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Abstract We present a local error indicator for the Mimetic Finite Difference
method for diffusion-type problems on polyhedral meshes. Under essentially the same
general hypotheses used in (SIAM J. Numer. Anal. 43:1872–1896, 2005) to show the
convergence of the method, we prove the global reliability and local efficiency of the
proposed estimator.
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1 Introduction

The Mimetic Finite Difference method has been applied successfully in a large range
of applications, for instance electromagnetics, gas dynamics and diffusion. The advan-
tage of such method is twofold. First, it allows for a large choice of discrete scalar
products, leading to an entire range of different (consistent and stable) numerical
schemes for the same problem. This additional freedom can be used, for instance,
to tackle a scheme which satisfies some additional physical or numerical properties.
Second, the Mimetic Finite Difference method allows for general polyhedral meshes
with degenerate and non-convex elements, which is a very useful property in many
applications.

In the present paper we consider the diffusion problem written as a system of two
equations

div F = b , F + K∇ p = 0 in Ω
p = 0 on ∂Ω .

(1)

L. Beirão da Veiga (B)
Dipartimento di Matematica “F. Enriques”,
Via Saldini 50, 20133 Milano, Italy
e-mail: beirao@mat.unimi.it

123



388 L. Beirão da Veiga

The first equation represents the mass conservation while the second one is the con-
stitutive equation relating the scalar variable p to the velocity field F through the
symmetric material tensor K. For simplicity, we consider the case of homogeneus
Dirichlet boundary conditions for the scalar variable.

The diffusion problem has already been the object of a large number of papers in
the literature of MFD, see for example [4,5,17–21,23,24] and references therein. In
[9,11], the authors proved for the first time the convergence of the method for general
polyhedral unstructured meshes with flat and curved faces, while in [10] a family of
inexpensive MFD discretization schemes was introduced.

As noted above, one of the main advantages of the MFD method with respect
to classical finite elements is the generality of the mesh. The elements can be gen-
eral degenerate and non-convex polyhedrons, eventually of different type across the
domain. Such flexibility makes the MFD method a very appealing ground for the
application of adaptive strategies for error control. The present paper is a first step in
this direction, presenting a local (reliable and efficient) residual-based error estimator
for the MFD method applied to problem (1). In this contribution we therefore focus
on the evaluation of the local error, which is a key issue in adaptivity. The aspect of
developing a (optimal) converging adaptive strategy, hopefully exploiting to the best
extent the flexibility of the MFD scheme, will not be considered here.

The paper is organized as follows. In Sect. 2, we briefly review the Mimetic Finite
Difference method and, in particular, the assumptions on the scheme. We essentially
require the same (minimal) properties on the mesh geometry and discrete scalar prod-
ucts introduced in [9] to prove the convergence of the method. In Sect. 3 we introduce
a post-processing scheme for the scalar variable, in the spirit of [22,25]. The post-pro-
cessed pressure is shown to convergence in a stronger norm and is a key ingredient
in the proposed error estimator. Finally, in Sect. 4 we introduce the local error indica-
tor, and prove the main result of the paper, i.e. global reliability and local efficiency
bounds.

In the whole contribution the scalar C will indicate a general positive constant,
eventually different at each occurrence, uniform in the mesh size.

Remark 1 For simplicity of exposition, in the present paper we focus the proofs and
notation on the case of three dimensional problems. The error estimator for the
bi-dimensional case is identic, the proofs being a simpler reformulation. Essentially,
substitute “faces” with “edges” and restrict Lemma 2 to the easier case of bi-dimen-
sional meshes.

2 The mimetic finite difference method

In the present section we give a brief description of the Mixed Finite Difference method
applied to problem (1).

Let Ω be a polyhedron with Lipschitz continuous boundary. Furthermore, let Ωh

be a non-overlapping conformal partition ofΩ into simply-connected polyhedral ele-
ments with flat faces. We indicate in the sequel the set of faces of Ωh with Eh , and
with hE the diameter of each element E . Furthermore, for every E ∈ Ωh and every
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An error estimator for MFD 389

face e ∈ ∂E , let nE
e represent the outward unit normal to e. Moreover, in the sequel

we associate to every e ∈ Eh a normal unit vector ne, fixed once and for all.
We assume the following properties of the mesh Ωh , introduced in [9] in order to

derive the a priori error converge estimates for the scheme.

(M2) We assume that we have two positive integers Ne and Nl such that every element
E has at most Ne faces, and each face e at most Nl edges.

(M3) We assume that there exist three positive constants v∗, a∗ and l∗ such that for
every element E it holds

v∗h3
E ≤ |E | , a∗h2

E ≤ |e| , l∗hE ≤ |l|

for all faces e and edges l of E , where here and in the sequel |E |, |e|, |l| represent
respectively the volume of E , the area of e and the length of l.

(M4) We assume that the mesh faces are flat and that there exists a positive number
γ∗ such that: for each element E and for each face e ∈ ∂E there exists a point Me ∈ e
such that e is star-shaped with respect to every point in the disk of center Me and
radius γ∗hE .

(M5) We further assume that for every E ∈ Ωh , and for every e ∈ ∂E , there exists
a pyramid Pe

E contained in E such that its base equals to e, its height equals to γ∗hE

and the projection of its vertex onto e is Me.

