�xi − �xi+1

]+ O(�x2), i = 1.
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Proof Let us first take the cases i = 2, . . . I − 1 and for simplicity let us denote by Ii

the following expression

Ii ( f ) =
xi+1/2∫

xi−1/2

f (x) dx −
⎛
⎝

xi+1∫

xi

λ+
i (x) f (x) dx +

xi∫

xi−1

λ−
i (x) f (x) dx

⎞
⎠ .

The application of Taylor series expansion of f (x) about xi in Ii gives

Ii ( f ) = f (xi )

⎡
⎣�xi −

⎛
⎝

xi+1∫

xi

λ+
i (x)dx +

xi∫

xi−1

λ−
i (x)dx

⎞
⎠
⎤
⎦

− f ′(xi )

⎛
⎝

xi+1∫

xi

λ+
i (x)(x − xi )dx +

xi∫

xi−1

λ−
i (x)(x − xi )dx

⎞
⎠+ O(�x3).

Substituting the expression (15) of λ+
i and λ−

i into the preceding equation, we obtain

Ii ( f ) = f (xi )

[
�xi − 1

2
(xi+1 − xi−1)

]

− f ′(xi )

6

[
(xi+1 − xi−1) {(xi+1 − xi ) − (xi − xi−1)}

]+ O(�x3). (18)

For the cell centered grids, i.e. xi = (xi−1/2 + xi+1/2)/2, the Eq. (18) reduces to

Ii ( f ) = f (xi )

2

[
�xi − 1

2
(�xi+1 + �xi−1)

]

− f ′(xi )

12

[
(�xi+1 − �xi−1)

{
�xi +

(
�xi−1 + �xi+1

2

)}]
+ O(�x3).

Now we consider i = 1 and i = I .

II ( f ) =
I+1/2∫

I−1/2

f (x)dx −
xI∫

xI−1

λ−
I (x) f (x)dx .
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Applying the midpoint and right triangular rules to the first and second terms
respectively, we get

II ( f ) = f (xI )�xI − λ−
I (xI ) f (xI )(xI − xI−1) + O(�x2)

= f (xI )
[
�xI − (xI − xI−1)

]+ O(�x2)

= f (xI )

[
�xI − 1

2
(�xI − �xI−1)

]
+ O(�x2)

= f (xI )

2
(�xI − �xI−1) + O(�x2).

Similarly we can obtain

I1( f ) = f (x1)

2
(�x1 − �x2) + O(�x2).

Hence the lemma is proved. 
�

Let us first calculate the local discretization error of the integrated birth term. The
integrated birth term is the following

Bi =
xi+1/2∫

xi−1/2

xI+1/2∫

x

b(x, ε)S(ε)n(t, ε)dεdx .

Let us denote

f (t, x) =
xI+1/2∫

x

b(x, ε)S(ε)n(t, ε)dε.

Considering i = 2, . . . , I − 1 and using Lemma 3.2, we can rewrite Bi as

Bi =
xi+1∫

xi

λ+
i (x)

xI+1/2∫

x

b(x, ε)S(ε)n(t, ε)dεdx

+
xi∫

xi−1

λ−
i (x)

ε∫

x

b(x, ε)S(ε)n(t, ε)dεdx + Ii ( f ).

Changing the order of integration of the first two terms on the right hand side, we
obtain
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Bi =
xi+1∫

xi

ε∫

xi

λ+
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xI+1/2∫

xi+1

xi+1∫

xi

λ+
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xi∫

xi−1

ε∫

xi−1

λ−
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xI+1/2∫

xi

xi∫

xi−1

λ−
i (x)b(x, ε)S(ε)n(t, ε)dxdε + Ii ( f ).

