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Abstract We derive residual based a posteriori error estimates of the flux in ?-norm
for a general class of mixed methods for elliptic problems. The estimate is applicable to
standard mixed methods such as the Raviart-Thomas—Nedelec and Brezzi—-Douglas—
Marini elements, as well as stabilized methods such as the Galerkin-Least squares
method. The element residual in the estimate employs an elementwise computable
postprocessed approximation of the displacement which gives optimal order.

Mathematics Subject Classification (2000) 65N30 - 65N15 - 65N12
1 Introduction

The model problem We consider the mixed formulation of the Poisson equation
with Neumann boundary conditions:

o —Vu=0 in <,
n-oc=0 onTl,

where Q2 is a polygonal domain in R”, n = 2 or 3 with boundary I". Assuming
fQ fdx = 0, we get a well posed problem with a solution u € H'(Q)/R and
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488 M. G. Larson, A. Malqvist

ceV={ve Hdiv,Q2) : n-v = 0on I'}. See [9] for definitions of these function
spaces.

Previouswork Several works present a posteriori error estimates for mixed methods.
In Carstensen [10] an error estimate in the H (div, £2) norm of the flux is presented. The
H (div, €2) norm may be dominated by the div-part which is directly computable. When
it comes to error estimates of the flux in Z? norm of methods using richer spaces for the
flux o than the displacement u, such as Raviart-Thomas—Nedelec (RTN) elements,
there are known difficulties. Braess and Verfiirth presents a suboptimal estimate in
[4]. The reason for the suboptimality is that the natural residual that arises from the
first equation & — Vu = 0 in problem (1.1) may be large if the flux space is richer
than the displacement space. In a recent paper Lovadina and Stenberg [12] derive an
a posteriori error estimate of the LZ-norm of the flux for the RTN based methods
which employs a particular postprocessed approximation U. The proof is based on
a posteriori error analysis of an equivalent method which involves the postprocessed
approximation U.

New contributions We derive a general a posteriori error estimate in the energy
norm which is applicable to most mixed methods including the classical inf-sup
stable elements, RTN elements and the Brezzi—Douglas—Marini (BDM) elements. Our
estimate is closely related to the estimate presented by Lovadina and Stenberg [12],
however, our proof is more general and also reveals the fact that one can use any pie-
cewise polynomial approximation of the displacement when computing the residual.
By a small adjustment of the argument we finally, derive an estimate for the stabili-
zed mixed method of Masud and Hughes [13]. The same technique applies to other
stabilized schemes, for instance the Galerkin least squares method.

Outline We start by presenting finite elements and the discrete version of equation
(1.1) in Sect. 2 then we present the a posteriori error estimates in Sect. 3.

2 Weak formulation and the finite element method

Weak formulation We multiply the first equation in (1.1) by a test function v € V
and integrate by parts. The second equation in (1.1) is multiplied by a test function
wew= LZ(SZ)/R. The weak form reads: find o € V and u € W such that,

(o, v)+w,V-v)=0 forallveV,
2.1

(=V-o,w)=(f,w) forallw e W.
Our aim is to derive a posteriori error estimates of finite element approximations
{X, U} of the exact solution {0, u} in the energy norm ||c — X ||, where || - ||o denotes

the L2(2) norm.

The mixed finite element method Welet C = {K} be a partition of €2 into simplicial
elements of diameter A and define the mesh function, h(x) : @ — R, by letting
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A posteriori error estimates for mixed finite element approximations of elliptic problems 489

h(x) = hg for x € K. We assume that the elements are shape regular, i.e., there is
a constant C such that hg /px < C for all K € K, where pg is the diameter of the
largest ball that can be inscribed in K. We seek an approximate solution in discrete
spaces V), C V and W), C W defined on the partition K. It is well known that for
finite element methods based on the standard weak form (2.1) the discrete spaces
must be chosen so that the inf-sup condition, see [9], is satisfied in order to guarantee
a stable method. Only rather special constructions of the discrete spaces yield stable
methods. In Sect. 3.4 we consider a stabilized mixed finite element method based on
a modified weak formulation which can be based on standard continuous piecewise
polynomials. We summarize some of the most well known choices of stable discrete
spaces on triangles and tetrahedra for a given integer k > 1:

