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Abstract In this paper, two new energy-conserved splitting methods (EC-S-FDTDI
and EC-S-FDTDII) for Maxwell’s equations in two dimensions are proposed. Both
algorithms are energy-conserved, unconditionally stable and can be computed effi-
ciently. The convergence results are analyzed based on the energy method, which
show that the EC-S-FDTDI scheme is of first order in time and of second order in
space, and the EC-S-FDTDII scheme is of second order both in time and space. We
also obtain two identities of the discrete divergence of electric fields for these two
schemes. For the EC-S-FDTDII scheme, we prove that the discrete divergence is of
first order to approximate the exact divergence condition. Numerical dispersion analy-
sis shows that these two schemes are non-dissipative. Numerical experiments confirm
well the theoretical analysis results.

Mathematics Subject Classification (2000) 65N10 - 65N15
1 Introduction

Maxwell’s equations are very important in the electromagnetic world and are widely
used in many areas of application in modern society. For example, the design of the
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446 W. Chen et al.

CPU in today’s microelectronic field heavily depends on simulations of Maxwell’s
equations. Recently, it is of special importance to develop efficient numerical methods
for effective and accurately simulating Maxwell’s equations in large scale and long
time computations.

Beginning with the pioneering works of Peaceman, Douglas and Rachford, as
efficient numerical techniques to solve multidimensional parabolic problems, the alter-
nating direction implicit methods (ADI) and the fractional step methods (FS) are very
attractive and popular in solving partial differential equations for saving the memory
and CPU time (see, for example, [3,5,20,21,23]; and more recent works [2,4, 14,16],
etc). In computations of Maxwell’s equations, many works related to the ADI tech-
nique have been taken for overcoming the complexities and the huge computational
costs. For example, Holland in [12] discussed the ADI method combined with Yee’s
scheme for the two-dimensional problems, however, the proposed scheme was dif-
ficult for obtaining the unconditional stability property for Maxwell’s equations in
three dimensions. Zheng et al. in [26] first proposed an unconditionally stable ADI-
FDTD scheme for the three-dimensional Maxwell’s equations with an isotropic and
lossless medium. The further analysis of accuracy and dispersion of this scheme was
studied in [10,25]. Meanwhile, Namiki [19] proposed a kind ADI-FDTD scheme for
the Maxwell’s equations in two dimensions, which was proved to be unconditionally
stable in [19] as well as in [24].

More recently, combining the splitting technique with the staggered Yee’s grid,
Gao et al. in [9] proposed two splitting finite-difference time—domain methods
(S-FDTDI and S-FDTDII) for Maxwell’s equations in two dimensions. The two meth-
ods are both effective and easy to be implemented. By using the energy method, it is
proved that the S-FDTDI scheme is unconditionally stable and convergent with first
order in time and second order in space for the case with perfectly electric conducting
(PEC) boundary conditions. In order to increase the accuracy in time, an improved
scheme (S-FDTDII) was proposed, which is equivalent to a second-order perturbation
of the Crank—Nicolson scheme. The schemes have been applied to successfully solve
a scattering problem with PML boundary conditions.

On the other hand, in lossless medium, it is well known that the density of the elec-
tromagnetic energy of the wave is constant at different times. Then, it is natural to ask:
Is it possible for the splitting schemes to keep the conservation laws of energy? The
distinct advantages of the previous ADI or splitting schemes are unconditionally sta-
ble and effective for high dimensional problems, however, these schemes often break
the property of energy conservation of Maxwell’s equations. As we know, to keep
the original physical features is greatly important in constructing numerical schemes
for different physical problems. For example, one successful and active research is to
construct structure-preserving schemes (or called symplectic schemes) for the ODE
systems (see [7, 1 1] and the references therein). Therefore, for solving Maxwell’s equa-
tions, there is strong interest in developing efficient splitting methods which conserve
energy.

In this paper, inspired by the above question, we propose two new energy-conserved
splitting finite-difference time—domain schemes (EC-S-FDTD), which have important
properties: (i) energy-conserved; (ii) Unconditionally stable; (iii) Efficient like the
S-FDTDI and S-FDTDII proposed in [9]; (iv) Non-dissipative. Based on the staggered
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Yee’s grid, by applying the splitting technique we construct the energy-conserved split-
ting finite-difference time-domain scheme (called EC-S-FDTDI), which consists of
two stages for each time step, and then propose an improved scheme: EC-S-FDTDII,
which is a simple three stages scheme. We prove that both the EC-S-FDTDI and
EC-S-FDTDII schemes satisfy two energy conversation relations in the discrete norm
sense. The stability and convergence of these schemes are then analyzed rigorously
by the energy method. We prove both the EC-S-FDTDI and EC-S-FDTDII schemes
to be unconditionally stable. Furthermore, we prove that the EC-S-FDTDI scheme is
of first order in time and of second order in space and specially, the EC-S-FDTDII is
of second order both in time and space. Moreover, for analyzing the divergence-free
condition of Maxwell’s equations, we obtain two identities of the discrete divergences
of electric fields for these two schemes. For the EC-S-FDTDI scheme, we also prove
that the discrete divergence is of first order to approximate the exact divergence free
condition. Through dispersion analysis, we verify both the EC-S-FDTDI and
EC-S-FDTDII schemes to be non-dissipative, where we show that the numerical
dispersion relations of our schemes are both of second order to approximate exact
dispersion relations. Numerical experiments are given to illustrate the performance
of our new schemes for the problems in the constant and piecewise constant electric
permittivity medium. Numerical results confirm our theoretical analysis results.

The remaining part of the paper is organized as follows. In Sect. 2, the conservation
properties of Maxwell equations are introduced and the new EC-S-FDTD schemes are
proposed for the two-dimensional Maxwell equations. In Sect. 3, the energy conser-
vations, rigorous stability and convergence analysis of the EC-S-FDTD schemes are
given based on the energy method. Numerical dispersion analysis is given in Sect. 4.
Numerical experiments for the constant and piecewise constant coefficients are pre-
sented in Sect. 5. Finally, some conclusions are addressed in Sect. 6.

2 Maxwell’s equations and splitting schemes

Maxwell’s equations in differential form are a set of four coupled partial differential
equations relating the electric fields E, the magnetic field H, the electric displacement
D, and the magnetic flux density B (see [1,6]):

VxE=_2B (1)
XE=——,
at
VxH=J+ D 2)
x H = —,
at
V.B=0, 3)
V-D=p, 4)

where p is the charge density, J is the current density. The electric and magnetic field
variables are related through the constitutive relations as

D=¢E, B=uH, J=0E, 5)
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where € is the electric permittivity ,  is the magnetic permeability, and o is the electric
conductivity.

Consider a two dimensional transverse electric (TE) polarization case in a lossless
medium and there is no source fields in this case, so we get p = 0,J = 0, E =
(Ex(x,y,1), Ey(x,y,1),0) and H = (0,0, H,(x, y, t)). Therefore, the Maxwell’s
equations (1)—(4) become:

dE, 10H.

= , 6
at € dy ©
oE, 10H,

- = 7
ot € Jx M
oH 1 (0F dE,

Lo (2 -22), ®)
ot w \ dy ax

where E = (Ex(x,y,1), Ey(x,y,1)) and H, = H (x,y,t) for (x,y) € 2 (t €
(0, T']) denote the electric field and the magnetic field, respectively. For simplicity, we
consider the perfectly electric conducting (PEC) boundary condition on the boundary
252 of the rectangle domain £2 = [0, a] x [0, b]:

(E,0) x n,0) =0, on (0,7T]x 92, 9)
where n is the outward normal vector on 2. The PEC condition (9) can be recast as

Ex(X,O,t)zEx(xab»t)=Ey(07y,t)=Ey(a,y7t)=0» on (07 7—‘]Xa‘(2
(10)

To solve the system, the initial conditions are needed:

E(x,y,0) =Eo(x, y) = (Ex (x,y), Eyy(x,y)), and H;(x,y,0) = H; (x, y).
(11)

The problem (6)—(11) has a unique solution for suitably smooth data (see [15]).

For simplicity in notations, only constant € and p are considered. The algorithms
described in this paper can be easily extended to the cases of variable coefficients. In
the numerical results, one case with jump coefficients is considered which confirms
all nice properties of the schemes.

2.1 Energy conservations in lossless medium

When the medium is lossless, i.e., J = 0 in the Maxwell’s equations, then by Green’s
formula it gets:
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<@ E>+<E H>—(V H,E) — (V x E, H)
ar’ o ) TV o

—/V~(E><H)dx=—/(E><H)~ndS,

2 982

where (-, -) denotes the L2(£2) inner product. The equation represents Poynting theo-
rem which describes the conservation of electromagnetic energy in lossless medium.
Using the PEC boundary condition, we have

10(cE, E 10(uH, H
LO(EEE)  1opH B _ o 1
2 ot 2 ot

which means that the electromagnetic energy conserves, i.e., the electromagnetic
energy in lossless medium is constant at different times.

Theorem 1 (Energy conservation I) If E and H are the solutions of the Maxwell’s
equations (1)—(4) in lossless medium, and satisfy the boundary conditions:

Exn=0, or Hxn=0. (13)
Then it holds
/e [E(x, 1)|* dx +/u [H(x, 1)|*> dx = Constant, (14)
2 2

which means that the density of electromagnetic energy in lossless medium keeps
constant at any time.