Each integral term on the right hand side can be further rewritten as

Bi =
xi+1/2∫

xi

ε∫

xi

λ+
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xi+1∫

xi+1/2

ε∫

xi

λ+
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xi+3/2∫

xi+1

xi+1∫

xi

λ+
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
I∑

k=i+2

xk+1/2∫

xk−1/2

xi+1∫

xi

λ+
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xi−1/2∫

xi−1

ε∫

xi−1

λ−
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xi∫

xi−1/2

ε∫

xi−1

λ−
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xi+1/2∫

xi

xi∫

xi−1

λ−
i (x)b(x, ε)S(ε)n(t, ε)dxdε

+
I∑

k=i+1

xk+1/2∫

xk−1/2

xi∫

xi−1

λ−
i (x)b(x, ε)S(ε)n(t, ε)dxdε + Ii ( f ). (19)
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Let us denote the integral terms on the right hand side by I1, . . . , I8 and simplify them
separately

I1 =
xi+1/2∫

xi

ε∫

xi

λ+
i (x)b(x, ε)S(ε)n(t, ε)dx

︸ ︷︷ ︸
=:g(t,ε)

dε.

The Taylor series expansion of g(t, ε) with respect to ε about xi gives

I1 = g(t, xi )
�xi

2
+ gε(t, xi )

�x2
i

8
+ O(�x3), (20)

where

gε(t, xi ) = ∂g

∂ε
(t, xi ) = ∂g

∂ε
(t, ε)|ε=xi .

Let us calculate gε(t, xi ) using the Leibniz rule for differentiating under an integral

gε(t, xi ) =
⎡
⎣n(t, ε)S(ε)

⎧⎨
⎩

ε∫

xi

λ+
i (x)bε(x, ε)dx + λ+

i (ε)b(ε, ε)

⎫⎬
⎭

+ {nε(t, ε)S(ε) + n(t, ε)Sε(ε)}
ε∫

xi

λ+
i (x)b(x, ε)dx

⎤
⎦

ε=xi

.

All integral terms with ε = xi vanish, this gives

gε(t, xi ) = n(t, xi )S(xi )λ
+
i (xi )b(xi , xi ).

From the definition of λ+
i and λ−

i , we have

λ±
i (xi±k) =

{
0, k = 1,

1, k = 0.
(21)

Thus we get gε(t, xi ) as

gε(t, xi ) = n(t, xi )S(xi )b(xi , xi ).

Substituting the value of gε(t, xi ) and also g(t, xi ) = 0 in the Eq. (20) we get

I1 = b(xi , xi )S(xi )n(t, xi )
�x2

i

8
+ O(�x3).
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Now we consider the second term

I2 =
xi+1∫

xi+1/2

g(t, ε)dε.

Similarly as before, the application of Taylor series expansion simplifies the term as

I2 = g(t, xi+1)
�xi+1

2
− gε(t, xi+1)

�x2
i+1

8
+ O(�x3). (22)

Here gε(t, xi+1) is given by

gε(t, xi+1) =
⎡
⎣n(t, ε)S(ε)

⎧⎨
⎩

ε∫

xi

λ+
i (x)bε(x, ε)dx + λ+

i (ε)b(ε, ε)

⎫⎬
⎭

+ {nε(t, ε)S(ε) + n(t, ε)Sε(ε)}
ε∫

xi

λ+
i (x)b(x, ε)dx

⎤
⎦

ε=xi+1

.

Now we apply the left rectangle rule to get

gε(t, xi+1) = [
n(t, ε)S(ε)

{
λ+

i (xi )bε(xi , ε)(ε − xi ) + λ+
i (ε)b(ε, ε)

}
+ {nε(t, ε)S(ε) + n(t, ε)Sε(ε)} λ+

i (xi )b(xi , ε)(ε − xi )
]
ε=xi+1

.

Using the expression (21) it can be further simplified as

gε(t, xi+1) = [
n(t, xi+1)S(xi+1)bε(xi , xi+1) + {nε(t, xi+1)S(xi+1)

+ n(t, xi+1)Sε(xi+1)} b(xi , xi+1)
] (�xi + �xi+1

2

)
.

It follows that

gε(t, xi+1) = O(�x).