e Raviart-Thomas—Nedelec (RTN) elements, see [14,15],
Viy={ve HWiv, Q) :v|gx € [Pe_1(K)]" ® xPr_1(K) forall K € K},
Wi, ={w e L*(Q)/R:w|g € Pr_1(K) forall K € K}.
e Brezzi-Douglas—Marini (BDM) elements, see [7,8],
Vi ={ve H(iv, Q) :v|g € [P(K)]" forall K € K},
W, ={we L*(Q)/R:w|g € Pr_1(K) forall K € K}.

Here C(2) denotes the space of continuous functions on €2, Px(K) the space of
polynomials of degree k on element K , and Py (K ) the set of homogeneous polynomials
of degree k. For a more complete account of these spaces and the inf-sup condition
we refer to Brezzi—Fortin, [9]. Note, that our a posteriori error analysis does not use
the inf-sup condition explicitly.

The mixed finite element method reads: find ¥ € V;, and U € W), such that:

X,v)+U,V-v)=0 forallveVy, 2.2)
(-V-Z,w)=(f,w) forallwe W,. '
3 A posteriori error estimates
3.1 Preliminaries
We use the following notation for the standard Sobolev norms, || - 5.0 = || - | 55 () =
-1l W3 () S€€ [1], and we let (-, -),, denote the L2(a)) inner product. In the case w = Q
we simplify the notation and write || - [[s.o = || - ls and (-, )@ = (-, -). We shall also

need suitable norms, see [18], on the element Sobolev spaces H 1 (K),H l/ 2(8 K), and
H~'2(3K). For each element K € K we define the following norms

vllf ¢ = IVVIg x + hE lIvlIG x forallv e H'(K), (3.1)
ol p ok = inf  lnllf g forallv e H'2(3K), (3.2)
ne H (K)
n=vondkK
(v, w)yk

lvlll-1/2.0x = forallv e H'2(0K),  (3.3)

up
weH/2(3K) [[lwl 1/2,0K
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490 M. G. Larson, A. Malqvist

where (-, -)5x denotes the duality pairing between spaces H “2(9K)and HY*(HK).
With these definitions we clearly have the inequality

(v, wak < llvll—12.0xllwllj2.0x forallv e H™2(@K) and w € H'/?(3K).

34
Furthermore, we have the following elementwise normal trace inequality.
Lemma 3.1 The following trace inequality holds
lim - oll2 205 < CUIG & +hENV - V15 ), (3.5)

forall v € H(div, K) with constant C independent of h.

Proof To prove (3.5) we first derive the estimate on the reference element and then
use a scaling argument to show uniformity in the size of the element 4 g . Let K be the
reference element with boundary 9 K and exterior unit normal 72. To prove the estimate
on the reference element we employ Green’s formula, see [11], to get the identity

(m-v,w)yg = (v, V)g +(V-v,w)g forallv e H(div, K) and e HY(K).
(3.6)
Estimating the right hand side using Cauchy-Schwartz inequality we have

(79, D)z < (B + IV 312 Ndlz, (3.7)

where we divided and multiplied by a scaling factor of h;. Since (3.7) holds for all
e H'(K) we get, for any i1 € H2K),

(-, Wyp < (IB1% + RV 212> inf _ lDllig (3.8)
we H (K)
#=ondkK

= (I91% + ARV - 312 NIl .05 3.9)

Dividing by |||zz]|| 12,08 and taking the supremum over all i1 € H1/2(8 I?) we obtain
the trace inequality (3.5) on the reference element K.

