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Abstract Two-grid finite volume element discretization techniques, based on two
linear conforming finite element spaces on one coarse and one fine grid, are presented
for the two-dimensional second-order non-selfadjoint and indefinite linear elliptic
problems and the two-dimensional second-order nonlinear elliptic problems. With the
proposed techniques, solving the non-selfadjoint and indefinite elliptic problem on the
fine space is reduced into solving a symmetric and positive definite elliptic problem on
the fine space and solving the non-selfadjoint and indefinite elliptic problem on a much
smaller space; solving a nonlinear elliptic problem on the fine space is reduced into
solving a linear problem on the fine space and solving the nonlinear elliptic problem
on a much smaller space. Convergence estimates are derived to justify the efficiency
of the proposed two-grid algorithms. A set of numerical examples are presented to
confirm the estimates.

Mathematics Subject Classification (2000) 65N15 · 65N30

1 Introduction

The finite volume element method (FVEM) is a discretization technique for the partial
differential equations, especially for those arising from physical conservation laws
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178 C. Bi, V. Ginting

including mass, momentum, and energy. Because this method possess the crucial
physical conservation properties of the original problem locally, it is popular in com-
putational fluid mechanics. In the past several decades, many researchers have studied
this method extensively and obtained some important results. We refer to the mono-
graph [20] for the general presentation of this method, and to [2–4,7–11,14,16,18,19,
23,26,28] and the reference therein for details.

For the second-order non-selfadjoint and indefinite linear elliptic problems,
Mishev [23] has considered the FVEM in the linear conforming finite element space
and established the error estimate in the H1-norm; Wu and Li [28] have obtained the
H1 superconvergence and L p(1 < p ≤ ∞) error estimates between the solution of
the FVEM and that of the finite element method (FEM).

Li [19] have considered the finite volume element method for a nonlinear elliptic
problem and obtained the error estimate in the H1-norm. Recently, Chatzipantelidis,
Ginting and Lazarov [9] have studied the finite volume element method for a nonlinear
elliptic problem, established the error estimates in the H1-, L2- and L∞-norms and
proposed a Newton’s method for the approximation of the finite volume element
solution.

On the other hand, the two-grid finite element method based on two finite element
spaces on one coarse and one fine grid was first introduced by Xu [29–31] for the
nonsymmetric and nonlinear elliptic problems. Later on, the two-grid method was
further investigated by many author, for instance, Xu and Zhou [32] for eigenvalue
problems, Axelsson and Layton [1] for nonlinear elliptic problems, Dawson, Wheeler
and Woodward [13] for finite difference scheme for nonlinear parabolic equations,
Layton and Lenferink [17] and Utnes [27] for Navier–Stokes equations, Marion and
Xu [22] for evolution equations.

In this paper, based on two linear conforming finite element spaces VH and Vh

on one coarse grid with grid size H and one fine grid with grid size h, we consider
the two-grid finite volume element discretization techniques for the non-selfadjoint
and indefinite linear elliptic problems and the nonlinear elliptic problems. With the
proposed techniques, solving the non-selfadjoint and indefinite problem on the fine
space is reduced to solving a symmetric and positive definite problems on the fine
space and the non-selfadjoint and indefinite elliptic problems on a much smaller space;
solving a nonlinear elliptic problem on the fine space is reduced into solving a linear
problem on the fine space and solving the nonlinear elliptic problem on a much smaller
space. This means that solving a nonlinear elliptic problem is not much more difficult
than solving one linear problem, since dimVH � dimVh and the work for solving
the nonlinear problem is relatively negligible. If h = O(H2) is chosen, we show
that the convergence rate of those two-grid methods are optimal in the H1-norm and
sub-optimal in the W 1,∞-norm.

We shall use the standard notation for the Sobolev spaces W m,p(Ω) with the norm
|| · ||m,p,Ω and the seminorms | · |m,p,Ω [12]. In order to simplify the notations, we
denote W m,2(Ω) by Hm(Ω) and skip the index p = 2 and Ω when possible, i.e.,
||u||m,p,Ω = ||u||m,p, ||u||m,2,Ω = ||u||m, ||u||0 = ||u||. The same convention is
used for the semi-norms as well.

The rest of this paper is organized as follows. In Sect. 2, we describe the FVEM
for the non-selfadjoint and indefinite linear elliptic problem. Section 3 contains the
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Two-grid FVEM for linear and nonlinear elliptic problems 179

two-grid finite volume element method with error analysis for the non-selfadjoint and
indefinite linear elliptic problem. Section 4 is devoted to the FVEM for the nonlinear
elliptic problems. The two-grid finite volume element method and error analysis for
the nonlinear elliptic problem are established in Sect. 5. Finally, we give a set of
numerical examples to confirm the a priori estimates.

Throughout this paper, the letter C denotes a generic positive constant independent
of the mesh parameter and may be different at its different occurrences.

2 Finite volume element method for linear problem

In this section, we consider the FVEM for the following two-dimensional second-order
non-selfadjoint and indefinite linear elliptic problem

{
−∇ · (a∇u) + b · ∇u + cu = f, in Ω,

u = 0, on ∂Ω,
(2.1)

where Ω ⊂ R2 is a bounded convex polygonal domain with the boundary ∂Ω . We
assume that a, b and c are smooth functions and a = (ai j (x))2

i, j=1 is a symmetric and
uniformly positive definite matrix in Ω , i.e., there exists a positive constant α such
that

α|ξ |2 ≤ ξ T a(x)ξ, ∀ξ ∈ R2, ∀x ∈ Ω.

As in [31], we introduce the following linear operator

Lv = −∇ · (a∇v) + b · ∇v + cv,

and assume that L : H1
0 (Ω) → H−1(Ω) is an isomorphism, where H−1(Ω) is the

dual of H1
0 (Ω). A simple sufficient condition for this assumption is that c(x) ≥ 0.