The Poynting theorem above is well known and can be found in many classic books
([1,6]), but the following energy conservation is less obvious.

Theorem 2 (Energy conservation II) If E and H are the solutions of the Maxwell’s
equations (2)—(4) in lossless medium, and satisfy the boundary conditions:

Exn=0, or Hxn=0. (15)

Then, we have

2 oH

T ot

2
)dx = Constant. (16)

/ oE
G E—
ot

Q

Proof Taking the derivative with respect to ¢ on both sides of (1) and (2), we get

JH 3J 9°D IE 9’B
X —=—+4+—, and VX — = ———. a7
ot ot 9t? ot ot?
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Note that E and H satisfy the boundary condition (13), then
oH
— xn=0, or v xn =0, ontheboundary (18)

Using integration by part [18], it holds that

oH OE JE O0H
VX —, —)—(Vx—,—)=0. (19)
at 0t ar 0t

Thus we obtain the following relation:

ld (] 9E OE\ | oH 9H\) /3] OE 0
2 dr ar’ ot Bor or]) ™ \or ar |

For the lossless medium (J = 0), Eq. (16) can be directly obtained from (20). O

Remark 3 The energy conservation relation (16) can be also written as the following
form:

1 1
/ (-|v x E[> + —|V x H|2) dx = Constant. (21)
€ I

Now for the electromagnetic waves in the lossless medium, there are two conserva-
tion laws: (14) and (16). Therefore it is natural to ask whether the numerical schemes
can keep these properties.

2.2 Energy-conserved splitting FDTD methods

The staggered Yee’s grid is used in the FDTD methods (see Fig. 1). Let Ax and Ay
be the mesh sizes along the x and y directions, respectively, and Ar the time step
size. Fori =0,1,...,1,j=0,1,...,Jandn =0,1,..., N, define (x;, y;, t") =

1
(Ax, jAy. nAD. x; 1 = x; + 1Ax, Vel =it LAy and "3 = " 4+ L Ar. The
grid function U, P is defined on the staggered grid where « =i ori + % and f = j
or j + %, and 6, U, §,U and 8,6,U are defined as follows:

1
n+§ n—x un _y"
S, U" . = Usp”—Yarp S .U, — “*%'ﬁ "‘7%’/9
~a,B At ’ XY, B Ax ’
un 1_Un .
n _ %Pty ap-3 no_ n
SyUa,ﬂ = A , 8,4(31,U0(’/3 = Su((San,f;)»

where u and v can be taken as x or y direction. For the grid function U}, g We may
drop the subscript if there is no confusion.
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Fig. 1 Staggered grid, square for H! , triangle for E" , inverted triangle for E"
.1 ., 1 Yoo 1 X1 .
it5.j+y ijty it5.J

The Maxwell’s equations (6)—(8) can be split into the following form (see [9]):

9E, __ 10H; 0Ey _  10H

at T € dy dt € ox

o _ 1o, A4 an 1ok, 22)
2 9t — @ dy 2 9t~ p oox C

Applying the spatial discretization approximation to the equations in (22) on the stag-
gered grid, we now propose the energy-conserved splitting finite-difference time-
domain method (EC-S-FDTDI) as follows.

(i) The EC-S-FDTDI scheme

Stage 1: Compute £ ;"H and the intermediate variable H* from H!' and E v

n+l _ pn
E)’Lj-;—% Eyi,j+% 1 s g g 23)
At T 2e | Eed G+t
H* — H"
NAG-TAs SNNGS ic UNRNR NPY 7 RH R L4
At 2L Yied j+d Yivd i+t
. 1 1 .
Stage 2: Compute E7 ™! and H*! from E} and H:
+1
E’r‘lwr%j B EQH%]' 1 il
— 2 = —§,{H H , 25
At 2e y[ Yiv * ZH—H‘} 3)
Hn-‘rl — H*
.11 21 .1 1
+2.7+3 t2.%3 n+1 n
= —046y1F E . 26
At 21 y[ Yipd o+l + xi+%,./+%] (26)
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The boundary values for the S-FDTDI scheme (23)—(26) are obtained from the PEC
boundary condition (10):

El, 1 ,=E! = E" =E =0. (27)
’ i+

n
L
tits L Yo.j+4 YL+l

And the the initial values of Eg’ P and Ho?’ p are given as:

Efa,ﬁ = E, (aAx, BAy); E?ﬂ = Ey (@ Ax, BAY); Hz(l,ﬁ = H, (aAx, BAY).
(28)

Observing the EC-S-FDTDI scheme, we see that the computation of this scheme is
very simple. Each stage, which contains only two equations, can be written equivalently
as a tri-diagonal system of linear equations for the electric field vector E ;*1 (or E j}“ )
and a direct formulation of obtaining the magnetic field vector H (or HZ"‘“ 1 explicitly.

After theoretical analysis and numerical experiments in the following sections, we
know that the EC-S-FDTDI scheme is only of first order in time. By some modifica-
tions, the accuracy of the EC-S-FDTDI scheme can be remedied which leads us to
propose a second order energy-conserved scheme: EC-S-FDTDII.

(ii) The EC-S-FDTDII scheme:

Stage 1: Compute the intermediate variables E; and H from E} and H}":

EY | —E}
i+l itd. 1 " n
= —4,1H H , 29
At 4e ” Zi+%,j+ i d (29)
H* — H!

gl Ll 1

+5.0t75 +5.J+73 = —(Sy E;‘ L —}—E;Z N (30)
At 4u i+3.0+% i+%.j+%

Stage 2: Compute £ ;"H and the intermediate variable H* from EY and H":

En+1 .
Yij+l iy 18 B 4 H 1)
At T2 |G G+ ]’
H** _ H*
A A S i SRR U S B . (32
At 2 Yiegary o Jirhivy

Stage 3: Compute E”*! and H"*! from H}* and E}:

En-‘rl _ E*
)C[+%,j xH—%-_i _ i(s Hn+1 + H* (33)
At P TS W
Hn-‘rl — H**
as e B T LG4
At ) i+5+1 i+1j+1
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For this three-stages scheme, we will prove in next section that it conserves energy,
unconditionally stable and has second order accuracy in both time and space.

Remark 4 Here, we would like to list the S-FDTDI scheme proposed by Gao et al.
in [9] as follows.

Stage 1: Compute E ;f“ and the intermediate variable ' from H' and EY:

n+l  _ n
et~ By B (35)
At I A Gt )’
H* — H"
Zi+%’j+% zi+%'j+% _ _LS En+l n (36)
- x Yool o1 Y1 .1 [
At 2 A i+5.j+7
Stage 2: Compute E7*! and H!*! from E”, H! and H:
En-‘rl L
S RS DR S S (37)
At T 2e V| Eal Gl
Hn-H —_ H*
.01 .1 2.1 ..1 ]
it3.t3 A n+1 n
= —46,1E E . 38
A o GRS

Comparing our EC-S-FDTDI scheme (23)—(26) with the S-FDTDI scheme
(35)-(38), only Eq. (37) and Eq. (25) are different, that is to say, we use HZ* in Eq. (25)
instead of H}' in Eq. (37). With this small modification, the new EC-S-FDTDI scheme
will be proved to satisfy conservation of energy, but the S-FDTDI scheme does not.
It is obvious that our EC-S-FDTDI scheme is as simple as the S-FDTDI scheme.
Moreover, the EC-S-FDTDI scheme can be also rewritten as first order perturbation
of Crank—Nicolson scheme for the Maxwell’s equations in two dimensions.

Remark 5 Further, the S-FDTDII scheme was proposed by modifying Eq. (35) in the
S-FDTDI scheme for improving the accuracy in [9] as bellow.

Stage 1: Compute E ;“ and the intermediate variable H:

E'H_l I
LS BCTAE R P PPy
At T 2e | G Sl
At
—— 388 EY |, (39
2ue ity
H* — H"
z 1 Z..1 1 1
it2.0%3 it2.0+3 n+1 n
=——39 E . 40
At ,u x[ ey T yi+%f+é] o

Stage 2: Compute E7 ! and H*! as stage 2 in S-FDTDI scheme.
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A higher order term — ’ F=8,8y, E” is added, and the S-FDTDII scheme is

+ 1
equivalent to a second order perturbat10n of the Crank—Nicolson scheme. The scheme
has obtained efficient numerical results. On the other hand, the S-FDTDII scheme does
not satisfy energy conservation. This motivates us to construct our new EC-S-FDTDII
scheme (29) and (30) which satisfies energy conservation. We would like to mention
that it seems difficult to find a two-stages scheme with second order accuracy in time
and energy conservations property at the same time.

Comparing with two stages algorithm, the three stages algorithm (29) and (30)
means one more tri-diagonal system is needed to be solved in every time step. We
note that the extra tri-diagonal system also corresponds to one dimensional problem
and can be solved by Thomson algorithm stably, i.e., the complexity to solve the tri-
diagonal system is linear with one dimensional size Ny, so the extra cost is small.
Comparing with the EC-S-FDTDI scheme, the EC-S-FDTDII scheme has second
order accuracy both in time and space, and the energy conservation relations (14) and
(16) can still hold well.

3 Stability and convergence analysis

In this section, we will analyze theoretically the energy conservation convergence
properties for our new EC-S-FDTDI and EC-S-FDTDII schemes.