Given an element K € I, let F : R” — R” be an affine mapping of the form
F X = b+ B X, where B is an invertible n x n matrix with positive determinant, b € R",
and K = FK. Furthermore, let | Bll = sup,cgre |Bx||/llx]| be the standard Euclidian
matrix norm. We then have the following bounds || B|| < hk /pg and || Bl < hg/pk
and thus ||B|| ||B~!|| < C as a consequence of shape regularity.

Next we define a mapping F : H' (K) — H'(K)by v = F0 =00 F~!. We then
have the estimate [0, x < C(det B)~V/?||B||" |v|n.x,form = 0, 1, see [9], and thus
we conclude that

91l & < C(det BB fIlvlll1 & (3.10)

Taking the appropriate infimum on both sides of (3.10) we obtain

N7 2.5 < C(det BY 2B Il 2.0k - (3.11)
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A posteriori error estimates for mixed finite element approximations of elliptic problems 491

To transform vector valued functions we use the Piola transform P : H (div, K ) —
H(div, K) defined by Pv = (detB)"'Bv o F~'. We then have the identity
(n-v,wyx = (N -V, W),z for v = Pv and w = Fw. Furthermore, we have
the estimates

Pz < (et B! 2B~ oIk, IV-Dlg < detB)?|V-v]g,  (3.12)

see [9]. Using these results we obtain the following estimate

(n-v,nsx
lllm-vlll-1/2,60k = sup —— (3.13)
ner' 2@k Mnlll2ex
<CWet B V2B sup LMok (3.14)
HeH/2(3K) |||77|||1/2a]?
< C(det B)"2|BIlI7 -l 555 (3.15)
Finally, we can prove the desired estimate (3.5) on element K as follows
llm - vlll 12,0k < Cdet BY 2IBIIE DI, 1095 (3.16)
< C(det B) 2| B|[([0]1% + h%IIV - 9] %)"/? (3.17)
< C(det B)~"||B||(det B)'/*| B~
2 2 2 1/2
x (Il + GBIV - vlk) (3.18)
< C(lvlix +hx IV -vl5)"%, (3.19)

where we used: (3.15) in (3.16), the trace inequality (3.5) on the reference element
K in (3.17), the estimates for the Piola transform (3.12) in (3.18) together with the
observationthat | V-v| < |B~'||||B||[|V-v| since | = ||I|| < ||[B~| || B||, and finally
in (3.19) we used the estimate || B|| < hg /pg toconcludethathg|| Bl < (hg/pg)hk.

O

3.2 Estimate for standard mixed methods

Here we present a general a posteriori error estimate in the energy norm |l — X ||o
involving a piecewise polynomial function Q, which may be obtained by postproces-
sing U. The possibility to replace U by Q is important since it leads to a posteriori
error estimates of optimal order. We are not interested in tracking the constants in the
error estimates.

Theorem 3.1 For arbitrary Q € @y PI(K), withl > 0and f € L2() it holds,

lo =213 =€ > (kIS + V- ZId g +IZ = VOIF x +hg 110110k )
Kek
(3.20)
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492 M. G. Larson, A. Malqvist

where the jump denoted by [-] is the difference in function value over a face in the
mesh.

Proof Starting with the left hand side we have

lo —Z|f=(-%,0 - %) (3.21)
=(0,0 -X)—(X¥,0 - %) (3.22)
=—wu,V-(c—-X)—(X,0 — %) (3.23)

=—w—-0.V-(6-X)+(Q,-V-(6-%) - (X0 %) (3.24)

=w—-0,f+V-I)+ D (0, -V (6 — X))k — (T,06 — )k)
KekK
(3.25)

=141 (3.26)

We treat the two terms in equation (3.26) separately, beginning with /. From the second
part of equation (2.2) we have the Galerkin orthogonality property (f + V- X, w) =0
forallw € Wj,. Let P, denote the L projection onto Wj,. Using Galerkin orthogonality
(2.2) to subtract the projection P, (1 — Q) € W), of (u — Q) followed by the projection
error estimate ||v — Ppv]lo.x < Chkl|Vvllo,x we obtain