(M6) We assume that there exists a positive number τ∗ such that: for each element E
there exists a point ME ∈ E such that E is star-shaped with respect to every point in
the disk of center ME and radius τ∗hE .

In the sequel, we assume for simplicity that the tensor field K is piecewise constant
with respect to the mesh. In an adaptive framework, since subsequently refined meshes
are typically obtained by subdivision, it is sufficient that such assumption holds for
the initial mesh. We also assume the following standard condition.

(P1) The tensor field K is symmetric and uniformly strongly elliptic, implying that
there exist two constants k∗ and k∗ such that

k∗||v||2 ≤ vT
K(x)v ≤ k∗||v||2 ∀v ∈ R

3, ∀x ∈ Ω, (2)

where, here and in the sequel, || · || indicates the Euclidean norm of R
3. We are now

in the position to introduce the Mimetic Finite Difference method.
The first step of the MFD scheme is to define the degrees of freedom for the pressure

variable p and flux variable F. We therefore introduce the space Qd of discrete pres-
sures that are constant on each element E . For q ∈ Qd , we denote by qE its value on
E . For notation simplicity, for any q ∈ Qd , in the sequel we will identify the vector
of its values and the respective Ωh-piecewise constant function.

The space of discrete velocities Xd is defined as follows. To every element E ∈ Ωh

and face e ∈ ∂E , we associate a number Ge
E and the respective vector field Ge

E nE
e .

We make the continuity assumption

Ge
E1

= −Ge
E2

(3)
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for each face e shared by two elements E1 and E2. Then, the number m of the dis-
crete velocity unknowns will be equal to the number of boundary faces plus twice
the number of internal faces. We consider the space Xd as the subspace of R

m which
satisfies (3).

We define the following corresponding interpolation operators. Given any function
q ∈ L1(Ω), we define its interpolant q I ∈ Qd as

(q I )E = |E |−1
∫

E

q dV ∀E ∈ Ωh . (4)

For every function G ∈ [Ls(Ω)]3, s > 2, with div G ∈ L2(Ω), we define its interpo-
lant G I ∈ Xd as

(G I
E )

e = |e|−1
∫

e

G · nE
e d� ∀E ∈ Ωh, ∀e ∈ ∂E . (5)

Note that, in the sequel, there will be no confusion in the notation, because interpo-
lant (4) is applied to scalar functions and interpolant (5) to vector functions.

The second step of the MFD method is to build a discrete divergence operator. For
each element G ∈ Xd , we define its discrete divergence DIVdG as the element of
Qd given by

(DIVdG)E = |E |−1
∑

e∈∂E

|e| Ge
E ∀E ∈ Ωh . (6)

It is easy to check that the following very important commuting diagram property
holds. For all G ∈ [Ls(Ω)]3, s > 2, with div G ∈ L2(Ω), it holds

DIVdGI = (div G)I . (7)

The third step of the MFD method is to define scalar products for the spaces Qd

and Xd . For the space Qd , we take the only consistent choice

[p, q]Qd =
∑

E∈Ωh

|E | pE qE ∀p, q ∈ Qd . (8)

For the space Xd , the scalar product is defined as

[G,Q]Xd =
∑

E∈Ωh

[G,Q]E ∀G,Q ∈ Xd , (9)

where [G,Q]E is a local scalar product on E . The choice and construction of such
local scalar products is a main point in the MFD method, and it is the object of various
papers in the literature, see for example [18,20]. A general procedure for building
these products, such that certain fundamental assumptions are satisfied, was given in
[10]. We here assume that those same (minimal) stability and consistency assumptions
are satisfied.
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(S1) There exist two positive constants s∗ and S∗ such that for every element E in the
decomposition we have

s∗|E |
∑

e∈ ∂E

(Ge
E )

2 ≤ [G,G]E ≤ S∗|E |
∑

e∈ ∂E

(Ge
E )

2 ∀G ∈ Xd . (10)

(S2) For every element E , every linear function q on E and every G ∈ Xd , it holds

[(K∇q)I ,G]E = −
∫

E

q(DIVdG)E dV +
∑

e∈ ∂E

Ge
E

∫

e

q d�. (11)

Furthermore, we introduce the local and global norms

|||G|||2Xd = [G,G]Xd =
∑

E∈Ωh

|||G|||2E , |||G|||2E = [G,G]E . (12)

The fourth step of the MFD method is to define the discrete flux operator Gd , as
the adjoint of the discrete divergence operator with respect to the introduced scalar
products. We have

[G,Gd p]Xd = [p,DIVdG]Qd ∀p ∈ Qd , ∀G ∈ Xd . (13)

Finally, the MFD method for problem (1) reads

DIVdFd = bI , Fh = Gd pd (14)

or, in more explicit form,

[Fd ,G]Xd − [pd ,DIVdG]Qd = 0 ∀G ∈ Xd

[DIVdFd , q]Qd = [bI , q]Qd ∀q ∈ Qd .
(15)