Substituting it into the Eq. (22) we obtain

I2 = g(t, xi+1)
�xi+1

2
+ O(�x3)

= �xi+1

2
S(xi+1)n(t, xi+1)

xi+1∫

xi

λ+
i (x)b(x, xi+1)dx + O(�x3).
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The third and fourth terms can be simplified using the left rectangle and midpoint rule
for the outer integral respectively to give

I3 = �xi+1

2
S(xi+1)n(t, xi+1)

xi+1∫

xi

λ+
i (x)b(x, xi+1)dx + O(�x3),

and

I4 =
I∑

k=i+2

S(xk)n(t, xk)�xk

xi+1∫

xi

λ+
i (x)b(x, xk)dx + O(�x3).

The fifth term can be simplified as the first term to get

I5 = g̃(t, xi−1)
�xi−1

2
+ g̃ε(t, xi−1)

�x2
i

8
+ O(�x3), (23)

where

g̃(t, ε) =
ε∫

xi−1

λ−
i (x)b(x, ε)S(ε)n(t, ε)dx .

The derivative g̃ε(t, xi−1) is given by

g̃ε(t, xi−1) =
⎡
⎣n(t, ε)S(ε)

⎧⎨
⎩

ε∫

xi−1

λ−
i (x)bε(x, ε)dx + λ−

i (ε)b(ε, ε)

⎫⎬
⎭

+ {nε(t, ε)S(ε) + n(t, ε)Sε(ε)}
ε∫

xi−1

λ−
i (x)b(x, ε)dx

⎤
⎦

ε=xi−1

.

Since both integrals in the preceding equation with ε = xi−1 are zero and λ−
i (xi−1) =

0, this equation leads to

g̃ε(t, xi−1) = 0.

Thus the term (23) can be written as

I5 = 0 + O(�x3).

Similarly the sixth term is given by

I6 = g̃(t, xi )
�xi

2
− g̃ε(t, xi )

�x2
i

8
+ O(�x3), (24)
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where

g̃ε(t, xi ) =
⎡
⎣n(t, ε)S(ε)

⎧⎨
⎩

ε∫

xi−1

λ−
i (x)bε(x, ε)dx + λ−

i (ε)b(ε, ε)

⎫⎬
⎭

+ {nε(t, ε)S(ε) + n(t, ε)Sε(ε)}
ε∫

xi−1

λ−
i (x)b(x, ε)dx

⎤
⎦

ε=xi

.

Since both integrals with ε = xi are of order �x , this equation leads to

g̃ε(t, xi ) = O(�x) + n(t, xi )S(xi )b(xi , xi ) + O(�x).

Substituting g̃ε(t, xi ) into the Eq. (24) we get

I6 = �xi

2
S(xi )n(t, xi )

xi∫

xi−1

λ−
i (x)b(x, xi )dx− �x2

i

8
n(t, xi )S(xi )b(xi , xi )+O(�x3).

Similar to third and fourth term the last two terms using left triangular and midpoint
rules can be simplified as

I7 = �xi

2
S(xi )n(t, xi )

xi∫

xi−1

λ−
i (x)b(x, xi )dx + O(�x3),

and

I8 =
I∑

k=i+1

S(xk)n(t, xk)�xk

xi∫

xi−1

λ−
i (x)b(x, xk)dx + O(�x3).

Finally all these terms can be substituted in Eq. (19)

Bi = b(xi , xi )S(xi )n(t, xi )
�x2

i

8
+ �xi+1

2
S(xi+1)n(t, xi+1)

xi+1∫

xi

λ+
i (x)b(x, xi+1)dx

+�xi+1

2
S(xi+1)n(t, xi+1)

xi+1∫

xi

λ+
i (x)b(x, xi+1)dx

+
I∑

k=i+2

S(xk)n(t, xk)�xk

xi+1∫

xi

λ+
i (x)b(x, xk)dx
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+�xi

2
S(xi )n(t, xi )

xi∫

xi−1

λ−
i (x)b(x, xi )dx − �x2

i

8
n(t, xi )S(xi )b(xi , xi )

+�xi

2
S(xi )n(t, xi )

xi∫

xi−1

λ−
i (x)b(x, xi )dx

+
I∑

k=i+1

S(xk)n(t, xk)�xk

xi∫

xi−1

λ−
i (x)b(x, xk)dx + O(�x3) + Ii ( f ). (25)

It can be further simplified as

Bi =
I∑

k=i+1

S(xk)n(t, xk)�xk

xi+1∫

xi

λ+
i (x)b(x, xk)dx

+
I∑

k=i

S(xk)n(t, xk)�xk

xi∫

xi−1

λ−
i (x)b(x, xk)dx + O(�x3) + Ii ( f ).