I<|(f+V-Z,u—- Q) (3.27)
< Nh(f+ VD)ol @ =0 = Pu(u— Q))lo (3.28)
<Clh(f +V D)oV - Qlox (3.29)
=Cllh(f +V-D)olle —Z+Z - VQlox (3.30)
< 32£||h(f + V-5 + %||a - 25+ %nz —VOl§ k- (3.31)

Here, and below, || - [lo.x denotes the broken L2-norm defined by ||U||(2),IC =

D kek ||v||% x- We now turn to the second term // in equation (3.26) and start with
integration by parts,

I = z (Q.=V-(6 —X)kx — (X,0 — X)k) (3.32)

KeK

= Z (VQ.0 —X)k —(Q.n- (0 — X))ok — (X,0 — X)k) (3.33)

Kek
= Z(VQ—Z,G—E)—(Q,n-(G—E)MK (3.34)
Kek
1
<IVQ -~ Elgc+ glo —Zl5+| D (Qn-(0 —Eak|. (335

Kek
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A posteriori error estimates for mixed finite element approximations of elliptic problems 493

Next we note that > g (v,n - (6 — X))k = (v,n- (0 — X))y = 0 for all
v e H'(Q), since ¢ — X € V. This identity follows from using Green’s formula and
decomposing the integral over €2 into a sum of integrals over the elements and then
using Green’s formula again. Thus we can subtract an arbitrary function v € H'(R)
inthe term > g (Q.n- (60 — X))ok = D gexc(Q —v,n- (6 — X))yk. We then
have the estimate

2 ! 2 ~
Il < IIVQ—ZIIO,;C+ZIIG—ZIIO+ inf Z(Q—wn'((f—z))ak - (3.36)

veH (@) £

We now use inequality (3.4) followed by the trace inequality (3.5), to estimate the sum
in equation (3.36) as follows

inf —v,n-(cd—X 3.37
vEHl(Q)KZ}:C<Q ( )k (3.37)
< inf —v n-(oc —X 3.38
il Z 10 = vlllipaklin - (@ — )1/ (3.38)

1/2 12
< inf (ZIIIQ v|||1/23K) (Z|||n.<a—z>|||2_1/2,a,<) (3.39)

veH (Q)

Kek
12
inf —v
UeHl(g)(an |||1/23K)
1/2
x (Z (||a SR g AV (6 — D)2 K)) (3.40)
Kek
1/2
f Z e - vii} (1o~ =13 + 100 +v-21) "
n — v g — .
eHl(sz) 1/2,0K 0 0
(3.41)
3C?

=<

1 2 1 2
- %'”Q‘“'”l/zakﬂ” = 20§+ S I(f + V- D).

(3.42)

Together equation (3.36) and equations (3.37-3.42) give a bound of the second term,
11, in equation (3.26),

1 1
1= IVQ =2+ 5 llo = Zllg+ S 1A + V- D)5
2

3C .
+—— inf > 10—l k- (3.43)

2 veH!(Q) e
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494 M. G. Larson, A. Malqvist

We combine equation (3.31) and equation (3.43) to get,

3 3
[+11=3IVQ =2 + Zllo = I+ Cllalf + V- D)

c?
+—— inf > Q= vlI} 00k (3.44)
Q)KEIC

To estimate the last term on the right hand side in equation (3.44) we employ the tech-
nique of Lemma 4 in [3]. For completeness we include the details of the proof. We let N/
be the set of nodes in the mesh, {¢}; s be the lowest order Lagrange basis functions,
w; = supp(¢i), CP; = {ve C(w) : vk € PI(K), forall K € K with K C w;},
i.e., continuous piecewise polynomials of degree / on w;,and C Py = ®;c i C P C
H'(Q).