The following well-known regularity result can be found in Lemma 2.1 in [31] and
[15]:

If u ∈ H1
0 (Ω) and Lu ∈ Lq(Ω) for 1 < q ≤ 2, then u ∈ W 2,q(Ω) and

||u||2,q ≤ C ||Lu||0,q ,

for some positive constant C depending on q, the coefficients of L and the domain Ω .
For later analysis of convergence of the proposed two-grid FVEM, we further

assume that ai j ∈ W 2,∞(Ω), 1 ≤ i, j ≤ 2, b = (b1(x), b2(x)), bi ∈ W 1,∞(Ω),

i = 1, 2, and c ∈ W 1,∞(Ω).

The weak formulation of the problem (2.1) is to find u ∈ H1
0 (Ω) such that

a(u, v) = ( f, v), ∀v ∈ H1
0 (Ω), (2.2)
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180 C. Bi, V. Ginting

where (·, ·) denotes the L2(Ω)-inner product and the bilinear form a(·, ·) is defined
by

a(u, v) =
∫
Ω

((a∇u) · ∇v + b · ∇uv + cuv) dx, ∀u, v ∈ H1
0 (Ω).

We assume that Th is a quasi-uniform triangulation of Ω with h = max{hK },
where hK is the diameter of the triangle K ∈ Th [12]. Based on this triangulation,
we consider a finite element discretization of (2.2), in the standard conforming finite
element space of piecewise linear functions,

Vh = {v ∈ C(Ω) : v|K is linear for allK ∈ Th, v = 0 on ∂Ω}.

The FEM for the problem (2.2) is to find uE
h ∈ Vh such that

a(uE
h , vh) = ( f, vh), ∀vh ∈ Vh, (2.3)

where

a(uh, vh) =
∫
Ω

((a∇uh) · ∇vh + b · ∇uhvh + cuhvh) dx, ∀uh, vh ∈ Vh . (2.4)

Schatz [25] has proved that for sufficiently small h, the problem (2.3) has a unique
solution uE

h ∈ Vh .
In order to describe the FVEM for solving problem (2.1), we construct a dual

partition T ∗
h based upon the original triangulation Th whose elements are called the

control volumes. We construct the control volume in the same way as in [9,14,16,20].
Let zK be the barycenter of K ∈ Th . We connect zK with line segments to the midpoints
of the edges of K , thus partitioning K into three quadrilaterals Kz , z ∈ Zh(K ), where
Zh(K ) are the vertices of K . Then with each vertex z ∈ Zh = ∪K∈Th Zh(K ) we
associate a control volume Vz , which consists of the union of the subregions Kz ,
sharing the vertex z. Thus we finally obtain a group of control volumes covering the
domain Ω, which is called the dual partition T ∗

h of the triangulation Th . We denote
the set of interior vertices of Zh by Z0

h .
We call the partition T ∗

h regular or quasi-uniform, if there exists a positive constant
C > 0 such that

C−1h2 ≤ meas(Vz) ≤ Ch2, ∀Vz ∈ T ∗
h .

The barycenter-type dual partition can be introduced for any finite element
triangulation Th and leads to relatively simple calculations. Besides, if the finite
element triangulation Th is quasi-uniform, then the dual partition T ∗

h is also quasi-
uniform.
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Two-grid FVEM for linear and nonlinear elliptic problems 181

We formulate the FVEM for the problem (2.1) as follows. Given a vertex z ∈ Zh,

integrating (2.1) over the associated control volume Vz and using Green’s formula, we
obtain

−
∫

∂Vz

(a∇u) · nds +
∫
Vz

(b · ∇u + cu)dx =
∫
Vz

f dx, (2.5)

where n denotes the unit outer-normal of the domain under consideration. It should
be noted that the above formulation is a way of stating that we have an integral
conservation form on the dual element.

The finite volume element approximation of (2.1) is defined as a solution uh ∈ Vh

satisfying the equation

−
∫

∂Vz

(a∇uh) · nds +
∫
Vz

(b · ∇uh + cuh)dx =
∫
Vz

f dx . (2.6)

The FVEM is viewed as a perturbation of the FEM with the help of an interpolation
operator I ∗

h : Vh → V ∗
h , defined by

I ∗
h vh =

∑
z∈Z0

h

vh(z)Ψz,

where

V ∗
h = {v ∈ L2(Ωh) : v|Vz is constant, ∀z ∈ Z0

h; v|Vz = 0,∀z ∈ ∂Ωh},

and Ψz is the characteristic function of the control volume Vz .
The finite volume element problem (2.6) can be rewritten in a variational form

similar to the finite element problem. For an arbitrary I ∗
h vh , we multiply the integral

in (2.6) by vh(z) and sum over all z ∈ Z0
h to obtain

ah(uh, I ∗
h vh) = ( f, I ∗

h vh), ∀vh ∈ Vh, (2.7)

where ah(·, I ∗
h ·) is defined by, for any uh, vh ∈ Vh,

ah(uh, I ∗
h vh) = −

∑
z∈Z0

h

∫
∂Vz

(a∇uh) · nI ∗
h vhds

+
∫
Ω

(b · ∇uh + cuh)I ∗
h vhdx . (2.8)

Mishev [23], Wu and Li [28] have proved that, for sufficiently small h, the problem
(2.7) has a unique solution uh ∈ Vh, and obtained the error estimate in the H1-norm

||u − uh ||1 ≤ Ch||u||2. (2.9)
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182 C. Bi, V. Ginting

The following Lemma 2.1, also proved in Wu and Li [28], gives the superconver-
gence estimate in the H1-norm between the solution of the FVEM and that of the
FEM.