Furthermore we can use the relationship Ni = n(t, xi )�xi +O(�x3
i ) for the midpoint

rule to get the form

Bi =
I∑

k=i+1

S(xk)Nk(t)

xi+1∫

xi

λ+
i (x)b(x, xk)dx

+
I∑

k=i

S(xk)Nk(t)

xi∫

xi−1

λ−
i (x)b(x, xk)dx + O(�x3) + Ii ( f ).

The first two terms on the right hand side are exactly the fixed pivot discretization i.e.,

Bi = B̂FP
i + O(�x3) + Ii ( f ).

After substituting the value of Ii ( f ) we get

Bi = B̂FP
i + f (xi )

2

[
�xi − 1

2
(�xi+1 + �xi−1)

]

− f ′(xi )

12

[
(�xi+1−�xi−1)

{
�xi +

(
�xi−1+�xi+1

2

)}]
+O(�x3). (26)
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Now we consider the birth term for i = 1

B1 =
x1+1/2∫

x1−1/2

xI+1/2∫

x

b(x, ε)S(ε)n(t, ε)dεdx .

Using the Lemma 3.2, the birth term can be rewritten as

B1 =
x2∫

x1

λ+
1 (x)

xI+1/2∫

x

b(x, ε)S(ε)n(t, ε)dε dx + I1( f ).

Changing the order of integration we get

B1 =
x2∫

x1

ε∫

x1

λ+
1 (x)b(x, ε)S(ε)n(t, ε)dxdε.

+
xI+1/2∫

x2

x2∫

x1

λ+
1 (x)b(x, ε)S(ε)n(t, ε)dxdε + I1( f ).

We break up the integration as follows

B1 =
x2−1/2∫

x1

ε∫

x1

λ+
1 (x)b(x, ε)S(ε)n(t, ε)dxdε

+
x2∫

x2−1/2

ε∫

x1

λ+
1 (x)b(x, ε)S(ε)n(t, ε)dxdε

+
x2+1/2∫

x2

x2∫

x1

λ+
1 (x)b(x, ε)S(ε)n(t, ε)dxdε

+
I∑

k=3

xk+1/2∫

xk−1/2

x2∫

x1

λ+
1 (x)b(x, ε)S(ε)n(t, ε)dxdε + I1( f ).
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Application of the left, right, left rectangular and midpoint rules to the outer integration
in the first, second, third and fourth integral terms respectively we obtain

B1 = 0 + �x2

2

x2∫

x1

λ+
1 (x)b(x, x2)S(x2)n(t, x2)dx

+�x2

2

x2∫

x1

λ+
1 (x)b(x, x2)S(x2)n(t, x2)dx

+
I∑

k=3

�xk

x2∫

x1

λ+
1 (x)b(x, xk)S(xk)n(t, xk)dx + O(�x2) + I1( f ).

We can rewrite this in a more simplified form as

B1 = N2(t)S(x2)

x2∫

x1

λ+
1 (x)b(x, x2)dx

+
I∑

k=3

Nk(t)S(xk)

x2∫

x1

λ+
1 (x)b(x, xk)dx + O(�x2) + II ( f )

=
I∑

k=2

Nk(t)S(xk)

x2∫

x1

λ+
1 (x)b(x, xk)dx + O(�x2) + I1( f ).

In terms of fixed pivot discretization we have

B1 = B̂FP
1 + f (x1)

2
(�x1 − �x2) + O(�x2). (27)

Finally we consider the boundary cells i = I

BI =
xI+1/2∫

xI−1/2

xI+1/2∫

x

b(x, ε)S(ε)n(t, ε)dεdx .