2.1 Convergence of the method

In [9], the authors prove that properties (S1), (S2) are implied by the existence of an
element lifting operator RE with certain consistency and stability properties. We here
assume the existence of such operator; as underlined in Remark 2, this is a very weak
assumption. Note that this operator never needs to be built in practice, the knowledge
of its existence being sufficient for our purposes.
(S) For every element E ∈ Ωh it exists a lifting operator RE acting on Xd |E , with
values in [L2(E)]3, such that

RE (GE )|e · ne = Ge
E ∀e ∈ ∂E

div RE (GE ) = (DIVdG)E in E
(16)
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for all G ∈ Xd ,
RE (GI

E ) = GE ∀GE constant on E, (17)

and the velocity scalar product can be written

[Q,G]E =
∫

E

K
−1 RE (QE ) · RE (GE ) dV ∀Q,G ∈ Xd . (18)

As shown in [11], the above properties automatically imply the following approxima-
tion property

||G − RE (GI )||L2(E) ≤ ChE ||G||H1(E) ∀G ∈ [H1(E)]3, ∀E ∈ Ωh . (19)

In the sequel we will indicate with R the global operator Xd → [L2(Ω)]3, which is
obtained combining all the local lifting operators RE element by element.

The following convergence result for the MFD method is proved in [9].

Theorem 1 Assume that the domain Ω is convex and K ∈ W 1,∞(Ω). Let (F, p) be
the solution of problem (1) and (Fd , pd) the solution of problem (15). Then it holds

||F − R Fd ||L2(Ω) ≤ Ch||p||H2(Ω)

|| div(F − R Fd)||L2(Ω) = ||b − bI ||L2(Ω) ≤ Ch||b||H1(Ω)

||pI − pd ||L2(Ω) ≤ Ch2(||p||H2(Ω) + ||b||H1(Ω)).

(20)

Note that the requirements Ω and K are needed only for (20)3. In the general case, a
simple modification of the proof in [9] leads to

Corollary 1 Let (F, p) be the solution of problem (1) and (Fd , pd) the solution of
problem (15). Let p ∈ H1+q(Ω), 0 < q ≤ 1. Then it holds

||F − R Fd ||L2(Ω) ≤ Chq ||p||H1+q (Ω)

||pI − pd ||L2(Ω) ≤ Chs+q (||p||H1+q (Ω) + ||b||H1(Ω)),
(21)

where 0 ≤ s ≤ 1 is a problem regularity constant, depending on K and on the shape
of Ω .

Remark 2 In the recent contribution [12], the authors prove that properties (S1) and
(S2), under a reasonable algebraic assumption on the discrete scalar product, imply
the existence of the local lifting operator RE . Such result confirms the general opinion
that a “virtual” operator RE essentially exists in all cases of interest.

3 A post-processing scheme for the scalar variable

In the present section we introduce a post-processing scheme, in the spirit of [22,25],
for the mimetic finite difference method of Sect. 2 and show a convergence result for

123



An error estimator for MFD 393

the improved solution. The post-processed pressure is used in the computation of the
local error estimator of Sect. 4.

Let the discrete norm

|||q |||21,d =
∑

E∈Ωh

||∇q||2L2(E) +
∑
e∈Eh

h−1
e || [[q]] ||2L2(e) , (22)

for all q sufficiently regular, where [[·]] represents the classical face jump operator,
which is assumed to be equal to the function value on boundary faces. Moreover, let
Qd

1 be the space ofΩh-piecewise linear functions with zero average on each element.
Given (Fd , pd) solution of problem (15), we define p̄d as the unique function in

Qd
1 that satisfies

|E | ∇ p̄d |E · ∇q|E = −[Fd , (∇q)I ]E ∀E ∈ Ωh, ∀q ∈ Qd
1 . (23)

We then set our post-processed pressure as

p∗
d = pd + p̄d . (24)

Note that, due to (18) and (17), from (23) it follows

∫

E

∇ p∗
d · ∇q dV = −

∫

E

K
−1 RE Fd · ∇q dV ∀E ∈ Ωh, ∀q ∈ Qd

1 . (25)

We then have the following result.

Proposition 1 Assume that the domain Ω is convex, and K ∈ W 1,∞. Let p∗
d be com-

puted as in (24), and (F, p) be the solution of problem (1). We then have

|||p − p∗
d |||1,d + h−1||p − p∗

d ||L2(Ω) ≤ Ch(||p||H2(Ω) + ||b||H1(Ω)) . (26)

Proof The proof is based on the super convergence result (5.35) of [9], i.e. bound (20)3.
Let in the sequel�h indicate the L2 projection on the space of the scalar functions

which are piecewise constant on the mesh Ωh . We then have

||p − p∗
d ||L2(Ω) ≤ ||�h(p − p∗

d)||L2(Ω) + ||(I −�h)(p − p∗
d)||L2(Ω) , (27)

where I indicates the identity operator.
The first term in the right hand side of (27) is bounded recalling that �h p∗

d = pd ,
using the L2 continuity of�h and finally applying the super convergence result (20)3:

||�h(p − p∗
d)||L2(Ω) = ||pI − pd ||L2(Ω) ≤ Ch2(||p||H2(Ω) + ||b||H1(Ω)) . (28)
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394 L. Beirão da Veiga