Using that CP; ¢ H'(Q) followed by the inverse inequality || Q — v|||%/2,3K <

C h;l o — v||%’ 9k » Which holds since both v and Q are piecewise polynomials, we
get

A

inf v inf — ||}
Z Q= vl 5k < Uecplgcnm 12,0
€

veH!(Q)

A

C inf W 10 = vlIZ . .
Ué%P,Z x 10 =vlgsk- (345
Kek

We write v =Y ;e @ivi € C P and proceed with the estimate as follows

10 = vl§ sk = D (Q —v. $i(Q — vi))ak - (3.46)
ieN
< > 16,20 = vlo.ax lig;*(Q — v)llo.ax. (3.47)
ieN
172
<110 — vlo.ax (Z g0 — v,~)||3,ak) : (3.48)
ieN

where we used that {¢;};cns is a partition of unity. Dividing inequality (3.48) by
lQ — vllo.ax and combining with estimate (3.45) we arrive at

inf ZIIIQ v|||1/23K<Z inf ZhK 19,70 — v 5. (3.49)

H(Q eCP
ve KE’C 1i

Next we employ the following inequality

inf > 62 — w3 <€ D e P 101130k (3.50)

v;eCPy
! b Kek KeK
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We return to the proof of this inequality below. Together (3.49) and (3.50) give

inf Z 10 = vl pax = C D D hg'lle; 2 1011345

UEHI(Q) KeKieN

=C > 10115 - (3.51)

Kek

again we used that {¢; };c A/ 1S a partition of unity.
Combining equation (3.43) and (3.51) we get

3 3 _
I+11 = SIVO=2[§ x+ 1o —ZI5+ClIA(f+V-D)G+C D b 11115 ok
Kel
(3.52)

Since I + 11 = |o — Z||(2) from equations (3.21-3.26) we just need to subtract
3/4llc — X ||% from both sides of equation (3.52) to prove the theorem.

It remains to prove inequality (3.50). We first note that it follows from shape regu-
larity that there are constants ¢ and C such that ¢ < hg/hg < C for all elements
K, K’ € K such that K, K’ C ;. We may therefore conclude that there is an h;
and constants ¢ and C such that ch; < hg < Ch; for all K € K with K C w;.
Next we observe that it also follows from shape regularity that there is only a finite
number, say N, of possible element configurations in w;. Let 6]-, j=1,...,N.
be the corresponding reference configurations and let j(i) denote the index of the
reference configuration corresponding to patch w;. Let F,, : @ji) — w; be a
CO-diffeomorphism such that F,; | is affine. Let £ denote the set of edges or faces in
the mesh. For each £ € £, E C 0K, K C w; welet F,, g = F,, |5 with correspon-
ding Jacobian B, g. Using shape regularity it follows that there are constants ¢ and
C such that ch! 1< detB,, g < Ch} ~! (where n is the spatial dimension).

With these preparations accomplished we begin with the estimate as follows

_ 2 — 2
Sl 2@ - 3o = D kgt D e P@-wly  (3.53)
Kek Kek EeE,ECOK
= > hg' > detB, g0 -] 5
Kel EcE,ECOK
(3.54)

/D D VN i (R PRI

KeK EcE,ECOK

where we splitted the integral over the element boundaries to edge or face contributions
in (3.53), mapped to the reference configuration in (3.54), and used the estimates
he' < Ch;'and detB,, p < Ch!~"in (3.55).
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Next we have the following inequality

inf > > P @-w <CcY. > 16710113 £

UECPL kX peé Feak Kek Ec€,ECOK
(3.56)

for all Q € G}KGK KCo; PI(K) and i € N. To prove (3.56) we observe that if the
right hand side is zero then Q is continuous on ®; and thus we can take v; = Q and
therefore the left hand side is also zero and then the inequality follows by using finite
dimensionality of the discrete space @y . K.KCw; P;(I? ) together with the fact that
there are only a finite number N, of reference configurations.