For grid functions defined on the staggered grids: U := {U, } V={V i +1}
W = {WJr ]+1} and F := {(Ul+ e Vi ]+1)} the discrete L2 energy norms are
used:

I-1J-1 I-1J-1
WIE, =2 Uiy 11 Axay, VI = 3 |Vije| avay,
i=0 j=0 i=0 j=0
I-1J-1
w3, = ZZ\ A IFIE = IUIE, + VI,
i=0 j=0

For the analysis of the stability, the Abel transformation is introduced, which can
be used to simplify the proof of the stability analysis.

Lemma 6 (Abel transformation) Let p > 1 be any integer; and {ai}}_, and {bi}!_,
be two sequences, then

p—1
Zakbk =a,B, — Z(ak+1 — ax) By, (41)
where By = Zif:l b;.

Remark 7 The Abel transformation are essentially the discrete variant of the integral
by part.
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By Abel transformation, discrete Green’s formula can be obtained.

Lemma 8 Let p > 1 be any integer, and {ay. },le and {bk}fzo be two sequences, then

J4 p—1
> ar(by —bi1) = apb, —aibo — Y _(ar11 — ap)by. (42)
k=1 k=1

The proof of this lemma can be found in [17].

Now with the PEC boundary conditions imposed, the following lemma is obtained
directly. Instead of Ey, E, and H_, the grid functions U, V and W are used here to
emphasize that the results do not depend on time.

Lemma 9 Let the grid functions U, V and W be defined on the staggered grid. If U
and V satisfy the boundary conditions:

J—1 J—1
Wit 18Ut o1 = —ZUH%J(S),WH%J, (43)
=0 j=1
I1-1 I-1
Wi+%,j+%8xvi+%,j+% =" Z Vi,j—&-%(sxwi,j+%’ (44)
i=0 i=1
and
I1-1J-1 I-1J-1
2 2 Uiy 860 Vigy =2 > Vi i 1083U; oy @3)
i=0 j=1 i=1 j=

By this lemma, the energy conservation property of EC-S-FDTDI and II can be
proven in next subsection.

3.1 Energy conservation and unconditionally stable

Theorem 10 (Discrete energy conservations) For the integers n > 0, let H!' :=
H! yand E" = {(E} , E’; )} be the solutions of EC-S-FDTDI scheme
+3 i+5.j ij+3

Z. .
l+%,/ %j

(23)—(26), then there exist the discrete energy conservation properties:

1

1 2 1 2
e P T e
E H

(46)

)
2
E+,u ey
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and

2 1 ,H_l 2
E+ wrdH;

n—z

5, H.

=

€15,E"? €15,E"? (47)

Proof Multiplying both sides of (23) with € At (E;’Jrl . HEY ) and multiplying
ij+%

i+

2
+ (1
E

H ’ H

both sides of (24) with At (HZ* R L T ), we can get:
i+~,j+ i j+

1 2/ 7 l+2,_/ 7

2 2
At
[y (s, -2,
tj+2 ijty 2 iLj+3

+H! I}(E"+1 —i—E” +1) (48)
2

112 t/+2

2 2 At |
H —(H! =——08, {EIT E)
g ( ) ( ) 2 [ ey mm]
H H! . 49
() @
Summing over all terms in the above two equations, and add them together, note that
E satisfies the boundary condition (9), then by Lemma 9, we have
1J-1 2 I1-1J-1 2
+1
() o) )= 22 (<(55.0)
i=0 j=0 i=0 j=0
2
+,u(HZ"_ . 1) ) (50)
ity.J+5

I—- J—

Similarly, from (25), we have

1-1J-1 2 I-1J-1 2
S (e(m ) we () )2 (e (=)
0 20 it5.j+t7 N — it+5,J

i=0j

Combining Eq. (50) with Eq. (51), Eq. (46) is obtained.
For the discrete energy conservation I1 (Eq (47)), denote by H *+1 the intermediate

1
value H; * at time level n + 1, and §; H +2 = H— . Then from the EC-S-FDTDI
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scheme (23)—(26), S,E”Jr% and &, Hzn 2 satisfy the equations:

n+3 ooon+y A w1 ntl
5’Ex1+%,_/ Ex 1T 2 Sy 5tHzH_%‘j +5tHzH_%,j ) (52)
*+% _ n+% . ﬁ n+% n+%
(StHZH%.H% (StHZH%,H% - 2M8y 6tExi+%,j+% +8tExi+%,j+% ’ (53)
and
3 ooty A n+3 *+3
BEN D = BEY Y = SEa B HL S H (54)
nty oty A n+3 n+3
SHITL L mHL = =SS BB FRET 69

Note that §,E also satisfies the boundary condition, then following the proof of discrete
energy conservation I (46) and using Lemma 9, we get the second discrete energy
conversation (47). O

Similarly, the EC-S-FDTDII also keeps the properties of energy conservations.

Theorem 11 (Energy conservations) For the integers n > 0, let E" := {(E} |
i+7‘j
EY )} and H! = {H] =} be the solutions of EC-S-FDTDII scheme
i.j+7 ! 'i+7,j+§
(29)—(32), then there exist the energy conservation properties:

1 2 1 2 1 2 | 2
S P el I B P VA 36
‘ E+ R H E+ HeHe H (56)
and
| 32 1 n+3 2 1 12 1 n+l 2
‘eia,Enﬁ T T Tias: =‘675,En+§ I PR i (57)
E H E H

1

7

2]

Proof Multiplying both sides of (29) with € At (ch‘ +E} | ) and multiplying
it5,J i+5.j

L+

2 2
At
E¥ —|E! = —§8,{H' H! E* E" ,
E[( ) ()] 1 y[ i ](* )

(58)

both sides of (30) with u At (HZ* ,HH! ), we can get:
i+ 5 i+5.j+

2772
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and

(59)

Summing over all terms in the above two equations, and add them together, note that
E, satisfies the boundary condition (9), then by Lemma 9, we have

1-1J

SE( () (o)) ZE( ()

i
2
+,u(HZ”_ . 1) ) (60)
it5.Jt5

Similarly, from (31) and (32), we have

- 2 2 I—1J-1 5
e ErH! 4 H** ) _ (g
i=0 ]=0( ( Yty : Sty Z z Yij+k

And also from (33) and (34), we have

Combining Eq. (60) with Egs. (61) and (62), the Eq. (56) are obtained.
Denote by H: 1 H; #+1 and E¥*! the intermediate value HY, H** and E} at

* sokt1 _ ppskx
time level n + 1 respectively, then §; H +2 = u , 8 H **+2 = %
and 8, EX = EZCZEL S0 from the EC-S-FDTDII scheme (29)~(34), 5,E"*? and
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1
S HznJr2 satisfy the following equations:

1 1
*+5 n+2 At *+5 n+2
StExi+l - 81‘ . = Kay 8tHz_ 1 + 8t N
2+J +5. i+3.J +5.
1 1 (63)
*+3 nt3 _ At *+3 nty .
51H2[+1 } —8,H o= 4/L8 & E, | +5,E e
72.Jt+ +3.0t3 i+5.J+ +5.0+7
n+3 n+£ skt L g
SIE,V,- T & E 1 = __8 8 H; 1. +8:H;, 1. (>
It l]+2 l+2,j 1+2.]
: | (64)
skt 5 *+5 _ l’l+2 n+2 .
5,HZI_+1 o, —6H, [ | = —ZMS 3;E ny —I—(S,E A i
2t3 i+3.J%7 AT AN t2.7%3
and
"+2 o+ 5 At n+3 Hokt
SZE 1. & E, 1. = E‘S) Sle. 1 + 5II{Z. 1 s
+4. i3, i+% i
3 1 3 (65)
n+s oty At n+3 *+3
8 H; 1.1 8 H;. 1.1 — 4_5y 8t Ex 1.1 + 8 Ey [
ity TR 2J+3 i+t

Note that §,E also satisfies the boundary condition, then following the proof of
Theorem 10 and using Lemma 9, we get the conversation relation (57). O

Combining the above energy conservation properties, we know that the
EC-S-FDTDI and EC-S-FDTDII schemes are both unconditionally stable.

Corollary 12 (Unconditionally stable) The EC-S-FDTDI scheme and the
EC-S-FDTDII scheme for Maxwell’s equations in two dimensions with PEC boundary
conditions are unconditionally stable.

In this subsection, we strictly prove that our EC-S-FDTDI and EC-S-FDTDII
schemes both keep the energy conservation relations (14) and (16) in the discrete
sense. The stability of the algorithm is a natural conclusion from the energy conserva-
tion. Moreover the energy conservation properties are also important for the long-time
computation. Just as known, the previous ADI algorithms for Maxwell’s equations do
not have the energy conservation properties.