Let now p̃d be the unique function in Qd
1 that satisfies

∫

E

∇ p̃d · ∇q dV = −
∫

E

K
−1F · ∇q dV ∀E ∈ Ωh, ∀q ∈ Qd

1 . (29)

Note that, due to (1), Eq. (29) implies that ∇ p̃d is the L2 projection of ∇ p on piece-
wise constant vectors. Therefore a standard approximation argument, see for instance
[7,8,15], immediately gives

||∇(p − p̃d)||L2(E) ≤ ChE |p |H2(E) . (30)

We now bound the second term in the right hand side of (27). Let E be a general
element inΩh . Due to classical approximation results, see again for instance [7,8,15],
we have

||(I −�h)(p − p∗
d)||L2(E) ≤ ChE ||∇(p − p∗

d)||L2(E) (31)

which, applying a triangle inequality and bound (30), gives

||(I −�h)(p − p∗
d)||L2(E) ≤ ChE ||∇ p − ∇ p̃d ||L2(E) + hE ||∇ p̃d − ∇ p∗

d ||L2(E)

≤ Ch2
E |p |H2(E) + hE ||∇ p̃d − ∇ p∗

d ||L2(E). (32)

Due to definition (29) and property (25), it follows

||∇ p̃d − ∇ p∗
d ||2L2(E) =

∫

E

K
−1(RE Fd − F) · ∇( p̃d − p∗

d) dV , (33)

which, using the L∞(Ω) bound on K
−1 and a Cauchy–Schwartz inequality, gives

||∇ p̃d − ∇ p∗
d ||L2(E) ≤ C ||F − RE Fd ||L2(E) . (34)

Summing the squares over all the elements and recalling the approximation result
(20)1, from (32) and (34) we get

||(I −�h)(p − p∗
d)||L2(Ω) ≤ Ch2||p ||H2(Ω) . (35)

Combining (27), (28) and (35) gives

||p − p∗
d ||L2(Ω) ≤ Ch2(||p||H2(Ω) + ||b||H1(Ω)) . (36)

The result for the |||p − p∗
d |||1,d norm follows easily, since the element internal con-

tributions where already bounded as a byproduct of the steps (31)–(35). We get

∑
E∈Ωh

||∇(p − p∗
d)||2L2(E) ≤ Ch2||p ||2H2(Ω)

. (37)
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The face contributions are bounded using an Agmon inequality—see [2,3]—and
applying the previous bounds

∑
e∈Eh

h−1
e ||[[p − p∗

d ]]||2L2(e) ≤ C
∑

E∈Ωh

h−2
e ||p − p∗

d ||2L2(E) + ||∇(p − p∗
d)||2L2(E)

≤ Ch2 (||p||H2(Ω) + ||b||H1(Ω)

)2
. (38)

��
In the general case of a non-convex domainΩ and general K, a simple modification

of the proof shows that a weaker convergence result, in the spirit of Corollary 1, holds.
Note that, due to property (S2), the solution p̄d of (23) does not depend on the choice
for the scalar product [·, ·]E .

Remark 3 An equivalent post-processing for the pressure variable is presented in [13],
where the authors focus also on the computational aspects in the calculation of p∗

d .

4 A local error estimator

In the present section we introduce a local error estimator, in the spirit of [22], for
the mimetic finite difference method under study, and prove reliability and efficiency
results. Even for the finite element method, local error estimators for the diffusion
problem in mixed form are relatively recent, see [6,14,22]. For general results regard-
ing a posteriori error analysis, we refer for instance to [1,26].

Given (Fd , pd) solution of problem (15), and p∗
d computed as in (24), the proposed

error estimator is given by

η2 =
∑

E∈Ωh

η2
E

η2
E = |||(K∇ p∗

d)
I + Fd |||2E + h2

E ||b − bI ||2L2(E) + 1

2

∑
e∈∂E

h−1
e ||[[p∗

d ]]||2L2(e) .

(39)

We have the following result, stating the global reliability and local efficiency of
the estimator. The proof is shown in the following sections.

Proposition 2 Let (F, p) be the solution of problem (1). Then it holds

||F − R Fd ||L2(Ω) + h|| div(F − R Fd)||L2(Ω) + |||p − p∗
d |||1,d ≤ Cη . (40)

Moreover,

ηE ≤ C(||F − RE Fd ||L2(E) + hE || div(F − RE Fd)||L2(E) + |||p − p∗
d |||1,d,E ) (41)

where the norm ||| · |||1,d,E stands for the discrete norm ||| · |||1,d with the sums
restricted to the element E and the faces e ∈ ∂E.
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Note that the norm (40) in which we measure the error for the vector variable is
essentially equivalent to the ||| · |||div norm adopted in [9], see also Remark 4 below.
Simply, the assumption (S) on the existence of the lifting operator RE allows us to
write it in L2 form. The a-priori error estimates for the norm in (40) are listed in
Theorem 1 and Proposition 1.

The term hE ||b − bI ||L2(E) appearing in the estimator is not a higher-order term
and, in principle, it is not exactly computable. Nevertheless, it can be easily estimated
up to higher order terms with a sufficiently high quadrature rule. Finally note that, due
to the identity

b − bI = div(F − RE Fd) (42)

shown in [9], a different scaling can be adopted for the divergence error term and the
estimator η easily changed accordingly.