BI =
xI∫

xI−1

λ−
I (x)

xI+1/2∫

x

b(x, ε)S(ε)n(t, ε)dεdx + II ( f ).
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Changing the order of integration gives

BI =
xI∫

xI−1

ε∫

xI−1

λ−
I (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xI+1/2∫

xI

xI∫

xI−1

λ−
I (x)b(x, ε)S(ε)n(t, ε)dxdε + II ( f ).

We break the first integral into two parts as

BI =
xI−1/2∫

xI−1

ε∫

xI−1

λ−
I (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xI∫

xI−1/2

ε∫

xI−1

λ−
I (x)b(x, ε)S(ε)n(t, ε)dxdε

+
xI+1/2∫

xI

xI∫

xI−1

λ−
I (x)b(x, ε)S(ε)n(t, ε)dxdε + II ( f ).

Applying the left, right and left triangular rules into the first, second and third integra-
tion terms respectively to get

BI = 0 + �xI

2

xI∫

xI−1

λ−
I (x)b(x, xI )S(xI )n(t, xI )dx .

+�xI

2

xI∫

xI−1

λ−
I (x)b(x, xI )S(xI )n(t, xI )dx + O(�x2) + II ( f )

= NI (t)S(xI )

xI∫

xI−1

λ−
I (x)b(x, xI )dx + O(�x2) + II ( f ).

Again in terms of fixed pivot technique we obtain

BI = B̂CA
I + f (xI )

2
(�xI − �xI−1) + O(�x2). (28)

The local discretization error can be obtained by using midpoint rule as

Di = S(xi )Ni (t) + O(�x3) = D̂FP
i + O(�x3). (29)
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Finally from the Eqs. (26), (27), (28) and (29), we can summarize the spatial truncation
error σi (t) = Bi − Di − (B̂FP

i − D̂FP
i ) as follows

σ1 = f (x1)

2
(�x1 − �x2) + O(�x2), (30)

σi = f (xi )

2

[
�xi − 1

2
(�xi+1 + �xi−1)

]

− f ′(xi )

12

[
(�xi+1 − �xi−1)

{
�xi +

(
�xi−1 + �xi+1

2

)}]

+O(�x3), i = 2, . . . , I − 1, (31)

σI = f (xI )

2
(�xI − �xI−1) + O(�x2). (32)

Now we will evaluate the order of local truncation error on four different types of
meshes:

3.1.1 Type A: uniform mesh

Let us first consider uniform mesh i.e. �xi = �x . From the Eqs. (30–32) we have

σi (t) =
{

O(�x2), i = 1, I

O(�x3), i = 2, . . . , I − 1.

The order of consistency is given by

‖σ(t)‖ = |σ1(t)| +
I−1∑
i=2

|σi (t)| + |σI (t)|

= O(�x2).

So the technique is second order consistent on a uniform mesh.

3.1.2 Type B: non-uniform smooth mesh

If we assume grids to be smooth in the sense that �xi − �xi−1 = O(�x2) and
2�xi − (�xi−1 + �xi+1) = O(�x3), where �x is the maximum mesh width,
then similarly to the uniform case we again have second order accuracy. Such grids
can be obtained by some smooth transformation from uniform grids. Let us consi-
der a variable ξ with uniform grids and a smooth transformation x = g(ξ) to get
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ξ

x

smooth transformation
x = g ξ

uniform mesh

non-uniform mesh

for example
x = exp(ξ ))(

Fig. 2 Non-uniform smooth mesh

x

uniform mesh uniform mesh

uniform mesh uniform mesh
I1

I2

I5

I6

I4

I3 I7

Fig. 3 Locally uniform smooth mesh

non-uniform smooth mesh, see Fig. 2. In this case the Eq. (30–32) can be simplified
as

σ1 = f (x1)

2
[�x1 − �x2] + O(�x2)

= f (x1)

2

[{
g(ξ1+1/2) − g(ξ1−1/2)

}− {g(ξ2+1/2) − g(ξ2−1/2)
}]+ O(h2)

= f (x1)

2
[g(ξ1 + h/2) − g(ξ1 − h/2) − g(ξ1 + 3h/2) + g(ξ1 + h/2)] + O(h2).