Lemma 2.1 ([28]) Assume that uE
h and uh are the solutions of (2.3) and (2.7) respec-

tively. For sufficiently small h, we have

||uh − uE
h ||1 ≤ Ch2|| f ||1. (2.10)

The following error estimate in the L2-norm for the FEM for the problem (2.1) is
obtained in [6],

||u − uE
h ||0 ≤ Ch2||u||2. (2.11)

From (2.11) and Lemma 2.1, we get the following error estimate in the L2-norm for
the FVEM for the problem (2.1),

||u − uh ||0 ≤ Ch2(||u||2 + || f ||1). (2.12)

The following error estimates in the L∞- and W 1,∞-norms for the FEM for the problem
(2.1) are also obtained in [6],

||u − uE
h ||0,∞ ≤ Ch2| ln h|||u||2,∞. (2.13)

||u − uE
h ||1,∞ ≤ Ch||u||2,∞. (2.14)

From the inverse inequality [6,12] and Lemma 2.1, we get the following error estimates
in the L∞- and W 1,∞-norms for the FVEM for the problem (2.1),

||u − uh ||0,∞ ≤ Ch2| ln h|(||u||2,∞ + || f ||1). (2.15)

||u − uh ||1,∞ ≤ Ch(||u||2,∞ + || f ||1). (2.16)

The interpolation operator I ∗
h has the following properties [8,28].

Lemma 2.2 Let K ∈ Th, e be the edge of K . For any vh ∈ Vh, we have

∫
K

(vh − I ∗
h vh)dx = 0, (2.17)

∫
e

(vh − I ∗
h vh)ds = 0, (2.18)

||vh − I ∗
h vh ||0,q,K ≤ ChK |vh |1,q,K , 1 ≤ q ≤ ∞. (2.19)

In addition in [8], the following Lemma 2.3 was derived.
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Two-grid FVEM for linear and nonlinear elliptic problems 183

Lemma 2.3 Let e be the edge of a triangle K ∈ Th . Then for any u ∈ W 1,p(K ), there
exists a constant C independent of hK such that

∣∣∣∣∣∣
∫
e

u(vh − I ∗
h vh)ds

∣∣∣∣∣∣ ≤ ChK |u|1,p,K |vh |1,q,K , ∀vh ∈ Vh,
1

p
+ 1

q
=1. (2.20)

For the subsequent analysis, we introduce the following bilinear forms

a(2)(uh, vh) =
∫
Ω

(a∇uh) · ∇vhdx, ∀uh, vh ∈ Vh, (2.21)

a(2)
h (uh, I ∗

h vh) = −
∑
z∈Z0

h

∫
∂Vz

(a∇uh) · nI ∗
h vhds, ∀uh, vh ∈ Vh . (2.22)

Denote the bilinear forms of the lower terms of (2.4) and (2.8) by

l(uh, vh) = (a − a(2))(uh, vh) =
∫
Ω

(b · ∇uhvh + cuhvh)dx, (2.23)

lh(uh, I ∗
h vh) = (ah − a(2)

h )(uh, I ∗
h vh) =

∫
Ω

(b · ∇uh + cuh)I ∗
h vhdx . (2.24)

The following Lemma 2.4 is proved in [14,28].

Lemma 2.4 For any uh, vh ∈ Vh, we have

a(2)(uh, vh) − a(2)
h (uh, I ∗

h vh) =
∑

K∈Th

∫
∂K

(a∇uh) · n(vh − I ∗
h vh)ds

−
∑

K∈Th

∫
K

(∇a · ∇uh)(vh − I ∗
h vh)dx .

(2.25)

The following Lemma 2.5 characterizes the difference between the bilinear form
of the FVEM and that of the FEM which plays the key role in the subsequent analysis.

Lemma 2.5 For any uh, vh ∈ Vh, u ∈ H2(Ω), p ≥ 1, 1/p + 1/q = 1, we have

|a(2)(uh, vh) − a(2)
h (uh, I ∗

h vh)| ≤ Ch2(h−1|u − uh |1,p + ||u||2,p)|vh |1,q , (2.26)

|l(uh, vh) − lh(uh, I ∗
h vh)| ≤ Ch2||uh ||1,p|vh |1,q . (2.27)
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Proof By observing that any interior edge e is a common side of two element with
opposite outer unit normal vectors on the edge, we deduce that

∑
K∈Th

∑
e⊂∂K

∫
e

((a − a(me))∇u) · n(vh − I ∗
h vh)ds = 0, (2.28)

where me is the midpoint of the edge e.
Noting that ∇uh is a constant vector on K , from (2.28), Lemma 2.2 and Lemma 2.4,

we have

a(2)(uh, vh) − a(2)
h (uh, I ∗

h vh)

=
∑

K∈Th

∑
e⊂∂K

∫
e

((a − a(me))∇(uh − u)) · n(vh − I ∗
h vh)ds

+
∑

K∈Th

∫
K

(∇a(zK ) − ∇a) · ∇uh(vh − I ∗
h vh)dx

=
∑

K∈Th

(IK + I IK ). (2.29)

It follows from Lemma 2.3 that

|IK | ≤ Ch
∑

e⊂∂K

|(a − a(me))∇(uh − u)|1,p,K |vh |1,q,K . (2.30)

Further, a simple calculations gives

|(a − a(me))∇(uh − u)|1,p,K ≤ C |u − uh |1,p,K + Ch||u||2,p,K . (2.31)

From (2.30) and (2.31), we get

∣∣∣∣∣∣
∑

K∈Th

IK

∣∣∣∣∣∣ ≤ Ch2(h−1|u − uh |1,p + ||u||2,p)|vh |1,q . (2.32)

By Hölder inequality, Lemma 2.2 and the triangle inequality,

∣∣∣∣∣∣
∑

K∈Th

I IK

∣∣∣∣∣∣ ≤ Ch2|uh |1,p|vh |1,q ≤ Ch2(|u − uh |1,p + |u|1,p)|vh |1,q . (2.33)
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The desired result (2.26) is obtained from (2.29), (2.32) and (2.33). The proof of (2.27)
is easy. Noting that uh is a linear function over K and from Lemma 2.2, we have

|l(uh, vh) − lh(uh, I ∗
h vh)| =

∣∣∣∣∣∣
∑

K∈Th

∫
K

[(b − b(zK ))∇uh + (c − c(zK ))uh

+ c(zK )(uh − uh(zK ))](vh − I ∗
h vh)dx

∣∣∣∣∣∣
≤ Ch2||uh ||1,p|vh |1,q .