Remark 4 Assume that F ∈ W m,q(Ω) for some q > 2, 0 < m ≤ 1. Using interpola-
tion properties, inverse inequalities and Lemma 4.1 in [9], it easily follows

|||FI − Fd |||Xd ≤ Cq

⎛
⎝hm |F|W m,q (Ω) + h3(2−q)/2q ||F − RFd ||L2(Ω)

+
⎛
⎝ ∑

E∈Ωh

h2
E || div F − div RFd ||L2(E)

⎞
⎠

1/2
⎞
⎟⎠ (43)

where the constant Cq depends on q and blows up for q → 2. Therefore, even when
the lifting operator R is not explicitly known, the first two terms in the norm (40) are
important nevertheless. Indeed, it is clear from the previous bound that the convergence
of RFd to F in (40) implies the convergence of Fd to FI in (43).

4.1 Preliminary results

In the present section we introduce some preliminary result. We need the following
definition. Given the mesh Ωh , we subdivide each face e of Eh into triangles, con-
necting each vertex of each face e with the point Me introduced in (M4). We call this
set of triangles Ξ . Then, we subdivide each element E into tetrahedrons, connecting
each vertex of each triangle in Ξ with the point ME introduced in (M6). This gives a
conforming mesh of tetrahedrons for Ω which we call Ω ′

h .
We only sketch the proof of the following geometrical lemma.

Lemma 1 Let {Ti }i∈N, be a family of shape regular triangles, with baricenter bi and
diameter hi . Let moreover c1, c2 be assigned positive real constants. Assume that each
Ti is embedded in R

3 and associate to each triangle a point ξi ∈ R
3 which satisfies

the following two properties:

(G1) ||ξi − bi || ≤ c1hi ;
(G2) it exists a ball of radius ri ≥ c2hi , centered in ξi , which does not intersect the

plane containing the verticies of Ti .
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An error estimator for MFD 397

Finally, let {T̄i }i∈N be the family of tetrahedrons built connecting the verticies of each
triangle Ti with the respective ξi . Then, the family of tetrahedrons {T̄i }i∈N is shape-
regular.

Proof By definition, it is sufficient to show the existence of two positive constants
c3, c4 such that every T̄i is contained in a ball of radius c3hi and contains a ball of
radius c4hi , i ∈ N. Due to property (G1), the first condition is trivial, for instance
with c3 = max (1, c1). Since the family of the bases Ti is regular, it exists a positive
constant c5 such that every Ti contains a bi-dimensional ball Bi of radius r ′

i ≥ c5hi .
Let Ci indicate the (skew) cone defined by the base Bi and the vertex ξi ; such cone is
clearly contained in T̄i . Then, recalling properties (G1), (G2), it is easy to check that
each cone Ci , i ∈ N, contains a sphere of radius r ′′

i ≥ c4hi with c4 depending only on
c1, c2, c5. ��

We then have the following result.

Lemma 2 The family {Ω ′
h}h is a shape-regular family of meshes.

Proof By construction, any tetrahedron T ∈ Ω ′
h has a face which is in the set Ξ . We

start proving that all such faces are uniformly shape regular. In order to show such
claim, it is sufficient to prove that it exists an α∗ > 0, independent of h, such that each
face e′ ∈ Ξ satisfies the following property:
(P) the amplitude of each internal angle of the face e′ is higher than or equal to α∗.

Note that, recalling properties (M3)–(M6), for all edges lT of each tetrahedron TE

of E , E ∈ Ωh , it holds

min{γ∗, τ∗, l∗} hE ≤ |lT | ≤ hE . (44)

Therefore the ratios between the length of the edges of each single tetrahedron T is
uniformly bounded, i.e. it exists a 0 < β∗ ≤ 1 such that

min
l edge of T

|l| ≥ β∗ max
l edge of T

|l| ∀ T ∈ Ω ′
h . (45)

Given any face e′ ∈ Ξ , due to (45), basic trigonometric arguments show that it is
sufficient to prove property (P) for any two angles of e′.

Let therefore e′ be a generic triangular face in the set Ξ , and e′′ ∈ Eh the original
polyhedral face from which e′ was generated. Let E ∈ Ωh be a polyhedron which has
e′′ as a face. We call a, b, c the verticies of e′, where c is the vertex corresponding to
Me. Given ac, the edge connecting a with c, let x1, x2 indicate the two points obtained
by the intersection of the circle centered in c and radius γ∗hE —see (M4)—with the
straight line perpendicular to ac at c. Call x the point, among x1 and x2, which is
nearest to b, see Fig. 1.

Then, due to the star-shape property (M4), the segment ax is contained in e′′, which
easily implies

ĉab ≥ ĉax . (46)
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398 L. Beirão da Veiga

Fig. 1 Tetrahedron face in the
set Ξ

Observing that the segments |ac| ≤ hE , |cx | = γ∗hE , and that the angle âcx = π
2 ,

from (46) it follows
ĉab ≥ ĉax ≥ α∗, (47)

with uniform α∗. The same argument can be repeated for the vertex b, giving

âbc ≥ α∗. (48)

Therefore all faces e′ ∈ Ξ satisfy property (P), i.e. are uniformly shape regular.
We now note that all tetrahedrons in Ω ′

h are uniquely determined by the respec-
tive face e′ ∈ Ξ and the position of the fourth vertex (which corresponds to ME for
some E).