3.2 Truncation errors

In fact, our new schemes can be regarded as the perturbations of Crank—Nicolson
scheme for the Maxwell’s equations in two dimensions. The Crank—Nicolson scheme
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for the Maxwell equations is one implicit scheme:

En+1 _ En
’+% U xi"’%‘/ 1 n+1 n
-2 2 - _ s 1H H , 66
At 2¢ 7 Zi+%,j+ Lir ki (66)
En+1 _ EM
Yiipl Yijad 1
jty jts — __8x Hn+1 _|_ Hn , (67)
At 2e +3 i+l
Hn+] — H»
Lipd et Lipdj+d 1
bed bk UL, (e v
At 2n i1+ +4+h
5, ( E™H! 68
* ( Vil ]+5 1+2 it} (68)

S S , .
Denote by &, 2, E; 2 and 7, ' 2 the truncation errors of the Crank—Nicolson scheme,

ie.,

é—n+% — i E . tl’l"rl _ E . zJ’l
Yl T oA U tivy Vi v \Yivdo Vi
1 1
~ge0 (e (riago 3o ) 4 e (g )|
ghts 1 ) n+1
Eyi,nz _A_t(Ey (x”yf'+%’[ )_Ey (x”yﬂrl ! ))

1
+Z8)’ {HZ (xivy]+1 tn+l)+H (-xla %7tn)}s

and

1 1
. on+s n 7
Then by Taylor expansion, & |, & *, andn; | L) are of second order both in
i+5.j Tij+y +5.J+7

time and space:

3 3
oty 9 _ia Ex( ) 1 0°H ( )
Exi+%_j = At [ 24 35 \FbXigls ) 8¢ 90y T12: X4 1, Y1

Ay? 33H, nd )
"2 x 1, 9n),
e o ( Titg V12
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3 3
ontd __2L3Ey( _ ) 13H( )
sl/+z = [24 o3 \PU i ) T g gzgy (P2 g
_Ax?H,
T 24e 9x3 (

x22Y+)

1 1 33H. 1 33E,
ﬁZ.Jr?. = A~ (31,)6- 1, l) (132,)6- 1,y31)
ivdgr) 24 913 i3 77+ 811 3120y i+2
1 3E, ( )
- 733, X31, V;
8 9r2ax \ 0 s

1 233EX n+i 283Ey n+3

1
where 1" < 14, To0, T3¢ < 1" Vi—l S V16 Y20, Y30 = Vg ls X LS Xig, X2e,

-2
x3¢ < xi+% with £ = 1, 2, 3. Then we have

ng,;xx[m*ﬂ £, |nz+2|} =clar+aa?+ 47, (69)

Now we show that the EC-S-FDTDI scheme can be rewritten as first order perturba-

tion of Crank-Nicolson scheme. From Eq. (26), we can get the expressionof H; .

i+d i+l
And substituting it into Eq. (23), we obtain the following equivalent scheme.
The equivalent EC-S-FDTDI scheme:
En-‘r] _ EM
1+% J xH—%,_i 1 n+1 n
— = = 5, 1H H
At 2¢ 7| ELy + Gk
At
— 88y {E"TL 4 ET : 70
4pe y[ Yiedj + Yird ) (70)
En+1 En
Dl _1s HH"“I + H! 1]
At 2e ij+y L+l
At
+ 8,8, {EMTL 4 ET , (71)
4”6 : /+£ lj+i
and
Hn-‘rl — Hn
Zi+%’j+% Zi+%’j+% _ L (S Eﬂ+l + En
- y X1 .,1 X, 1
At 21 i+3.0+3 i+1j+

1
2

-5, | En E" . 72

x( yi+%,j+%+ ik i+l {72)
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1

At n+l "
Note that the term 26,8, (E}* ;T Ey,'+7,_

A '} is first order perturbation. Using the
7 J

.. = - n+% n+% n+% .
definitions of &, &, and 7, and denote by §;  “, &, “ andn, ° the truncation errors
of the EC-S-FDTDI scheme, then we can get the truncation errors:

n+i —nt4 At +1
G =Bt B0 D By s tD) (D)
Vl+% —n+% At n+1 n
Syl.‘j+% = yi,j+% - mgx‘sy{Ex(xia y.H_%’t ) + Ex(x;, y/'+%»t )b (74)
n+% _ _n+%
nzH—%,_H—% - nzi+%,,/+%' (75)

Now the terms éSxSy{Ew(t”“) + E, (™M} w = x,y) are the approximations of

a2 Vl+l
%, then the EC-S-FDTDI is one order approximation in time.

Lemma 13 (Truncation error) Assume that the sglutions are smooth enough, e.g, sat-
isfy the regular condition: E € C3 ([0, T1; [C3(£2)]?) and H, € C* ([0, T1; C3(£2)).

n+i o on+t n+% .
Let&, °,&, ° andn; ° be the truncation errors of EC-S-FDTDI (23)~(26). Then
the truncation errors can be bounded by:

+1 +1
max{|g |, 1§71} < Cie, w{Ar + Ax® + A7), (76)
1
max([n! "} = Ci(e, (A7 + Ax> + 4Y%), (77

where C1(€, 1) is a constant independent of the mesh sizes At, Ax and Ay.

Remark 14 Though the truncation errors of &, & y and 77, are second order in time and
space, but the truncation errors of &, and &, are only first order in time since the terms

At

+1 _
mfsx%{Ew(xH%»yw” )+ Ew(xi 1,1} (w=x,y)

are only first order in time, therefore the convergence is expected to be first order in

1

time. However for r;;”rz , it is second order approximation, so we can propose one
variant EC-S-FDTD 1, scheme.

The EC-S-FDTD I, scheme:

Stage 1-2: Use EC-S-FDTDI scheme to obtain H” .
Stage 3: Recompute E"*! and E;f“ by explicit modification:

n+1 _
Bt "B _ L e e (78)
At To2e |Gt Gty )’
En+l _ E
S DL U W Y (79)
At 2e¢ V| EL Gl
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The motivation of the EC-S-FDTD I, scheme is very simple. Although EC-S-FDTDI
scheme is one order perturbation of the Crank—Nicolson scheme, by careful analysis,
the truncation error for H, is still two order in time. Then substitute H, into the
Crank—Nicolson scheme, it is natural to except that the new scheme is of second order
in time. Our numerical results show that the EC-S-FDTD I,, scheme has second order
accuracy, but unfortunately, this scheme does not keep the energy conservation as the
original scheme.

Let us turn to the EC-S-FDTDII scheme. By eliminating the intermediate vari-
ables E¥, Hz* and Hz* *, the EC-S-FDTDII scheme also has the equivalent scheme as
following.

The equivalent EC-S-FDTDII scheme:

En+1 _ E"
Yird Yird _ 18 H"'H O
At 2¢ 7| L Yird
At
—— 58,8, {EML _E" , 80
16pe y[ Yird Yied (80)
En+1 _ En
Yij+d Tij+d 1 ] "
———— =4 H] + H]
At 2e Ly S
At
+—8,8y {EMT —E" , 81
Sue yl Yijd Yigd 81)
and
Hn-‘rl — H"
.01 .1 201 .1 1
i+5.jt7 it5.J+75 . +1
ar =5 (B )
i+3.+3 AR

1
2
—0x (En+11 + E;l 1 |)]
z-¢-7 i+ it5.ty
—ia sy(H™ | —H"
lope >0 \i+hi+d i+3.j+%

+—7F ar 3,050y +E (82)
n+1 n .
32u2e y,:%’ﬁ% yi+%,j+%

Comparing with the Crank—Nicolson scheme, the terms —16A—’€8)76y{E§:]% ,'

n+1 _ n
Syby (MU = HYL, L)), and

E" }
xi+%,] ’ 8;4,6

+]
86{E” Z—E” b= 16;“

Y+
32u%e
scheme can also be regarded as second order perturbation of Crank—Nicolson scheme.

Denote by $x+2 5y+2

nilpl
A—’zzSnyéy (En+Y 4+ Ey "2772) are second order terms, then the EC-S-FDTDII
i+%.j+%

1
and ng+2 the truncation errors of the EC-S-FDTDII scheme,
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then from the equivalent EC-S-FDTDII scheme (80)—(82), the truncation errors are:

At
sx. 12 = g 1, _8)'8y{EX(-xi+%v Vi tn+l) - Ex(-xi+%v Vi tn)}y (83)

it+5.J xi+7,j 16e

n+1 n+ At +1
Eyi,ji% =$yi.ji% + 8_5x8y{Ex(xz»y,+| t" ) — Ex (xz,yj+1 tn)} (84)
"""% _ —"""% At n+1 n
77z,.+1vj+l - 77zl.+l’j+£ 16 8 8)7{H (-xl+l y]+1 t ) Hz(xi+%v yj+%st )}
At?
T30, S By vy D By vty (85)

Clearly, from the above expressions, the EC-S-FDTDII is both of second order in time
and space.

Lemma 15 (Truncation error) Assume that the S(_)lutions are smooth enough, e.g, sat-
isfy the regular condition E € C3 ([0, T1; [C3(2)1?) and H, € C* ([0, T1; C3(£2)).

Le t§x+2 E) and nz i be the truncation errors of EC-S-FDTDII (29)—(32). Then
the truncation errors are second order both in space and time:

n+2

n+3 n+3
max{[&; 2. 1€y In: I} < Cale, w{Ar? + Ax? 4 Ay?), (86)

where Ca (€, ) is a constant independent of the mesh sizes At, Ax and Ay.

3.3 Convergence analysis for EC-S-FDTDI and EC-S-FDTDII

Based on the energy conservation and truncation error analysis, we arrive at the conver-
gence analysis of our EC-S-FDTD schemes. Though the truncation errors are obtained
from the equivalent EC-S-FDTD schemes, the energy conversation properties and the
stability are based on the original EC-S-FDTD schemes, then it is not so obvious to
obtain the convergence from the truncation errors and stability property.