3 Two-grid finite volume element method for linear problem

In this section, we shall present the two-grid finite volume element algorithm for the
non-selfadjoint and indefinite linear elliptic problems based on two finite element
spaces. The idea of the two-grid method is to reduce the non-selfadjoint and indefinite
elliptic problem on a fine grid into a symmetric and positive definite elliptic problem
on a fine grid by solving a non-selfadjoint and indefinite elliptic problem on a coarse
grid.

The basic mechanisms are two quasi-uniform triangulations of Ω , TH and Th , with
two different mesh sizes H and h (H > h), and the corresponding finite element
spaces VH and Vh which satisfies VH ⊂ Vh and will be called the coarse and the fine
spaces, respectively.

In order to present the two-grid finite volume element method, we introduce the
following bilinear forms

a(2)
c (uh, vh) =

∫
Ω

(ā∇uh) · ∇vhdx, ∀uh, vh ∈ Vh, (3.1)

a(2)
h,c(uh, I ∗

h vh) = −
∑
z∈Z0

h

∫
∂Vz

(ā∇uh) · nI ∗
h vhds, ∀uh, vh ∈ Vh, (3.2)

where ā|K = aK and

aK = 1

meas(K )

∫
K

a(x)dx, ∀K ∈ Th .

Let us now present the two-grid finite volume element algorithm.

Algorithm 3.1

1. Find u H ∈ VH such that aH (u H , I ∗
H vH ) = ( f, I ∗

H vH ),∀vH ∈ VH .

2. Find uh ∈ Vh such that a(2)
h,c(u

h, I ∗
h vh) + lh(u H , I ∗

h vh) = ( f, I ∗
h vh),∀vh ∈ Vh .

The following lemma is proved in [10,14,16].
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Lemma 3.1 For any uh, vh ∈ Vh, we have

a(2)
h,c(uh, I ∗

h vh) = a(2)
c (uh, vh).

In general case, the matrix obtained from a(2)
h (uh, I ∗

h vh) is not symmetric. This
introduce some difficulties in real implementations, the method suitable to symmetric
linear system can not be used in this case. From Lemma 3.1, we know that the coeffi-
cient matrix of the linear system in the second step of Algorithm 3.1 is symmetric and
positive definite and is in general much easier to solve (e.g. conjugate gradient like
methods can be applied effectively).

Theorem 3.1 Assume that uh and uh are the solutions obtained by (2.7) and Algo-
rithm 3.1 for H � 1, then

||uh − uh ||1 ≤ C H2(||u||2 + || f ||1); (3.3)

||u − uh ||1 ≤ C(h + H2)(||u||2 + || f ||1). (3.4)

Proof It follows from Algorithm 3.1 and (2.7) that

a(2)
h,c(uh − uh, I ∗

h vh)

= a(2)
h,c(uh, I ∗

h vh) − a(2)
h,c(u

h, I ∗
h vh)

= a(2)
h,c(uh, I ∗

h vh) − ( f, I ∗
h vh) + lh(u H , I ∗

h vh)

= (a(2)
h,c(uh, I ∗

h vh) − a(2)
h (uh, I ∗

h vh)) + (lh(u H , I ∗
h vh) − lh(uh, I ∗

h vh))

= R1 + R2. (3.5)

We first estimate R1. For this purpose, we rewrite R1 as follows.

R1 =
[
a(2)

h,c(uh, I ∗
h vh) − a(2)(uh, vh)

]
+

[
a(2)(uh, vh) − a(2)

h (uh, I ∗
h vh)

]
. (3.6)

Using Lemma 3.1, noting that uh and vh are piecewise linear functions and from the
definition of ā, we have

a(2)
h,c(uh, I ∗

h vh) − a(2)(uh, vh) = a(2)
c (uh, vh) − a(2)(uh, vh)

=
∑

K∈Th

∫
K

(ā − a)∇uh · ∇vhdx

= 0. (3.7)

From Lemma 2.5 and (2.9), we get

∣∣∣a(2)(uh, vh) − a(2)
h (uh, I ∗

h vh)

∣∣∣ ≤ Ch2
(

h−1|u − uh |1 + ||u||2
)

|vh |1
≤ Ch2||u||2|vh |1. (3.8)
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Two-grid FVEM for linear and nonlinear elliptic problems 187

It follows from (3.6), (3.7) and (3.8) that

|R1| ≤ Ch2||u||2|vh |1. (3.9)

In order to estimate R2, we rewrite R2 as follows.