Due to the property (M6), it is easy to check that such tetrahedrons satisfy the
assumptions of Lemma 1, where the role of the point ξi is played by the vertex in ME .
Therefore the proposition is proved. ��

Given any function ρ ∈ H1(Ω), we define ρ II ∈ H1(Ω) as the classical piecewise
linear Clément interpolant of ρ, based on the mesh Ω ′

h . Due to the mesh shape-
regularity shown in Lemma 2 it holds

h−1
T ||ρ−ρ II ||L2(T )+||ρ II ||H1(T )+

∑
e′∈∂T

h−1/2
e′ ||ρ−ρ II ||L2(e′) ≤ C ||ρ||H1(ωT )

(49)
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for all T ∈ Ω ′
h , where ωT indicates the set of tetrahedrons inΩ ′

h which have non-null
intersection with T . For a proof of this result, see for example [7] and references
therein. Note that, due to (M2), the number of tetrahedrons in ωT , T ∈ Ω ′

h , is uni-
formly bounded. Therefore also the global counterpart of (49) immediately follows
taking the sum of the squares

h||ρ − ρ II ||L2(Ω) + ||ρ II ||H1(Ω) +
⎛
⎝∑

e∈Eh

h−1
e ||ρ − ρ II ||2L2(e)

⎞
⎠

1/2

≤ C ||ρ||H1(Ω) .

(50)
We then have the following lemma.

Lemma 3 Let Fd be the solution of problem (15). Given ρ ∈ [H1(Ω)]3, it exists
ρ̄ ∈ [H1(Ω)]3 such that

∫

Ω

K
−1 R Fd · curl ρ̄ dV = 0 ;

|| curl ρ̄||L2(Ω) ≤ C ||ρ||H1(Ω) ; (51)

∫

Ω

∇q1 · curl(ρ II −ρ̄) dV ≤C ||ρ||H1(Ω)

⎛
⎝∑

e∈Eh

h−1
e ||[[q1]]||2L2(e)

⎞
⎠

1/2

∀q1 ∈ Qd
1 .

By construction, the (distributional) divergence of the function R(curl ρ II )
I is a

Ωh-piecewise constant function in L2(Ω). Due to properties (16)2 and (7), for all
E ∈ Ωh it holds

div RE (curl ρ II )
I
E = (DIVd(curl ρ II )

I )E = (div curl ρ II )
I
E = 0 . (52)

Therefore the function R(curl ρ II )
I in [L2(Ω)]3 has zero divergence, which implies

the existence of ρ̄ ∈ [H1(Ω)]3, such that

curl ρ̄ = R(curl ρ II )
I , (53)

see for instance [16]. Note that ρ̄ is not unique; any choice is acceptable for our
purposes.

From (18), (15)1 and DIVd(curl ρ II )
I = 0, shown in (52), it follows

∫

Ω

K
−1 RFd · curl ρ̄ dV =

∫

Ω

K
−1 RFd · R(curl ρ II )

I dV

= [Fd , (curl ρ II )
I ]Xd = 0, (54)

which is (51)1.
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First using (2) and the definition of curl ρ̄, then identity (18) and bound (S1), it
follows

|| curl ρ̄||2L2(E) ≤ C
∫

E

K
−1 RE (curl ρ II )

I · RE (curl ρ II )
I
E dV

= C |||(curl ρ II )
I
E |||2E ≤ C |E |

∑
e∈∂E

((curl ρ II )
I
E )

2
e (55)

for all E ∈ Ωh . Applying (5) and a Cauchy–Schwartz inequality, also recalling prop-
erty (M3), from (55) we get

|| curl ρ̄||2L2(E) ≤ S∗ |E |
∑

e∈∂E

|e|−2

⎛
⎝

∫

e

curl ρ II · nE
e d�

⎞
⎠

2

≤ C |E |
∑

e∈∂E

|e|−1
∫

e

(
curl ρ II · nE

e

)2
d�

≤ ChE || curl ρ II · nE
e ||2L2(∂E). (56)

Using an Agmon and inverse inequality—tetrahedron by tetrahedron—it is easy to
check that

hE || curl ρ II · nE
e ||2L2(∂E) ≤ C || curl ρ II ||2L2(E) ∀E ∈ Ωh (57)

which, due to (56) and (50), implies (51)2.
From the definition of ρ̄, property (16)1 and definition (5), it follows

curl ρ̄|e · ne = �e(curl ρ II |e · ne) ∀e ∈ Eh , (58)

where�e is the L2 projection on constants for each face e. Therefore, curl ρ̄|e · ne is
in L2(e), e ∈ Eh , and integrating by parts element by element on Ωh we get

∫

Ω

∇q1 · curl(ρ II − ρ̄) dV =
∑
e∈Eh

∫

e

[[q1]] curl(ρ II − ρ̄) · ne d� (59)

for all q1 ∈ Qd
1 . As a consequence of (58), we have

|| curl(ρ II − ρ̄) · ne||L2(e) ≤ C || curl ρ II · ne||L2(e) ∀e ∈ Eh . (60)
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Due to identity (59), applying a Cauchy–Schwartz inequality and (60), we get