Here h is the uniform mesh width in the ξ variable. Application of Taylor series
expansion gives

σ1 = O(h2).

Similarly we can prove that

σI = O(h2) and σi = O(h3).

Finally, analogously to the uniform mesh we get second order consistency here. An
example of such smooth grids, commonly used in particle technology, are the so
called geometric grids xi+1/2 = r xi−1/2, r > 1, i = 1, . . . I or grids uniform on a
logarithmic scale. These grids can be obtained by taking smooth transformation as
exponential function. In this case we get xi+1/2 = exp(ξi+1/2) = exp(h + ξi−1/2) =
exp(h) exp(ξi−1/2) = exp(h)xi−1/2 =: r xi−1/2, r > 1.

3.1.3 Type C: locally uniform mesh

An example of a locally uniform mesh is considered in Fig. 3. Let us consider
that the computation domain is divided into finitely many sub-domains and in each
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sub-domain is divided into an equal size mesh. In this way we have a locally uniform
mesh. In each cell except boundaries of every sub-domain we have third order accu-
racy due to uniform mesh in each sub-domain. All boundaries of sub-domains except
the outer boundaries of the first and last cell we have first order accuracy. This is due to
the abrupt change in size at this boundary. At the first (last) outer boundary we obtain
a second order accuracy as in the case of a uniform as well as non-uniform smooth
mesh. For the example shown in the Fig. 3 we have

σi (t) =

⎧⎪⎨
⎪⎩

O(�x), i = I1, I2, . . .

O(�x2), i = 1, I,

O(�x3), otherwise.

Therefore we have

‖σ(t)‖ = |σ1(t)| + |σI (t)| + (|σI1(t)| + |σI2(t)| + · · · )+
I−1∑
j=2

j �=I1,I2,...

|σ j (t)|

= O(�x).

Thus in this case we get only first order consistency.

3.1.4 Type D: non-uniform random mesh

Finally we analyze the scheme for random grids. Since no cancellation takes place in
the leading error terms of Eqs. (30–32) we have

σi (t) = O(�x), i = 1, . . . , I, and ‖σ(t)‖ = O(1).

Thus the method is inconsistent on non-uniform random meshes.

3.2 Stability and convergence

The stability can be proved using the logarithmic norm defined by the Eq. (12). Here
we evaluate the logarithmic norm of the matrix A from (17) as

µ̃1(A) = max
j

⎛
⎝Re(a j j ) +

∑
i �= j

|ai j |
⎞
⎠ .
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Since all elements of the matrix A are real and all non-diagonal elements are non-
negative, the logarithmic norm can again be rewritten using (17) as

µ̃1(A) = max
j

⎛
⎝ ∑

1≤i≤I

ai j

⎞
⎠ = max

j

⎛
⎝

j∑
i=1

ηi j S j − S j

⎞
⎠

= max
j

⎡
⎣S j

⎛
⎝

j∑
i=1

ηi j − 1

⎞
⎠
⎤
⎦ . (33)

The sum appearing in the above equation can be calculated as

j∑
i=1

ηi j =
j∑

i=1

xi+1∫

xi

λ+
i (x)b(x, x j ) dx +

j∑
i=2

xi∫

xi−1

λ−
i (x)b(x, x j ) dx

Using the fact that b(x, y) = 0 for x > y we get

j∑
i=1

ηi j =
j−1∑
i=1

xi+1∫

xi

λ+
i (x)b(x, x j ) dx +

j∑
i=2

xi∫

xi−1

λ−
i (x)b(x, x j ) dx

=
j−1∑
i=1

xi+1∫

xi

λ+
i (x)b(x, x j ) dx +

j−1∑
i=1

xi+1∫

xi

λ−
i+1(x)b(x, x j ) dx

=
j−1∑
i=1

xi+1∫

xi

[
λ+

i (x) + λ−
i+1(x)

]
b(x, x j ) dx .