R2 = [lh(u H , I ∗
h vh) − l(u H , vh)] + [l(u H , vh) − l(uh, vh)]

+[l(uh, vh) − lh(uh, I ∗
h vh)]

= S1 + S2 + S3. (3.10)

By Lemma 2.5, the triangle inequality and (2.9),

|S1| + |S3| ≤ Ch2(||u H ||1 + ||uh ||1)|vh |1 ≤ Ch2||u||2|vh |1. (3.11)

Using Green’s formula, the Cauchy–Schwarz inequality and (2.12), we have

|S2| =
∣∣∣∣∣∣
∫
Ω

b · ∇(u H − uh)vhdx +
∫
Ω

c(u H − uh)vhdx

∣∣∣∣∣∣
≤ C ||u H − uh ||||vh ||1
≤ C H2(||u||2 + || f ||1)||vh ||1. (3.12)

From (3.10)–(3.12), we get the estimation for R2,

|R2| ≤ C H2(||u||2 + || f ||1)||vh ||1. (3.13)

Combining (3.5), (3.9) with (3.13) yields

a(2)
h,c(uh − uh, I ∗

h vh) ≤ C H2(||u||2 + || f ||1)||vh ||1. (3.14)

By means of the discrete Poincare inequality, we get the coerciveness of the bilinear
form a(2)

c (·, ·),

c0||vh ||21 ≤ a(2)
c (vh, vh), ∀vh ∈ Vh . (3.15)

Then, by setting vh = uh − uh in (3.14), from Lemma 3.1 and (3.15), we get the
desired result (3.3). The desired result (3.4) follows from (3.3) and (2.9).

Remark From Theorem 3.1, we know that if h = O(H2) is chosen, the solution
obtained by the two-grid finite volume element method is convergent to the solution
of the original problem with the optimal order in the H1-norm.

In the following, we introduce the definition of the discrete Green’s function
[14,21,24], which will be used in the error estimate in W 1,∞-norm between the solu-
tion of (2.7) and that of the two-grid finite volume element method.
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Given any point x ∈ Ω , we define the regularized Green’s function Gx ∈ H1
0 (Ω)∩

H2(Ω) to be the solution of the equation

−∇ · (ā∇Gx ) = δh
x , ∀x ∈ Ω,

where δh
x ∈ Vh is a smoothed δ-function associated with the point x , which is defined

by

(δh
x , vh) = vh(x), ∀vh ∈ Vh .

Let Gh
x ∈ Vh be the finite element approximation of the regularized Green’s function,

i.e.,

a(2)
c (Gx − Gh

x , vh) = 0, ∀vh ∈ Vh .

Moreover, following [14,21], for a given point x ∈ Ω , we define ∂x Gx by

∂x Gx = lim
x→0,
x ||l
Gx+
x − Gx

|
x | ,

where l is any fixed direction, 
x ||l means that 
x is parallel to l. Clearly ∂x Gx

satisfies

a(2)
c (∂x Gx , vh) = −(∂xδ

h
x , vh) = ∂xvh(x), ∀vh ∈ Vh . (3.16)

The finite element approximation ∂x Gh
x ∈ Vh of ∂x Gx is then defined by

a(2)
c (∂x Gx − ∂x Gh

x , vh) = 0, ∀vh ∈ Vh . (3.17)

The following estimates have been established in the literatures [14,21,24,31].

||∂x Gh
x ||1,1 ≤ C | ln h|. (3.18)

||Gh
x ||1,1 ≤ C | ln h|. (3.19)

Theorem 3.2 Assume that uh and uh are the solutions obtained by (2.7) and Algo-
rithm 3.1 for H � 1, then

||uh − uh ||1,∞ ≤ C H2| ln h|2(||u||2,∞ + || f ||1), u ∈ W 2,∞(Ω). (3.20)
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Proof It follows from the definition of ∂x Gh
x , Lemma 3.1, (2.7) and Algorithm 3.1

that

∂x (uh − uh)(x) = a(2)
c (uh − uh, ∂x Gh

x )

= a(2)
h,c(uh − uh, I ∗

h ∂x Gh
x )

= a(2)
h,c(uh, I ∗

h ∂x Gh
x ) − ( f, I ∗

h ∂x Gh
x ) + lh(u H , I ∗

h ∂x Gh
x )

=
(

a(2)
h,c(uh, I ∗

h ∂x Gh
x ) − a(2)

h (uh, I ∗
h ∂x Gh

x )
)

+
(

lh(u H , I ∗
h ∂x Gh

x ) − lh(uh, I ∗
h ∂x Gh

x )
)

= I1 + I2. (3.21)

In order to estimate I1, we rewrite I1 as follows

I1 =
(

a(2)
h,c(uh, I ∗

h ∂x Gh
x ) − a(2)(uh, ∂x Gh

x )
)

+
(

a(2)(uh, ∂x Gh
x ) − a(2)

h (uh, I ∗
h ∂x Gh

x )
)

. (3.22)

Similar to the derivation of (3.7), we have

a(2)
h,c(uh, I ∗

h ∂x Gh
x ) − a(2)(uh, ∂x Gh

x ) = 0. (3.23)

From Lemma 2.5, (2.16) and (3.18), we get

a(2)(uh, ∂x Gh
x ) − a(2)

h (uh, I ∗
h ∂x Gh

x ) ≤ Ch2(h−1|u − uh |1,∞ + |u|2,∞)|∂x Gh
x |1,1

≤ Ch2| ln h|(||u||2,∞ + || f ||1). (3.24)

The estimation of I1 is obtained from (3.22), (3.23) and (3.24),

|I1| ≤ Ch2| ln h|(||u||2,∞ + || f ||1). (3.25)

In order to estimate I2, we rewrite I2 as follows.

I2 =
[
lh(u H , I ∗

h ∂x Gh
x ) − l(u H , ∂x Gh

x )
]

+
[
l(u H , ∂x Gh

x ) − l(uh, ∂x Gh
x )

]
+

[
l(uh, ∂x Gh

x ) − lh(uh, I ∗
h ∂x Gh

x )
]

= T1 + T2 + T3. (3.26)

It follows from Lemma 2.5 and (3.18) that

|T1| + |T3| ≤ Ch2(||u H ||1,∞ + ||uh ||1,∞)|∂x Gh
x |1,1 ≤ Ch2| ln h|||u||2,∞.