∫

Ω

∇q1 · curl
(
ρ II − ρ̄

)
dV =

∑
e∈Eh

∫

e

[[q1]] curl(ρ II − ρ̄) · ne d�

≤
⎛
⎝∑

e∈Eh

h−1
e ||[[q1]]||2L2(e)

⎞
⎠

1/2 ⎛
⎝∑

e∈Eh

he|| curl ρ II · ne||2L2(e)

⎞
⎠

1/2

. (61)

Bound (51)3 follows easily from (61) combined with (57) and (50). ��
We will also need the following modified Helmholtz decomposition. The proof

follows easily from the ellipticity of K, using the same arguments as in the classical
Helmholtz decomposition, shown for instance in [16].

Lemma 4 Let the domain Ω and the tensor field K be defined as in Sect. 2. Let v
be any function in [L2(Ω)]3. Then there exist ψ ∈ H1

0 (Ω) and ρ ∈ [H1(Ω)]3, not
unique, such that

v = K∇ψ + curl ρ ,

||ψ ||H1(Ω) + ||ρ||H1(Ω) ≤ CΩ ||v||L2(Ω) ,
(62)

with the constant CΩ depending only on Ω .

Remark 5 In the bi-dimensional case, the functions ρ, ρ II and ρ̄ appearing in the pres-
ent and the following sections are scalars in H1(Ω). As already noted, for simplicity
of exposition we adopt the notation and proofs related to the three dimensional case,
the bi-dimensional ones being a simpler derivation.

4.2 Proof of Proposition 2

We are now able to show the proof of Proposition (2), which we divide in four steps.
We first prove separately the upper bounds for the three terms in the left hand side
of (40), and finally show the lower bound (41).

Upper bound for ||F − RE Fd ||L2(Ω).

Due to the ellipticity property (2) of K, it is equivalent to bound ||K−1

(F − RE Fd)||L2(Ω), which will be also useful in the sequel. From the definition of L2

norm and Lemma 4, recalling the symmetry of K, it follows

||K−1(F − R Fd)||L2(Ω) = sup
v∈L2(Ω)

∫
Ω

K
−1(F − R Fd) · v dV

||v||L2(Ω)

≤ C

⎛
⎝ sup
ψ∈H1

0 (Ω)

∫
Ω
(F − R Fd) · ∇ψ dV

||ψ ||H1(Ω)

+ sup
ρ∈[H1(Ω)]3

∫
Ω

K
−1(F − R Fd) · curl ρ dV

||ρ||H1(Ω)

)
. (63)
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An integration by parts, identity (42) and the L2-orthogonality of (b − bI ) with
respect to piecewise constants gives

∫

Ω

(F − R Fd) · ∇ψ dV =
∫

Ω

div(F − R Fd) ψ dV =
∫

Ω

(b − bI ) ψ dV

=
∫

Ω

(b − bI ) (ψ − ψ I ) dV

≤ Ch||b − bI ||L2(Ω)|ψ |H1(Ω) ≤ C η ||ψ ||H1(Ω) (64)

for all ψ ∈ H1
0 (Ω).

Given any ρ ∈ [H1(Ω)/R]3, let now ρ̄ be the function defined in Lemma 3.
Recalling definition (1) and property (51)1, an integration by parts gives

∫

Ω

K
−1(F − R Fd) · curl ρ dV = −

∫

Ω

K
−1 R Fd · curl ρ dV

=
∫

Ω

K
−1 R Fd · curl(ρ̄ − ρ) dV

=
∑

E∈Ωh

∫

E

(K−1 R Fd + ∇ p∗
d) · curl(ρ̄ − ρ) dV

+
∑

E∈Ωh

∫

E

∇ p∗
d · curl(ρ − ρ̄) dV

= I3 + I4. (65)

Note that, due to (17),
K∇ p∗

d |E = RE (K∇ p∗
d)

I . (66)

Therefore, from the symmetry of K
−1 and (2) , a Cauchy–Schwartz inequality and

bound (51)2, also recalling identity (18), it follows

I3 ≤ ||K−1/2 R (Fd + (K∇ p∗
d)

I )||L2(Ω)||K−1/2 curl(ρ̄ − ρ)||L2(Ω)

≤ C ||K−1/2 R (Fd + (K∇ p∗
d)

I )||L2(Ω)||ρ||H1(Ω)

= C |||Fd + (K∇ p∗
d)

I |||Xd ||ρ||H1(Ω) ≤ C η ||ρ||H1(Ω) (67)

Adding and subtracting the interpolant ρ II introduced in (50), and recalling bound
(51)3, gives
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I4 =
∑

E∈Ωh

∫

E

∇ p∗
d · curl(ρ II − ρ̄) dV +

∑
E∈Ωh

∫

E

∇ p∗
d · curl(ρ − ρ II ) dV

≤ C ||ρ||H1(Ω)

⎛
⎝∑

e∈Eh

h−1
e ||[[p∗

d ]]||2L2(e)