Here we first show that the equivalent EC-S-FDTDII scheme can also be trans-
formed back to the original scheme by introducing the intermediate variables E7, H
and H*:

1

Ar? At

E¥ = 2(E”+1 +ED + Teancded (Eyt + E}) — —5 VH!TY — HY, (87
and
At At
H' = H' + may(E; +EY, H=H- ESX(E;H +ED).  (88)

By these intermediate variables, the equivalent scheme (80)—(82) will lead to the
EC-S-FDTDII scheme, this fact can be verified directly. Based on this transformation,
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the truncation errors of the equivalent scheme will be redistributed, i.e., we obtain the
truncation errors of the original EC-S-FDTDII scheme. Then by the energy method,
the convergence can be obtained from the truncation error analysis and energy con-
servation property.

Define the error functions at the staggered grid: £, 5 = Ew(xa, xp, t"y—E!

We, B
and H?oz,ﬁ = H;(xy,xg,t") — HZ”M, where Ey (xq, yg, t") with w = x,y and
H,(xq, yg,t") denote the values of the exact solution components E,, and H, at

the point (x4, yg, t"), respectively.

Theorem 16 (Convergence) Suppose that the exact solution components E,, E, and
H_ are smooth enough: E € C3 ([0, T1; [C?(22)]?) and H. € C* ([0, T]; C*(£2)) .
For n > 0, let EY, EY and H;" be the solution of the EC-S-FDTDII scheme
(29)—(32). Then for any fixed T > 0, there exists a positive constant C . independent
of At, Ax and Ay such that

Jmax (le2[EG") = E"IE + |n? (Ho(") — HL )
= e (Il ") — BV + 12 (H.(%) — HOI)

+Cpcel (AF? + Ax? + Ay?)2 (89)

and & | as following:

+3.J

Proof Define H}* |
i+1j+

1 At
H H 1 H 1
:*1 L T 5 Z+1 , T 2 11 ] 8y 5§+1 1_8; 11
ity ity 2 i+1.j+1 i+1j+1 8 i+1.j+1 ikt

]'.
1 At
H>Zk1 125 2%11.1+H21 1 _8_5y ;l-+11-1_5;l1 |
it5.j+y it75.j+7 it75.j+7 it3.J+3 it5.j+%
At
= n+1 n
o \E T8 )
12 2+ i+3.0%3

and

1 Ar?
5* — _ gnJr] 5n 5.8 gn+l &n
Yirlio 2 ( Sial + Sl + 16pe "\ Vsl + Yivl

At
— o (Hgl_“l =M )

+5.7 i+75.J

And combining these variables with the other intermediate variables EY, H) and
H?*(see (87) and (88)), we arrive at the error equations of the EC-S-FDTDII scheme:
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[ EF =&
,V,‘Jr%,j “‘[+%1]‘ _ lS (H* +Hn )+ n+2
At 4e "V Hi L i+ € 1
7J t+74 (90)
HE —H!
Sirdrd Tt ded 1 " n n+y
At ::Zﬁay(£%+’/+‘ +_5%+11+1)4_e%+'1+‘;
2 27%2 2J%7
n+1 n
éGLj+% ijt+4 o +1
Y = 8(’H I—I—H 1)+€3 N o1
i+
HE —HE
.01 ., 1 01 .1
it5.j+7y i+5.j+5 n+3
. zAt — Z_Lﬂgx(g;ill ] +g;l-+l )+ 21 K
it73.0%3 i3+ l*w 2
n+1 _ox
gxi%,j gx”%,f' 1 n+1 . ”+%
At = 70, (HZ 1 +HT 1 ) +es L
it5.J it5.J it5.J (92)
n+1 H**
1 | 1
Skt Skl 1 1 n+s
3th 2t7 *
At - _/‘8}7(5’?:1 j+1 + gxi+l j+l) te vl el
2+2 20+ 2:J%7
. n+% n+% n+% n+% n+% n+% .
Comparing e; , €y , €3 . ey , €5 and e with the trun-
i jJ i+2f+7 Lty Tivdvy s Ciekl i1+t
i
n+x . .
cation errors Ex Sy dn; 7 , in the equivalent EC-S-FDTDII scheme,
i+5.j+5
22
we can get the relatlons
en+% _ l§n+% en+% _ lnn+% n+% Sn—&-%
- X. . - . . - ). .
bbbt el T 2 b ey T ey
i i | i i
n+s n+s n+s5 n+s n+s
42] 120, 352 Z%éxlz,v 621 12%772.%.1
i+.+% i+4. i3 i+.+% i+3.0t3

Now the energy method can be used. From (90) and using Lemma 9, we have

I-1J-1
i=0 j=0
I-1J-1

(e( g ) RO ) -
+3.0+h
53

(e
i=0 j=0
HE .
Zi+%.j+%)

By Schwartz inequality,

n+2
i+% J

&l

X

(xz+ J+

l+ J)‘|'l”72

(xz—i- /)2 M(HZ[ 1 1)2)

t2042

+1(H* 1 ..1

t+74+§

At
(1 - T) (IEI3, + 1PN ) < CrANArR + 4% + 4y%)?

; (1 + ) ENEME, + I ).
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Similarly, from (91) and (92), we can obtain the inequalities as following respectively:
( At
| ——
2

) elEyTNE, + 1IHE 17 < C2A1(AP + Ax® + AY?)?

e
2
and

)e||€;||%;y+u||H;"||%,, (94)

At
(1= ) (e T, + mIME ) < C3ANAR + Ax? + Ay?)

At
+ (14 ) ENENNE, + M IE).

95)

Let us divide both sides of (93) by (1 — %) , both sides of (95) by (1 + %) and sum
(93), (94) and (93) together. Then by eliminating the intermediate variables £, H}
and H}*, we have:

I_Al

At 1 — At
4 n+12
1+£€”5x ||Ex+

T At
jt P + (1 - 7) e||5;+1 ||§Sv
7 + 7 )
1+ +4 At
< - &ellé’i’llfgx +— iullH;H?f + (1 + 7) e||€;,’||%5y
4 4
+C4A1(AF? + Ax* + Ay*)%. 96)
As 1-4 > ( — ﬁ) and 1+4 > (1 + _f) so from (96), we can get:
1+% - 2 1_% = 2 ) 5 .
At At
(1 — 7) ez, + (1 -=
At

b
4

At
5 ) pIHE G + (1 - 7) eley i,
At
< L, + Lt

1+ 4t

—ar M2 G + ——rell €V,
4 4

+C4 At (A% 4+ Ax? + Ay?)2.

o7
Divided by 1 — % on both side of the above inequality,
A
I

142 1,2 1,2
ellET g, +ellEy™ Iz, + wllH2 Iy
1-414+ 4

[l EXNE, + €lENNE, + mlIHZ I
+2C4 At (AL + Ax? + Ay?)2.

(98)
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Notice that when Ar = %, the following inequality is easy to be checked:

At n
(1+T 1 )<eT
A A — .
-4 1+ 4

Then recursively applying (98) from time level n to 0, we can obtain:

elET T, +elEy g, + mlHE g,
< el + €l €T, + I HDIZ 1 + 4Cae” At(AP + Ax® + AY)*.
(99)

Taking the maximum for n from 0 to N — 1, we complete the proof. O

We can also obtain the convergence of 6, E" and §; H}'. The proof is similar to one in
Theorem 16: we first obtain the truncation estimates from the equivalent EC-S-FDTDII
scheme, and then use the energy method to obtain the convergence.

Theorem 17 (Convergence 1) Suppose that the exact solution components Ey, E,
and H, are smooth enough: E € C*([0, T1; [C3(£2)1?) and H, € C*([0, T1; C3(2)).
Forn > 0, let E, E;‘ and H," be the solution of the EC-S-FDTDII scheme (23)—(26).
Then for any fixed T > 0, there exists a positive constant C. independent of At, Ax
and Ay such that

1 1 1 1 1 41
Jmax. [||ez[a,E<z"+z> — S E" 2 A |28 He (") — 8, Hy 21||%,]

1 1 1 1
T (le? GEGT) — SEDIE + 12 6 H ) — 8, HO I )
+Cpee’ (AP 4 Ax® + Ay?)2. (100)
Proof According to the equivalent EC-S-FDTDII scheme (80)—(82), and substrating

the equations at the neighbor levels n and n — 1, we can get the error equations for
6;E and §; H, as follows:

515n+2 5t5n+2 . 1 L N
+3 n 2 )
p— 5
At 2¢ 7 [ ST, +1. T +%,j}
At ”+2 n+2 n+1
“Tou TR R A e (101)
3 1
5,5’““5 515;”51 | o o
2 A T P H” 2 M 2
At 2¢ " [ +1 + o it}
At
s Is 5’”2 5t5"+2 ] g"“ (102)
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and
n+% n+s

&H —&H
t Zi+%"i+% t ZH—%‘H% = 2i [8 (515n+§ ! ‘|‘5t(€n+é ; )
1% 2+

At Yied o+t

nt3 n+4
—8x (atg 2 1+ 8iEy ﬁ +%)]