(3.27)
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Using Green’s formula, Hölder inequality, the triangle inequality and (2.15),

|T2| =
∣∣∣∣∣∣
∫
Ω

b · ∇(u H − uh)∂x Gh
x dx +

∫
Ω

c(u H − uh)∂x Gh
x dx

∣∣∣∣∣∣
≤ C ||u H − uh ||0,∞||∂x Gh

x ||1,1

≤ C H2| ln h|2(||u||2,∞ + || f ||1). (3.28)

From (3.26), (3.27) and (3.28), we get

|I2| ≤ C H2| ln h|2(||u||2,∞ + || f ||1). (3.29)

Combining (3.21), (3.25) with (3.29) yields

|uh − uh |1,∞ ≤ C H2| ln h|2(||u||2,∞ + || f ||1). (3.30)

Using the definition of Gh
x , (3.19) and the method above to estimate |uh − uh |1,∞,

we obtain the estimation of |uh − uh |0,∞ easily

|uh − uh |0,∞ ≤ C H2| ln h|2(||u||2,∞ + || f ||1). (3.31)

We get the desired result (3.20) from (3.30) and (3.31).

Remark From Theorem 3.2 and the error estimate (2.16), we get

||u − uh ||1,∞ ≤ C(h + H2| ln h|2)(||u||2,∞ + || f ||1). (3.32)

4 Finite volume element method for nonlinear problem

In this section, we consider the FVEM for the two-dimensional second-order nonlinear
elliptic problem

{
L(u)u ≡ −∇ · (A(u)∇u) = f, in Ω,

u = 0, on ∂Ω,
(4.1)

where Ω is a bounded convex polygonal domain in R2 with the boundary ∂Ω , A :
R → R is sufficiently smooth and there exist constants βi , i = 1, 2, 3, satisfying

0 < β1 ≤ A(x) ≤ β2, |A′(x)| ≤ β3, ∀x ∈ R. (4.2)

Moreover, as in [9], we assume that A′ is Lipschitz continuous with constant L , i.e.,

|A′(x) − A′(y)| ≤ L|x − y|, ∀x, y ∈ R. (4.3)
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As in [9], in order to get the error estimates in the L2-norm for the FVEM for the
problem (4.1), we also assume that u is Lipschitz continuous and A′′ ∈ L1(R).

In this paper, we assume that the function A(x) and f (x) is sufficiently smooth so
that the problem (4.1) has a unique solution in a certain Sobolev space.

In this section, the dual partition T ∗
h and the interpolation operator I ∗

h are the same
as in Sect. 2.

We formulate the FVEM for the problem (4.1) as follows. Given a vertex z ∈ Zh,

integrating (4.1) over the associated control volume Vz and using Green’s formula, we
obtain

−
∫

∂Vz

(A(u)∇u) · nds =
∫
Vz

f dx .

The FVEM is to find uh ∈ Vh such that

−
∫

∂Vz

(A(uh)∇uh) · nds =
∫
Vz

f dx, ∀Vz ∈ T ∗
h . (4.4)

The finite volume element problem (4.4) can be rewritten in a variational form.
Find uh ∈ Vh such that

ah(uh; uh, I ∗
h vh) = ( f, I ∗

h vh), ∀vh ∈ Vh, (4.5)

where ah(·; ·, I ∗
h ·) is defined by

ah(ωh; uh, I ∗
h vh) = −

∑
z∈Z0

h

∫
∂Vz

(A(ωh)∇uh) · nI ∗
h vhds, ∀ωh, uh, vh ∈ Vh . (4.6)

By means of a fixed point iteration, Chatzipantelidis, Ginting and Lazarov [9] have
proved the existence and uniqueness of the solution uh of the problem (4.5):

1. Choose M > 0 such that || f ||0 ≤ Mα−1, then there exists a solution of (4.5) in a
ball

BM = {vh ∈ Vh : ||∇vh ||0,p ≤ M}, p > 2, (4.7)

where α appears in the inf-sup condition employed in [9]: there exist constants
α = α(A,Ω) > 0, hα > 0 and δ = δ(A,Ω) > 0 such that for all 0 < h ≤ hα

and χh ∈ Vh, ωh ∈ BM ,

||∇χh ||0,p ≤ α sup
0 �=vh∈Vh

a(ωh; uh, I ∗
h vh)

||∇vh ||0,q
, 2 < p ≤ 2 + δ,

1

p
+ 1

q
= 1.

(4.8)
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2. For a sufficiently small data, f , and for sufficiently small h, the solution uh is
unique.

Chatzipantelidis, Ginting and Lazarov [9] have obtained the error estimates in the
H1- and L2-norms for the FVEM for the problem (4.1) under the condition γ =
αβ3 M < 1, where β3, M and α appeared in (4.2), (4.7) and (4.8).

Lemma 4.1 ([9]) Let u and uh be the solutions of (4.1) and (4.5), respectively. Then,
if γ = αβ3 M < 1, there exists a constant h0 > 0 such that for 0 < h ≤ h0,

|u − uh |1 ≤ C(u, f )h, u ∈ H2(Ω), f ∈ L2(Ω); (4.9)

||u − uh ||0 ≤ C(u, f )h2, u ∈ H2(Ω) ∩ W 1,∞(Ω), f ∈ H1(Ω). (4.10)

In order to simplify the notations and overall exposition of the material, we shall
use the notation C(u, f ) to denote the constant which only depends on u and f and
may stand for the different dependence of u and f at its different appearance.

The bound of |uh |1,∞ has been shown in Theorem 4.4 in [9].