⎞
⎠

1/2

+
∣∣∣∣∣∣
∑

E∈Ωh

∫

E

∇ p∗
d · curl(ρ − ρ II ) dV

∣∣∣∣∣∣
= I5 + I6

(68)
We have

I5 ≤ C η ||ρ||H1(Ω) . (69)

For the second term, an integration by parts and some algebra give

I6 =
∣∣∣∣∣∣
∑
e∈Eh

∫

e

((ρ − ρ II )× ne) · [[∇ p∗
d ]] d�

∣∣∣∣∣∣ . (70)

Observing that the vector field ((ρ − ρ II )× ne) is orthogonal to ne, e ∈ Eh , identity
(70) becomes

I6 =
∣∣∣∣∣∣
∑
e∈Eh

∫

e

((ρ − ρ II )× ne) · Pe[[∇ p∗
d ]] d�

∣∣∣∣∣∣ , (71)

where Pe is the vector projection on the plane tangent to e. Moreover it is easy to
check that

Pe[[∇ p∗
d ]] = ∇s[[p∗

d ]] , (72)

where ∇s indicates the 2-component gradient of the function [[p∗
d ]] living on e.

Using (71), (72), an inverse estimate and bound (50), we get

I6 ≤
⎛
⎝∑

e∈Eh

h−1
e ||ρ − ρ II ||2L2(e)

⎞
⎠

1/2 ⎛
⎝∑

e∈Eh

he||∇s[[p∗
d ]]||2L2(e)

⎞
⎠

1/2

≤ C ||ρ||H1(Ω)

⎛
⎝∑

e∈Eh

h−1
e ||[[p∗

d ]]||2L2(e)

⎞
⎠

1/2

≤ C η ||ρ||H1(Ω). (73)

Combining (65) with (67)–(69) and (73) it finally follows

∫

Ω

K
−1(F − R Fd) · curl ρ dV ≤ C η ||ρ||H1(Ω) . (74)

Bound (63), using (64) and (74), gives

||K−1(F − R Fd)||L2(Ω) ≤ Cη . (75)
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Upper bound for h|| div(F − RE Fd)||L2(Ω).
The bound for this term is immediate due to (42). It holds

h|| div(F − R Fd)||L2(Ω) ≤ η . (76)

Upper bound for |||p − p∗
d |||1,d .

Using (1) and some simple algebra, we get

∑
E∈Ωh

|||∇(p − p∗
d)|||2L2(E) =

∑
E∈Ωh

∫

E

K
−1(RE Fd − F) · ∇(p − p∗

d) dV

−
∑

E∈Ωh

∫

E

K
−1(RE Fd +K∇ p∗

d) · ∇(p− p∗
d) dV

= I7 + I8 . (77)

A Cauchy–Schwartz inequality and bound (75) gives for the first term

I7 ≤ C ||(K−1(R Fd − F)||L2(Ω)

⎛
⎝ ∑

E∈Ωh

|||∇(p − p∗
d)|||2L2(E)

⎞
⎠

1/2

≤ C η

⎛
⎝ ∑

E∈Ωh

|||∇(p − p∗
d)|||2L2(E)

⎞
⎠

1/2

(78)

For the second term, again a Cauchy–Schwartz inequality and adopting the same steps
as in (66), (67), it follows

I8 ≤ C ||(K−1/2(R Fd + K∇ p∗
d)||L2(Ω)

⎛
⎝ ∑

E∈Ωh

|||K−1/2∇(p − p∗
d)|||2L2(E)

⎞
⎠

1/2

≤ C |||Fd + (K∇ p∗
d)

I |||Xd

⎛
⎝ ∑

E∈Ωh

|||∇(p − p∗
d)|||2L2(E)

⎞
⎠

1/2

≤ C η

⎛
⎝ ∑

E∈Ωh

|||∇(p − p∗
d)|||2L2(E)

⎞
⎠

1/2

. (79)

For the face terms, noting that the face jumps of p are null, we have immediately

∑
e∈Eh

h−1
e || [[p − p∗

d ]] ||2L2(e) ≤
∑
e∈Eh

h−1
e || [[p∗

d ]] ||2L2(e) ≤ Cη2 (80)
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Combining bounds (77)–(80) and recalling (22), it finally follows

|||p − p∗
d |||1,d ≤ Cη . (81)

Lower bounds
Using the identities (18) and (66), bound (2) and a triangle inequality coupled with

(1) give

|||(K∇ p∗
d)

I +Fd |||E = ||K−1/2(K∇ p∗
d +RE Fd)||L2(E)≤C ||K∇ p∗

d +RE Fd ||L2(E)

≤ C
( ||K(∇ p∗

d − ∇ p)||L2(E) + ||RE Fd − F||L2(E)

)
≤ C

(
|||p − p∗

d |||1,d,E + ||RE Fd − F||2L2(E)

)
. (82)

From identity (42) it follows

h2
E ||b − bI ||L2(E) = h2

E || div F − div RE Fd ||L2(E) . (83)

Finally, due to the L2 trace continuity of p, we get

∑
e∈∂E

h−1
e ||[[p∗

d ]]||2L2(e) =
∑

e∈∂E

h−1
e ||[[p∗

d − p]]||2L2(e) ≤ |||p − p∗
d |||21,d,E . (84)

Bound (41) follows from (82)–(84). ��
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