Using (3.53-3.55) together with (3.56) and mapping back to the actual configuration
we obtain

D@ = vl ek <CHITEY. D 19,1010 £ (3.57)

Kek KeK EcE,ECOK

SOy D (detBup) 19,101 £
KeK EcE,ECOK
(3.58)

<c > > 191 g (3.59)

Kek EeE,ECAK

where we finally used the estimates (dethi,E)_l < Chl._("_l) and h; < Chg in
(3.59). This estimate concludes the proof of (3.50). O

3.3 Estimate based on postprocessing

We now turn to the question of how to choose Q in Theorem 3.1. We know that
choosing Q = U results in a suboptimal estimate of the energy norm error, [4]. A
natural idea is to choose Q to be a postprocessed version of U. There have been several
works [5,8,12,16,17] following Arnold and Brezzi [2], published in the mid eighties,
on postprocessing methods where information from the calculated flux X is used to
compute an improved approximation of u.

We focus on the method considered in Lovadina and Stenberg [12] and show that
Theorem 3.1 directly gives the estimate presented in [12]. We denote the postprocessed
version of U by U*. To define U™ we introduce some notations. For all K € I we let
Pyk: CLA(Q) — Wi,k be the L? projection onto W), g, where W, k is the restriction
of W}, onto K. Furthermore, we let Wh x denote the following spaces: Wh x = P(K)
for RTN elements and W' nx = P (K ) for BDM elements.

Definition 3.1 (Postprocessing method) Find U* such that U*|x = Ug € W) ¢
where UF is defined by
Py xUg =Ulk, (3.60)

and
(VU*, Vo)g = (Z,Vv)g forallve (I — Ppg)W, k. (3.61)

@ Springer



A posteriori error estimates for mixed finite element approximations of elliptic problems 497

To compute U* we need to solve one small problem for each element and thus the
total cost is very low.

Corollary 3.1 Given f € L*() it holds,

lo =213 = C X (W& S+ V- ZIf x + 1% = VU I ¢ + g I [U"] Bk )

Kek
(3.62)
where U* is taken from Definition 3.1.
Proof The proof follows directly from Theorem 3.1 with Q = U*. O

Remark 3.1 In Corollary 2.8 on page 1667 in [12] the following a priori estimate of
the error is presented for BDM and RTN elements,

lo — | + llu — Ul < Ch*uliy> for BDM,

(3.63)
lo — 2| + lu — U*lli.x < Ch*|ulgy1 for RTN,
where |- | is the H¥(€2) semi norm, see [1], and || - | 1.x is the broken H' norm defined
by ||v||%’ © = D kek ||v||%’ - These estimates show that the postprocessed function
U* gives optimal order estimates. Further in Theorem 3.1. on the same page in [12]
the critical term in the error estimate we present in Corollary 3.1, | X — VU* 1%, is
also proven to be of optimal order.

3.4 Estimate for stabilized methods

Here we extend our estimate to stabilized mixed methods, in particular, we consider
the recent method presented in Masud and Hughes [13]. Stabilized methods are based
on a modified weak formulation which yields a stable method for standard conti-
nuous piecewise polynomial approximations, e.g. piecewise linear functions for both
displacement and flux.

The methodreads: find X € Vj;, = {v € [C(2)]" : v|g € [Px(K)]" for allK € K}
andU e W, ={v e C(R2) : v|g € P(K) forall K € K}, with k, [ > 1 such that,

(V- X, w4+ &, v+ U,V-v)— %(Z —VU,v+Vw) =(f,w), (3.64)

for all v € V5, and w € Wj. Note, in particular, that in this method the order of
polynomials in Wy may be higher than in V, and thus in that case we do not expect
post processing of the pressure to be necessary. Applying the same ideas as in Theorem
3.1 to this stabilized method we obtain the following a posteriori error estimate. The
argument may be modified to cover other stabilized methods such as the Galerkin least
squares method.