Using the properties λ+
i (x) + λ−

i+1(x) = 1 and of the breakage function (2), we get

j∑
i=1

ηi j =
j−1∑
i=1

xi+1∫

xi

b(x, x j ) dx

=
x j∫

x1

b(x, x j ) dx

=
x j∫

0

b(x, x j ) dx −
x1∫

0

b(x, x j ) dx

= ν(x j ) − ε(x1, x j ).
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Note that ε(x1, x j ) > 0 is a small value and limx1→0 ε(x1, x j ) = 0. Substituting the
above sum into the Eq. (33), we obtain

µ̃1(A) = max
j

[
S j
(
ν(x j ) − ε(x1, x j ) − 1

)]

≤ max
j

[
S jν(x j )

] ≤ max
x∈�

S(x)ν(x) =: ω.

Application of Theorem 2.4 provides the bound

‖etA‖ ≤ etω.

This shows the stability of the fixed pivot technique with the stability constant ω. Thus,
from Theorem 2.6 we have convergence of order p with error bounds

‖ε(t)‖ = C0eωt�x p + C

ω

(
eωt − 1

)
�x p, 0 ≤ t ≤ T,

with constants C, C0 > 0. Here p is the order of consistency discussed in previous
section and �x is the maximum mesh width. As discussed in Sect. 3.1, p could be 0, 1
or 2 depending on the type of mesh used for the computation.

4 Numerical examples

We now verify our mathematical observations on the convergence by numerical
examples. Each case discussed above has been considered separately. For detailed
comparisons of numerical results on number density and moments with analytical
solutions, readers are referred to Kumar and Ramkrishna [16]. All numerical simula-
tions below will be carried out to investigate the experimental order of convergence.

We shall now turn our attention to a suitable ODE solver to solve the resulting set
of ODEs. When integrating the resultant system (16) using a standard ODE routine,
for example the ODE45, ODE15S solvers in MATLAB, this may lead to negative
values for the number density at large sizes. These negative values may lead in conse-
quence to instabilities of the whole system. Therefore, one should take care of the
positivity of the solution by the numerical integration routine. We force the positi-
vity in our numerical results using an adaptive time step Runge–Kutta method. The
step-size adjustment algorithm is based on embedded Runge–Kutta formulas, origi-
nally invented by Fehlberg. It uses a fifth-order method with six functions evaluation
where another combination of the six functions gives a fourth order method. The dif-
ference between the two estimates is used as an estimate of the truncation error to
adjust the step size. A more detailed description of the method and information about
implementation can be found in [24].

Let us first calculate the experimental order of convergence for uniform meshes.
For a uniform mesh, we consider the following normally distributed initial condition

n(0, x) = 1

σ
√

2π
exp

[
− (x − µ)2

2σ 2

]
. (34)
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Table 1 Uniform grids
Grids points Relative error L1 EOC

60 – –

120 0.0343 –

240 9.6E−3 1.83

480 2.5E−3 1.92

960 6.5E−4 1.97

Note that due to the highly steep nature of the exponential function, an exponentially
decreasing initial condition is not suitable for uniform grids. Furthermore, we have
considered the following breakage and selection functions

b(x, y) = 12x

y2

(
1 − x

y

)
, S(x) = S0x2. (35)

Since analytical solutions are not available for the above initial condition and breakage
kernels we use the following formula in order to calculate the experimental order of
convergence

EOC = ln

(
‖N̂h − N̂h/2‖

‖N̂h/2 − N̂h/4‖

)/
ln(2). (36)

Here N̂h denotes numerical results taken using mesh width h. For the numerical com-
putation we have taken the minimum and maximum values of x as 0 and 1 respectively.
The other parameters are σ 2 = 0.01, µ = 0.5 and S0 = 1. The computation time t is
set to be 200 (breakage extent ≈ 11.78). The numerical results are presented in Table 1.
As expected from the mathematical analysis, numerical results show convergence of
second order.