Lemma 4.2 ([9]) Let u ∈ W 1,∞(Ω) ∩ H2(Ω) ∩ H1
0 (Ω) and uh be the solutions of

(4.1) and (4.5), respectively. Then, if f ∈ L2(Ω) and γ = αβ3 M < 1, there exists a
constant h0 > 0 such that for 0 < h ≤ h0,

|uh |1,∞ ≤ C(u, f ). (4.11)

As an auxiliary tool, we introduce for any ωh, uh, vh ∈ Vh, the bilinear form
associated with the finite element method,

a(ωh; uh, vh) =
∫
Ω

(A(ωh)∇uh) · ∇vhdx . (4.12)

For the sake of the later analysis, we introduce the error functional

εa(ωh; uh, vh) = a(ωh; uh, vh) − ah(ωh; uh, I ∗
h vh), ∀ωh, uh, vh ∈ Vh .

The following Lemma 4.3 characterizes the difference between a(ωh; uh, vh) and
ah(ωh; uh, I ∗

h vh), which plays the key role in later error analysis of the two-grid finite
volume element method for the nonlinear elliptic problem. It should be pointed out
that the following Lemma 4.3 is a modification of Lemma 2.4 in [9] and has been
proved in Lemma 3.2 in [5].

Lemma 4.3 ([5]) Assume that u ∈ W 2,p(Ω), p ≥ 1. Then there exists a constant C
independent of h such that for ωh, uh, vh ∈ Vh,

|εa(ωh; uh, vh)| ≤ Ch2|ωh |1,∞(|ωh |1,∞|uh |1,p + h−1|u − uh |1,p + ||u||2,p)|vh |1,q ,

with 1
p + 1

q = 1.
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The error estimate in the L∞-norm for the FVEM for the problem (4.1) has been
obtained in [9]. In [5], we reproduce the error estimate in the L∞-norm under the
condition γ = αβ3 M < 1 by means of the superconvergence estimate between
the solution of the FVEM and that of the FEM, and also get the error estimate in the
W 1,∞-norm for the FVEM for the problem (4.1) which will be used in the two-grid
finite volume element method for the problem (4.1).

Lemma 4.4 ([5]) Let u and uh be the solutions of (4.1) and (4.5), respectively, with
u ∈ W 2,∞(Ω), f ∈ H1(Ω). Then, if γ = αβ3 M < 1, there exists a constant h0 > 0
such that for 0 < h ≤ h0,

||u − uh ||0,∞ ≤ C(u, f )h2| ln h|; (4.13)

||u − uh ||1,∞ ≤ C(u, f )h. (4.14)

5 Two-grid finite volume element method for nonlinear problem

In this section, we shall present the two-grid finite volume element algorithm for the
second-order nonlinear elliptic problems.

In the two-grid finite volume element method proposed in this section, on the coarser
space VH , we use the FVEM to obtain a rough approximation u H ∈ VH , and on the
fine space Vh , solve a linearized problem based on u H to produce a corrected solution
uh ∈ Vh . This means that solving a nonlinear equation is not much more difficult than
solving one linear equation, since dimVH � dimVh and the work for solving u H is
relatively negligible.

In order to present the two-grid finite volume element algorithm, we first introduce
some notations.

ah,c(ωh; uh, I ∗
h vh) = −

∑
z∈Z0

h

∫
∂Vz

(A(ωh)∇uh) · nI ∗
h vhds, (5.1)

where

A(ωh)|K = 1

meas(K )

∫
K

A(ωh)dx .

Since A(ωh) is piecewise constant over all element K ∈ Th, from Lemma 4.1, we
have

ah,c(ωh; uh, I ∗
h vh) = ac(ωh; uh, vh), ∀ωh, uh, vh ∈ Vh, (5.2)

where ac(ωh; uh, vh) is defined by

ac(ωh; uh, vh) =
∫
Ω

A(ωh)∇uh · ∇vhdx .
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Noting that uh and vh are piecewise linear functions, by the definition of A(ωh), we
have

ac(ωh; uh, vh) = a(ωh; uh, vh), ∀ωh, uh, vh ∈ Vh . (5.3)

Now, let us present the two-grid finite volume element algorithm for the nonlinear
elliptic problem.

Algorithm 5.1

1. Find u H ∈ VH such that aH (u H ; u H , I ∗
H vH ) = ( f, I ∗

H vH ),∀vH ∈ VH .

2. Find uh ∈ Vh such that ah,c(u H ; uh, I ∗
h vh) = ( f, I ∗

h vh),∀vh ∈ Vh .

From (5.2), we know that the coefficient matrix of the linearized problem in the
second step of Algorithm 5.1 is symmetric and positive definite and is in general much
easier to solve (e.g. conjugate gradient like methods can be applied effectively).

Theorem 5.1 Assume that uh and uh are the solutions obtained by (4.5) and Algo-
rithm 5.1 for H � 1, then

||uh − uh ||1 ≤ C(u, f )H2; (5.4)

||u − uh ||1 ≤ C(u, f )(h + H2). (5.5)

Proof It follows from the Algorithm 5.1, (4.5), (5.2) and (5.3) that

ah,c(u H ; uh − uh, I ∗
h vh) = ah,c(u H ; uh, I ∗

h vh) − ( f, I ∗
h vh)

= a(u H ; uh, vh) − ah(uh; uh, I ∗
h vh)

= [a(u H ; uh, vh) − a(uh; uh, vh)]
+[a(uh; uh, vh) − ah(uh; uh, I ∗

h vh)]
= Q1 + Q2. (5.6)