At n+3 n+i
" 16p1e 88y (S’HHLM LTSNS

A n+% n+%
1 103
Lipdjed? e

where ; "+1 {"H : and §”+ll , are the truncation errors. By Taylor expansion,

“irhith
1 3*E 1 3%H,
n+1 _ 2 _ - X
Ny At |: 24 37 (rll,xi%,y,) 8¢ 930y ~(T12, X Xigls yll)j|
Ay* 9*H, : - A2 9*E, « 5
24€ 9tdy3 R 161 3;23),2 T14, Xp 1, V13
1 9*E, 1 9*H,
n+l  _ _ 2| & y )
Cylﬁé =— At [24 o (21, Xi, ¥4 1) — 3¢ 3%x (T22,x2],yj+l)]
Ax? 84H( )+At2 *E, ( N
s X —— (T4, x
T 24e draxd i) T Rue giZaxgy b
1 3*H. 1 3*E,
n+1 _ 2 - z
Gebiry A [ 24 9tt (31, X4 42 Ve ) + 811 9130y (T32 Xj. . 31)
1 3*E, LT, 5 0*E,
T8 0%0x (133, X 31 V) | - 25 y 8t8y3(r34’x"+%’y32)
, O'E, A2 9H,
+ Ax 51ox % (135, X32, YigD |~ Tope 8t28y2(T33 S Xi410¥33)
LA [0E yp LBy )
T4 - | 7 a4 5 (T34, X34, —— > (T35, X
322 Loraxay? o T gz B0

This means that the truncation errors of (101)—(103) are all second order in time and
space. Similarly, using the same intermediate variables defined in Theorem 16, we can
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get:

*+% n+%

*+2
8:& 1 —8:&
l+za.l

n+2

5 {6 H tH }+61i+%,/’

i+%.j

1
*+5 n+i At n+2
8 2 -4 2 = Mg oisEnt ) 5 e
[tHZiJr%,jJr% tHZiJr%,jJr% i y{t xi+ J+ + t 1}+ 2,+ H_la
(104)
3 1
n+3 n+> +2
{Stgyi j+1 — (Slgyi j+l 8x{(8; + (SIH } + €3i j+%’
Jta gt '
1 1
skt 5 5 n+ ntd
8 2 2 8 8 2 8 8 ; e 1
0 1 Zi+%j+£ {8:&y Yisd js 1+z 1}+41+ b
(105)
and
n+3 _— nt3 **+
A I [W MR VA ]+esz+; Iz
+3.J -J 24J s
3 !
n+s st L At n+2 *+3
§H; 3 L T 85 8:& €6 1 i1
t Zi+%‘j+ t % 1 4,LL t ]+% + t xi+%,]—+% + 6l+§,]+§’
(106)
where
1.n+1 _l n+1 _ s~n+l1
lity.j 2§xi+% o Qitgits 2§Z,+',.i+%’ Bijy T Cy; i+
_ 1 +n+1 _ Len+l
e4i+%,]+%—0, Si+l ;=2 Yyl €6i+%,j+%_2 Gl el

Now it is obvious that the conclusion of Theorem 17 could be obtained by the same
method as in Theorem 16. O

And for the EC-S-FDTDI scheme, we have the following convergence results.
Theorem 18 (Convergence Ill) Suppose that the exact solution components Ex, E,
and H, are smooth enough: E€ C3 ([0, T1; [C*(2)1?) ,and H. € C? ([0, T1; C3(£2)).
For n > 0, let E, E;’ and H," be the solution of the EC-S-FDTDI

scheme (23)—~(26). Then for any fixed T > 0, there exists a positive constant C.
independent of At, Ax and Ay such that

1 2 L 2
Jmax (€2 MEG") — E"MIE + 2 [H-(") — HIIG)

1 1
T (e B — EOIE + 2 (H (%) — HO)I)
+Cpeel (A1 + Ax* + AyH2. 107)
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and
1
max [ne%[s,E(t"*i) — S E"S 4 Il (8 H (1) — &H!”]u%,]
0<n<N
1 1 1 1
T (e GEGD) = SEDIE + 142 6 H(0) — & HD)Iy)
+Cpee’ (A1 + Ax* + AyH2. (108)

3.4 Convergence of divergence

In Subsect. 3.1 we have shown that our new schemes obey the energy conservation
property. Moreover, the electronic field is divergence-free:

div(eE) = 0, (109)

if the media is lossless. The divergence-free property in this case can be proved for
Maxwell’s equation if the initial value satisfies it. But, this property is often omitted in
the FDTD methods and was not considered in the numerical algorithms in the previous
papers. In this subsection, we will prove that this property holds approximately in our
both schemes.

Lemma 19 For the EC-S-FDTDI scheme, the following identity holds:

At no_ 0 0 0
88y H! =€(3EY +8,E) )— 5 8y HY, (110)

O

Proof Note that 8,( or §,) and §; can be interchangeable, then from (70) to (72),

n+%

41 41 41
818 Ex, 2 +8yEy 7) = 8:8En” +8,8Eny

At
- +1
= e 8x8x8y(EV"" + EV. .

At
e OO B+ B

At 1 n+1
= S 8cdy (——5 (Eyt

+E;}l,-,j)+ 5 (En+1 + E"

)

At
= 38,8, H Z”,fz = 5t(5 5, ZfZ). (111)

So by summing over 7,
€(BrEY  +8yE) )~ 5 SyHl =€ (S E S+ EO e 5 8y H° o112

This is what we want. O
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Remark 20 Roughly, we can say that for the EC-S-FDTDBEC I scheme, € (6, EY, T

dy E" ) is first order approximation of the term div(eE) (x; 1Yl ) in the sense of

L norm
e(SXE;’I_j +5yE;f”_) = 0(Ar). (113)

Strictly, the first order approximation is satisfied only when we can prove that the term
8,8y H" is bounded.

We can also get similar identity for the EC-S-FDTDII scheme.
Lemma 21 For the EC-S-FDTDII scheme, the following identity holds:

A2 A2
€ EY  +yEy ) — 53515" _e(8E0+E0) 555150

(114)

Proof Recalling what we just mentioned on the last lemma, we can obtain the next
equations from (80) to (82):

”*2 n+3 1 n41 n At nt1 n
55 En? 4+ 8,Ent?) = 6, (265 (7 +H,.,j)—@5ysy (Ewtt+E2)

1 n+1 n At n—H n
5, (Zax (Hr+ 7)) + Sact (Bt +En)

At2 En+1 E" At2

1
Xi, j Xi, j n+x

= ) = 8 | 6x8,6,Ex, 7 ).
16pe ~ 777 At 16,uet(xy} x"’)

Also by summing over n,

At2

€(OrEY,  +OyEY, 164

2
0V B = €SBy, +8yEy ) — 6 88,8, EY

Y

(115)

Which is exactly the Eq. (114) in this theorem. O
For the EC-S-FDTDII scheme, we can prove strictly that the € (6 E;‘i ; + 8y Efv’i_j)
is first order approximation of the divergence-free term in energy norm. '

Theorem 22 If the mesh sizes At, Ax and Ay are same, and At < 2. /i€, and the
assumptions of the Theorem 16 are satisfied, then

I1-1J-1 1—1J-1
Se (5 E! +8,E! ) AxAy<CAP+CARS. (5 5,8y E0 ) Ax Ay
i=1 j=1 i=1 j=1
1—1J-1
0 0 2
+C € (8.E, +8,E5, ) Axay. (116)

i=1 j=1

-
I
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Proof 1f the step sizes At, Ax and Ay are at same order, then from the convergence
results, the terms 6,6,£7, 8,6,€) and SX(S},E;? are bounded by a constant Cy:

[6x0yE¢ e, < Ciy 116y8yE¢ e, = Ci, and [|8:8yE[ln < C1. (117)

So it is easy to show that

I-1J-1
2.2 BB EL ) AxAy <O,
i=1 j=1

17—
5,8,E" 88, E" AxAy < Cs. 118
;Z(y ) Yird o Yied +%) ray =t (118)

1
. »J
= ]:1

By the definition of §, and 8y, if E satisfies the PEC boundary conditions (27), 6, E )’C’l_ ;
and 8y EY,  still keeps the PEC boundary conditions. Therefore summing over i, j in
Eq. (l 14) we can use the Abel transformation, and by Lemma 9,

I1-1J-1 )
e (8.EL, +8,Ey ) Axay
i=1 j=1

A2 21
- ((5 8y E” )2+3y5yE;' | SxSyET 1)Amy
16p Mz i i+3. T Citgity
A —1J-
0

——MZZ (0,8 Y (8EL +8,EY ) AxAy
I—-1J-1

+ZZ€(8 EY +5},E§i'j) (SXE” +8,E] )AxAy (119)

i=1 j=1

.

The first term in the right side of the Eq. (119) is estimated in (117), and the other two
terms can be dealt with by Schwarz inequality,

LA el
(5— 32M6)ZZ€(5 El +5,E" ) Ax Ay
i=1j

2
+— (5:0,8,E3 ) axay

By simply requiring At < 2, /1€, we obtain the results. O
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Remark 23 For the divergence-free condition, the finite element methods for the prob-
lems normally deal with it as a equation, in which one can construct the finite element
spaces satisfying the divergence-free condition in some weak sense, (e.g., [8, 18]), but
it could lead to computational complexities and huge costs. On the other hand, for
the finite difference methods, specially for the FDTD methods, the divergence-free
condition is often omitted. The corresponding analysis of the condition can not be
found for the numerical algorithms in the previous works. It is well known in physics
that the divergence-free condition will always be satisfied if the initial electric wave
fields are divergence-free. Here in the paper, we analyze theoretically the divergence
free condition in our EC-S-FDTD schemes and strictly prove the discrete divergence
term to be first order approximation to the divergence-free condition. Furthermore,
numerical experiments in Sect. 5 have shown that our EC-S-FDTD schemes have
excellent approximations to the condition.