Now we consider the second case of non-uniform smooth meshes. As mentioned
before such a mesh can be obtained by some smooth transformation from a uniform
mesh. Here we have considered the exponential transformation as x = exp(ξ), where
ξ is the variable for which we have the uniform mesh. Such a mesh is also known as
geometric mesh. In this case we take an exponentially decreasing function, exp(−x) as
initial condition. The linear selection function S(x) = x and uniform binary breakage
b(x, y) = 2/y are considered. Here, we take t = 10 (breakage extent ≈ 11) in our
numerical results. The computational domain in this case is taken as [1e − 6, 150]
which corresponds to the ξ domain [ln(1e − 6), ln(150)]. It should be noted that any
small positive real number can be chosen as the minimum value of x . However, we
have taken it to be 1e − 6. The analytical solution for this case can be found in Ziff
and McGrady [28]. Since the analytical solution is known, the experimental order of
convergence can be calculated as

EOC = ln(EI /E2I )/ ln(2), (37)
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Table 2 Non-uniform smooth
grids

Grids points Relative error L1 EOC

60 0.0307 –

120 7.6E−3 2.01

240 1.9E−3 2.01

480 4.6E−4 2.05

Table 3 Locally uniform grid
Grids points Relative error L1 EOC

60 0.1938 –

120 0.1037 0.90

240 0.0522 0.99

480 0.0259 1.01

where EI and E2I are the L1 error norms. The symbols I and 2I correspond to the
degrees of freedom. The numerical results have been summarized in Table 2. The
relative error has been calculated by dividing the error ‖N − N̂‖ by ‖N‖. Once again
numerical results show that the fixed pivot technique give second order accuracy on
non-uniform smooth mesh.

The third test case has been performed on a locally uniform mesh using the same
problem and the same computational parameters as in the previous case. In this case
we started the computation on 30 geometric meshes and then each cell was divided
into two equal parts in further level of computation. In this way we obtained a locally
uniform mesh. The EOC has been summarized in Table 3. As expected, the table
clearly shows that the fixed pivot technique is only first order accurate.

Finally we consider the fourth case of non-uniform random mesh. Similar to the
third and second cases, computations have been performed on the same problem.
Computations have been performed using two different types of random grids. Since
we require more refined grids at small x values due to the exponential initial condition,
we use more refined grids at small volume range. In type-I grids we started again with
the 30 geometric meshes and then each cell was divided into two parts of random
width in further levels of computation. For each value of I = 60, 120, 240, 480, we
performed 10 runs on different random grids and the relative L1 errors were measured.
The mean of these errors over 10 runs is used to calculate the EOC. The numerical
results have been shown in Table 4(a). For the second type of grids, referred to as
type-II, we first generate 480 random grids and then further levels of grids (240, 120,
60) were extracted from these random grids by selecting alternative grid points. This
process was repeated 10 number of times and the relative L1 error was measured for
each value of I = 60, 120, 240, 480. Again, the mean of these errors over 10 runs is
used to calculate the EOC shown in Table 4(b). Clearly Table 4 shows that the fixed
pivot technique is not convergent. As can be seen from the table, the relative L1 error
increases with finer grids.
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Table 4 Non-uniform random
grids

Grids points Error L1 EOC

(a) Type I

60 0.0668 –

120 0.0960 −0.52

240 0.1516 −0.66

480 0.1758 −0.21

(b) Type II

60 0.0693 –

120 0.1267 −0.87

240 0.1462 −0.21

480 0.1688 −0.21

5 Conclusions

A complete convergence analysis of the fixed pivot has been obtained for pure brea-
kage population balance equation. It has been observed that the order of convergence
depends on the type of grids chosen for the computation. The technique converges with
second order on uniform and non-uniform smooth grids. However, it has been shown
that the technique is only first order convergent on locally uniform grids. Finally, the
scheme has been analyzed on non-uniform random grids and it has been found that
the technique is not convergent. Moreover, all observations have been verified nume-
rically. In a sequel to this paper, Kumar and Warnecke [14], we show how the cell
average technique [13] has a better performance on non-uniform meshes.
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