Proposition 3.1 For the stabilized Galerkin method defined by (3.64) the following a
posteriori error estimate holds,
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498 M. G. Larson, A. Malqvist

lo—Z3<c> (h%<||f+v S Y py) - vuug,,{). (3.65)
KekC

Proof Using the same arguments as in equations (3.21-3.25) in the proof of Theorem
3.1, we obtain the following error representation formula,

lo—ZIf=w—-Q.f+V -2)+(Q,-V-(c —%) — (T, — %)  (3.66)
—Ww=0,f+V -2+ D> (0, -V-(6 -k — (T,0 - )

Kek
(3.67)

=1+1I. (3.68)

Using the same technique as in the proof of Theorem 3.1, i.e. by combining equations
(3.43) and (3.51), we can estimate the second term /[ as follows

1 1 _
I <VQ =2l + 5o = ZI§ + S1h(f + V-G +C > hig QI o
Kek
(3.69)

We turn to the first term 7 in (3.68). We let 7, : L2(2) — W), be the Scott-Zhang
interpolant, see [6], and note, by letting v = 0 in (3.64), that we have the Galerkin
orthogonality property

(f+V~Z,w):—%(E—VU,Vw), (3.70)

for all w € W),. By choosing w = m;,(u — Q) in equation (3.70) we get the following
identity,

1
(f+V~E,nh(u—Q))=—§(E—VU, Vrn(u — Q)). (3.71)
We then have,

I=w—0Q,f+V-X) (3.72)

1
=w—-Q0-mu—-0),f+V- X - 5(2 — VU, Vmu(u—Q)),  (3.73)

using equation (3.71). In the first term we split the contributions over the elements
and use the Cauchy—Schwarz inequality. In the second term we only use the Cauchy—
Schwarz inequality,

1< > 1h~ = Q — i — Q)llokllh(f + V- D)llox

Kek

1
+5 1% = VUlol V@ = Q)llo- (3.74)
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By using a standard interpolation error estimate for the Scott-Zhang interpolant we
get,

1
I1<C Z ||V(“_Q)||O,K||h(f+v'z)||0,K+§||Z—VU||0||V7Th(“—Q)”0- (3.75)
Kek

We proceed by using the Cauchy-Schwarz inequality for sums and the identification
o = Vu,

1/2 172
I< c(z lo — VQH%,K) (Z lh(f + V- E)ll%,K)

Kek Kek

1
5 1% = VUlol V@ = Q)llo- (3.76)

Subtracting and adding ¥ to the first term and using the inequality ab < a*/(2¢) +
eb? /2 we may choose € such that,

1 2 1 2 2
1< 7IZ=VOlc+ 7o = Zlg+C > Ih(f + V- DG

Kek
+%IIE — VUllolIVrn(u — Q)llo- (3.77)
At this point we collect all terms from the estimates (3.77) of I and (3.69) of I,
[+11=C> (uh(f +V-D)§x +hy' ||[Q]||3,3K) (3.78)
Kek

5 3 1
+1IZ = VO + {llo = ZIf + +3 I = VU oI Vra(u = Q)lo.
(3.79)

Next we choose O = U and observe that the jump terms vanish since U is continuous.
We also take advantage of the fact that 5j, is stable in H 1

I+11<C Z Ih(f + V- D)5« (3.80)
Kek

5 3
+ 1% = VUl + Zllo = 25+ CIZ = VU ollo = VUllo.
(3.81)
Again we add and subtract X in the last term and use the same trick as above to get,

7
lo=215 = 1+11 = C 3 Ih(f+V- D)} x +CIZ=VU 5+ llo =I5, (3.82)
Kek

and thus the proposition follows immediately by subtracting 7/8|lc — X ||% from both
sides. O
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