4 Numerical dispersion analysis

In the previous section, we have proven that the energy conservation properties also
hold. Therefore, based on this point, we can say that the both schemes are non-
dissipative. In this section, the non-dissipation property can be confirmed by numeri-
cal dispersion analysis, and we also compare the dispersion relations of the different
schemes at the same time.

In the dispersion analysis, we suppose that the time-harmonic solution of the
Maxwell’s equations are:

Eg,ﬁ — Eosnefi(kxotAx+kyﬁAy)’ Hzr:x;; — Hzosnefi(kxan+k_,ﬂAy)’ (120)

where i = +/—1 is the complex number, Eg = (Eyg, E yO)T, ky and k, are the wave
numbers along the x-axis and y-axis, respectively, & is the stability factor.
Define a, and b, as

1 . (1 1 . (1
a, = E sSin (EkxAx) y bx = A_y s (Ek}Ay) .

As aresult, we obtain the equation of the stability factor & for the EC-S-FDTDI scheme:

(& — 1)(do&? 4 2d,& 4 do) =0, (121)
where dj and d; are:
At? Art
do =1+ ——(a; + b}) + —— (axby)*,
e (pe) (122)
b= 14202y 4 A
= - —(a —(axby)”.
: pe T ez
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So the roots of the Eq. (121) are:

dy .V dg _d12 dp . d(% _dl2
=1 f=- i H=-_ i (123
dy do do dp

For the EC-S-FDTDII scheme, we still have Eq. (121) but with different dy and d:

2
A, A\ o, At L, A,
(1= 57) + () ) it o et

2
A, A, At A,
dy = — (1 e by) tec (ax +by) + 3 aaa + e aah

do

And the roots are:

=1 =i — SR ) B 124
&1 . & d0+1 o & i (124)

Clearly, for the EC-S-FDTDI and EC-S-FDTDII schemes, the modulus of these three
roots are both equal to one as well, which means that the both schemes are all non-
dissipative which is consistent with the energy conservation property.

Let the wave speed ¢ = \/;;Te Taking the stability factor & = ¢4’ we obtain the

numerical dispersion relations of the EC-S-FDTD schemes:

— EC-S-FDTDI:
.2 1 2 2 1 2 2 2 212
sin? ( 30Ar ) = (can? cos? ( Jwar (ax+by+(cm) axby). (125)
— EC-S-FDTDIL:
1
sin? (—a)At)
2

1 4272 200, 12 1 6 2.4
— cos? (la)At> 3(cAn) ayby + (cAt)~(ay + by) + 1g(cAr) axby'

2
(€An? o
(1 ca by)

(126)

Note that the numerical dispersion relations (125) and (126) both converge to the
analytical dispersion relation of the problem:

o =k +k). (127)
when Az, Ax and Ay all tend to zero. The wave number vector k = (k,, ky) can be

expressed by polar coordinates: kx = kcos¢ and ky, = k sin¢. Now the analytical
dispersion relation can be rewritten as w = ck.
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Fig.2 aNumerical dispersion against the CFL number with N; = 40 and 6 = 65°, b numerical dispersion
against the number of points per wavelength N, with § = 2.4 and 0 = 65°

Let A be the wave length, Ax = Ay = h the spatial step size, N, = % the
number of points per wavelength (NPPW), and S = "hﬂ the CFL number, respectively.
Therefore we can regard the stability factor & as a function of the variables S, ¢ and Nj:
& =&(S, ¢, N,). Now we present the numerical dispersion errors of the four methods
(S-FDTD I, EC-S-FDTDI, EC-S-FDTDII and the Crank—Nicolson) with different gird
sizes h (or N, ), wave propagation angles ¢ and CFL numbers S.

Let& = &Y wis a complex number: w = wg + iw;, where wg and w; are the
real and imaginary part, respectively, then

£ = e 14 (cos(wr Ar) + isin(wgr At)). (128)

Let Im(&) and Re(&) denote the imaginary and real parts of & respectively. So we can
express the numerical phase velocity v, normalized to the speed of the wave c as:

% = @r/K = : arctan (|Im_(§)|) = &arctan (M) (129)
c c ck At [Re(&)| 27 S [Re(&)]

Figures 2 and 3 show the normalized phase velocity v, /c against the wave courant
number S, the number of points per wavelength N; and the propagation angles ¢
respectively. From these figures, we can see that the numerical dispersion of EC-S-
FDTDII is the closest to the analytic solution 1. Furthermore, it is interesting that
in Fig. 3, the numerical dispersion of EC-S-FDTDII almost does not decline when
the propagation angles ¢ is near 90 degree, until now we do not know whether this
phenomena is useful.

5 Numerical experiments

Just as we have mentioned in the beginning of the paper and proven in the preceding
sections, our new splitting FDTD schemes have some nice advantages. In this section,
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we will demonstrate the following properties: (1) energy conservation; (2) accuracy
analysis; (3) unconditionally stable even in the long time computation; (4) the conver-
gence of the divergence free. In the numerical experiments, we will consider constant
electric permittivity case and jumped coefficient case.

5.1 Constant electric permittivity case

If we assume that the magnetic field H, is in the form of el —%*=kY) then in order
to satisfy the 2D Maxwell equations, the electric field E should be

Lk k) ikt
€ o ’

and ky, k, satisfy the dispersion relation: w? = Le(k)% + k%).

Now let us consider the domain §2 = [0, 1] x [0, 1] surrounded by a perfect
conductor, which means that £, (0, y) = Ey(1, y) =0and E,(x,0) = Ex(x, 1) =0.
So we can use the following analytic solution to check the code:

ky
E, = J cos(wmt) cos(kymx) sin(kymy),
e/
r (130)
Ey, = _efw cos(wmt) sin(kymwx) cos(kymy),
and
I .
H, = ﬁ sin(wmt) cos(kymx) cos(kymy). (131)
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Table 1 Relative errors of
Energyl for the EC-S-FDTD kx = ky EC-S-FDTDI EC-S-FDTDII
schemes. Parameters: T = 1
’ 1 1.18¢ — 14 3.55¢ — 15

At = Ax = Ay = 0.01 and ¢ ¢
different ky = ky 5 9.77e¢ — 15 2.66e¢ — 15

“ 10 9.55¢ — 15 2.66e — 15

Now let us check the properties of our schemes.

1. Energy conversations. The energies of the solution are easily to be computed, one

(Energy I) is

1
Energyl = (!e|E(x,t)|2dx+/,u|HZ(x,t)|2dx =5 (132

2

and the another (Energy II) is

Energyll = (‘Z €

LetusfixT =1, u=€e=1,At = Ax = Ay = ﬁ and change k, =k, as 1,5
and 10. Now let us define the relative errors as

1

2
dx

2
dH
dx+/u‘ atz(x,t) (133)

2

aE( 9
PR— x’
ot

1
(122 + It H2)17) " - Energyl’

Error of Energyl = max
0<n<N Energyl

, (134)

and

1
1 2
‘(ueiatE"*%||2+||u%8tHz"*2||2) —Energyll

Error of Energyll= max
0<n<N-1 Energyll

(135)

Table 1 shows that the energyl of the discrete solutions perfectly equal to the exact
value 0.5 since the errors are near machine precision. And from results listed in
the second and fourth columns of Table 2 show that the discrete energyll is also a
good approximation of the continuous energyll. But comparing with the relative
error of the energyl, the results seem not so confident. So we further compute the
difference of the discrete energyll at two neighbor level, that is to say, we will
check the value:
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2.

1
1 1 1 +3 02
max | le€28E" 2| 4+ |u28H, *|?
1<n<N-1

1

1 _1 1 -1 512
- [neza,E" 202 4 (|28, Hy 2||2]

The results are listed in third column and fifth column of Table 2. From Table 2,
the difference of the energyll at neighbor level is also near machine precision.
Now it is clear that the relative error of energyll mainly depends the error of the
first step. So from Tables 1 and 2, we can say that Theorems 10 and 11 hold, that
is to say, our EC-S-FDTDI and EC-S-FDTDII both keep the energy conservation
property.

Accuracy analysis. Table 3 compares the accuracy of S-FDTDII, EC-S-FDTDI
and EC-S-FDTDII. First, to calculate the errors of three schemes, we use the
absolute error below:

1
Errorl = max (Jle?[EG") — E"I% + |n? [H.(") — H!1% ) /Energyl,
0<n<N
and

_ L n nin2 L n n 2%
ErrorH_o<f,n<a§1(_1 le2[8: E") =8 E" g+l 2[8: H (") — & H ' 1l 7) /Energyll,

Table2 Relative errors of Energyll for the EC-S-FDTD schemes and the difference of the discrete energyIl
at neighbor level

kx =ky EC-S-FDTDI EC-S-FDTDII
Error of EnergylIl Difference at neighbor level  Error of EnergyIl Difference at
neighbor level
1 2.26e — 4 1.33e — 15 1.95¢ — 4 8.88¢ — 16
5 5.6le -3 5.33e—15 4.85¢ —3 5.32¢e — 15
10 2.20e —2 1.42¢ — 14 1.91e —2 1.07¢ — 14

Paramters: 7 = 1, At = Ax = Ay = 0.01 and different ky = ky,

Table 3 The relative errors for different schemes

N S-FDTD 11 EC-S-FDTDI EC-S-FDTDII
Errorl Errorll Errorl Errorll Errorl ErrorlIl
25 1.08¢ — 2 1.3le — 3 4.46e¢ — 2 2.70e — 3 8.00e — 3 1.12¢ — 3
50 2.806 — 3 33le—4 2.22¢ —2 9.45¢ — 4 2.00e — 3 2.86¢ — 4
100 6.76¢ — 4 8.28¢ — 5 1.12¢ — 2 3.35¢ -4 5.0d4e — 4 7.14e — 5
200 1.69¢ — 4 2.07¢ — 5 5.60e — 3 1.19¢ — 4 1.26e¢ — 4 1.79¢ — 5
400 4.23¢ -5 5.17¢ — 6 2.80e — 3 4.19¢ — 5 3.14e — 5 4.47¢ —6

Parameters: T =1, Ny = Ny = Ny = N, ky =ky =landu =e =1
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Fig.4 aErrorl for different schemes when ky = ky = 1, b Errorl for different schemes when kx = ky =5

where E”, H' and E(¢"), H;(t") denote the numerical solution and the analytic
solution, respectively at time level n. The results in Table 3 indicate that the
accuracies of S-FDTDII and EC-S-FDTDII are both really second order in time
and space for different k; = k. For the EC-S-FDTDI scheme, the data of Errorl
indicates that this method is of first order, but the data of Errorll seems to say
that the convergence is more than first order, i.e., there is “superconvergence”.
Moreover, we test the code for different ky = ky: when k, is small, Fig. 4a
shows that the EC-S-FDTDI scheme is of first order in time; however, when k,
is large, Fig. 4b indicates that the EC-S-FDTDI scheme is close to second order.
In other words, the ES-S-FDTDI scheme is more accurate for the high frequency
components.

3. Unconditionally stable even in the long time computation. Here we set T =
100, and Ax = Ay = Ar = 0.01, i.e., the code runs 10, 000 steps. Figure 5a
indicates that for the EC-S-FDTDI and EC-S-FDTDII schemes, the relative error
of energyl are both controlled under 10~!2 after 10, 000 time steps, and the error
grows linearly. By contrast, the results will blow up for the S-FDTDI scheme and
oscillate from 0 to 107 for the S-FDTDII scheme. And Fig. 5b suggests that
when the time level increases, the error of the solutions also grows linearly. In our
theoretical analysis, the errors are controlled by e’ , which means that the errors
are overestimated in our theoretical analysis for long time computation.

4. Convergence analysis of the divergence-free term. First we want to verify the
identities (110) and (114). Now for the EC-S-FDTDI scheme, we compute the
“errors” of these identities, that is to say we calculate the value

max € E" +8,E" —ﬁ8 S, H!
1<i,j<N-1 RS Y 2
1<n<N
At
- (e((Sngiyj +8yEY, ) — 7@@}12\,)' :
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and for the EC-S-FDTDII scheme, we calculate the value

8 E dy E" Atz(S 3y 0y E"
15?}21)\](71 6( x + Vi, j 6 Xi, j
1<n<N

Af?
_ (e(a EO 48y EO - 5 8y8y EQ{})‘

The results listed in Table 4 indicate that identities (110) and (114) hold. Now we
check the solution of E, and E, whether they are nearly divergence-free. Here
we compute the discrete divergence terms:

Divl = max |e(:EY  +8yE]

1<i,j<N-1 Yioj
0<n<N
and
1
2
n n 2
Div2 = max E E €0 EL . +O,E) ) AxAy
0<n<N hJ s
- I<i<N—-11<j<N-1
-13
(b) 007
— EC-S-FDTD | ' — — EC-S-FDTD | N
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Fig. 5 a The energyl error in the long time computation, b Errorl in the long time computation

Table 4 The errors of identities

(110) and (114) N EC-S-FDTDI EC-S-FDTDII
25 2.96¢ — 14 2.20e — 15
50 9.70e — 14 1.01e — 14
100 3.38¢ — 13 1.58¢ — 14
Parameters: 7 = 1, 200 1.18¢ — 12 279 — 14
Nx =Ny =N =N, 400 4.03¢ — 12 6.47¢ — 14

kx =ky=1landu =€=1
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Table 5 The numerical divergence the EC-S-FDTD schemes

N EC-S-FDTDI EC-S-FDTDII
Divl Div2 Divl Div2
25 1.96e — 1 9.84¢ — 2 4.40e — 3 2.20e — 3
50 9.86e — 2 4.93¢ —2 1.10e — 3 5.48¢ —4
100 4.93¢ -2 247e —2 2.74e — 4 1.37¢ — 4
200 247e -2 1.23¢ —2 6.85¢ — 5 343¢ -5
400 1.23¢ —2 6.20e — 3 1.71e =5 8.56e — 6

Parameters: T =1, Ny = Ny = Ny =N, ky =ky=landpu =e =1

From Table 5, we know that the numerical divergence term of EC-S-FDTDI and
II is first order and second order in time, respectively. Our theoretical analysis
is weaker than the numerical results. From Theorem 22, we only obtain that
Div2 = 0(At).

5.2 Jumped electric permittivity case

Here we assume that the electric permittivity € is piecewise constant on the domain
2 =821U 8§25

€ — 1, in.Ql,
“ |4, in$2,,

where 21 € [0, 3] x [0, 1] and £2; € [5, 1] x [0, 1] and the magnetic permeability
u = 1in £2. Here we can still construct one exact solution to check the numerical
results. Take k, = 8 and let k, be piece-wise constant on the domain £2:

ke — 4,  in £21,
r 16, in.Qz.

1
ke24k,2\ 2 C . . .
And we take w = (= /je : , which is also piece-wise constant on the domain £2. It

is easy to check that E defined by (130) and H, by (131) are also the exact solutions
of the Maxwell equations. Note that the exact solution may be discontinuous where
the electric permittivity € jumps. For example, Fig. 6 shows that the solution E is
discontinuous when ¢t = %

The numerical results are similar as the constant coefficient case. Here we just
show the results of energy conservations (see Tables 6, 7) and error behaviors (see
Table 8), the results show that for the piecewise constant electric permittivity, the
energy conservations still hold in our both schemes, and the convergences of the
EC-S-FDTDI scheme and the EC-SFDTDII scheme are first order and second order
respectively. In fact, here the wave number is some big, then for big step size (N = 50),
the numerical methods do not converge, this is common for the high frequency wave
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Fig. 6 The exact solutions at t = % and y = %
Table 6 Relative errors of
Energyl by the EC-S-FDTD Nx =Ny =N EC-S-FDTDI EC-S-FDTDII
schemes at 7' = 1 for 50 6.77¢ — 15 6.21¢ — 15
piecewise €
100 2.13e — 14 1.71e — 14
200 8.94¢ — 14 8.88¢ — 14
400 2.78e — 13 2.08¢ — 13

Table7 Relative errors of energyll for the EC-S-FDTD schemes and the difference of the discrete energyll

at neighbor level for piecewise €

N EC-S-FDTDI EC-S-FDTDII
Error of Energyll Difference at Error of Energyll Difference at
neighbor level neighbor level
50 S5.11e =2 1.05¢ — 13 4.56e —2 1.31e — 13
100 1.33¢ -2 3.6le — 13 1.20e — 2 3.46e — 13
200 3.30e — 3 2.62e — 12 3.04e — 3 1.65¢ — 12
400 7.90e — 4 5.66¢ — 12 7.62¢ — 4 4.90e — 12
Table 8 The relative errors of the solutions (Errorl and Errorll) for piecewise €
Ny =Ny =N; EC-S-FDTDI EC-S-FDTDII
Errorl Errorll Errorl Errorll
50 1.11 1.06 1.01 0.965
100 3.10e — 1 3.10e — 1 2.74e — 1 2.710e — 1
200 8.34e —2 8.76e — 2 6.90e — 2 6.89¢ — 2
400 2.68¢ —2 3.0le -2 1.72¢ — 2 1.73¢ — 2
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(for example, see [13]). And it is interesting that for the EC-S-FDTDI scheme, the
convergence is higher than first order.

6 Conclusion

In this paper, we developed two efficient energy-conserved splitting finite-difference
time-domain schemes (EC-S-FDTDI and EC-S-FDTDII) for Maxwell’s equations
in two dimensions. From the theoretical analysis and numerical experiments, the
motivations of our schemes are realized that our new EC-S-FDTD schemes are both
energy conserved and have the simplicity and efficiency of computation. By the en-
ergy method, we prove that our EC-S-FDTDII scheme is of second order both in time
and space. Meanwhile, the error behavior of the divergence-free condition is analyzed
clearly and strictly, and the numerical results agree excellently with the theoretical
analysis. Our results are being generalized to the three dimensional cases, and will be
reported in another paper.
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