Using the Cauchy–Schwarz inequality, (4.2), Lemma 4.1 and Lemma 4.2, we obtain

|Q1| =
∣∣∣∣∣∣
∫
Ω

(A(u H ) − A(uh))∇uh · ∇vhdx

∣∣∣∣∣∣
≤ β3

∫
Ω

|u H − uh ||∇uh · ∇vh |dx

≤ C |uh |1,∞(||u H − u|| + ||u − uh ||)|vh |1
≤ C(u, f )H2|vh |1. (5.7)

The estimation of Q2 is obtained from Lemma 4.3, Lemma 4.1 and Lemma 4.2,

|Q2| ≤ C(u, f )h2|vh |1. (5.8)
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By means of the discrete Poincare inequality, we get the coercivity of the bilinear form
a(u H ; ·, ·),

c1||vh ||21 ≤ a(u H ; vh, vh), ∀vh ∈ Vh . (5.9)

It follows from (5.2), (5.3) and (5.9) that

c1||vh ||21 ≤ ah,c(u H ; vh, I ∗
h vh), ∀vh ∈ Vh . (5.10)

By taking vh = uh − uh in (5.6), from (5.7), (5.8) and (5.10), we get the desired result
(5.4). The desired result (5.5) follows from (5.4) and Lemma 4.1.

In the following, in order to get the error estimate in the W 1,∞-norm between the
solution of (4.5) and Algorithm 5.1, we introduce the regularized Green’s function
Gx ∈ H1

0 defined by

− ∇ · (A(u H )∇Gx ) = δh
x , ∀x ∈ Ω, (5.11)

where the function δh
x is given in Sect. 3.

Similar to that in Sect. 3, we assume Gh
x ∈ Vh is the finite element approximation

of (5.11) and define ∂x Gh
x . We also have the following estimates

||Gh
x ||1,1 ≤ C | ln h|, ||∂x Gh

x ||1,1 ≤ C | ln h|. (5.12)

Theorem 5.2 Assume that uh and uh are the solutions obtained by (4.5) and Algo-
rithm 5.1 for H � 1, then

||uh − uh ||1,∞ ≤ C(u, f )H2| ln h|2, u ∈ W 2,∞(Ω). (5.13)

Proof From the definition of ∂x Gh
x and (5.2), similar to the derivation of (5.6), we

have

∂x (uh − uh)(x) = ac(u H , uh − uh, ∂x Gh
x )

= ah,c(u H ; uh − uh, I ∗
h ∂x Gh

x )

= Q′
1 + Q′

2, (5.14)

where

Q′
1 = a(u H ; uh, ∂x Gh

x ) − a(uh; uh, ∂x Gh
x ),

Q′
2 = a(uh; uh, ∂x Gh

x ) − ah(uh; uh, I ∗
h ∂x Gh

x ).

Similar to the estimation of Q1 in (5.7), from Lemma 4.4, Lemma 4.2 and (5.12), we
get

|Q′
1| ≤ C |uh |1,∞(||u H − u||0,∞ + ||u − uh ||0,∞)|∂x Gh

x |1,1

≤ C(u, f )H2| ln h|2. (5.15)
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It follows from Lemma 4.3 in the case p = ∞, q = 1, Lemma 4.4 and (5.12) that

|Q′
2| ≤ C(u, f )h2| ln h|. (5.16)

From (5.14), (5.15) and (5.16), we obtain

|uh − uh |1,∞ ≤ C(u, f )H2| ln h|2. (5.17)

From the definition of Gh
x , (5.12) and using the method above to estimate |uh −uh |1,∞,

we get the estimation of |uh − uh |0,∞ easily

|uh − uh |0,∞ ≤ C(u, f )H2| ln h|2. (5.18)

Combining (5.17) with (5.18) yields the desired result (5.13).

Remark From Theorem 5.2 and Lemma 4.4, we get

||u − uh ||1,∞ ≤ C(u, f )(h + H2| ln h|2). (5.19)

6 Numerical examples

In this section we present several numerical experiments to gain insights on the theore-
tical findings presented earlier. In particular, our main interest is to verify Theorems 3.1
and 3.2 for the indefinite problems, and Theorems 5.1 and 5.2 for the nonlinear pro-
blems. As described in the previous sections, all these theorems guarantee the super-
convergence of the two-grid FVEM solution to the standard FVEM solution on the
fine grid. In all examples, the problems are posed in domain Ω = [0, 1] × [0, 1]. The
domain is discretized into N numbers of rectangle in each direction and then each
rectangle is divided into two triangles, resulting in a mesh with size 1/N . For the
computation, the finite element space Vh is built on the fine grid whose mesh size is
h = 1/512, and thus the two-grid solution is compared against the solution in this fine
grid.

The first example is the nondefinite problem −ε∆u+b·∇u = f with homogeneous
Dirichlet boundary. We set ε = 0.5, b = (1, 1)�, and f = 1. The finite element space
VH is built on the coarse grid whose mesh size is H = 1/N , with N = 4, 8, 16, 32, 64.
It is clear that with this construction, VH and Vh are conforming. Figure 1 shows the
log–log plot of the deviation uh − uh against the coarse mesh size H . This deviation
is computed in H1- and W 1,∞-norm. A least-squares fit of each of these pair of data
indicates that the rate of convergence of the deviation is approximately 1.96 and 1.81,
respectively, for each norm. These results are in accordance with the estimates in
Theorems 3.1 and 3.2.

For the nonlinear problem, we solve a homogeneous Dirichlet boundary value
problem −∇·(A(u)∇u) = f in Ω , where the function f is chosen such that the known
solution is u(x, y) = sin(3πx) sin(3πy). Here we choose the nonlinear coefficient
A(u) = 1 + 1/(1 + u2). The finite element space VH is built on the coarse grid whose
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Fig. 1 Plot of errors against the coarse grid mesh size for nondefinite problem: left error in H1-norm, right
error in W 1,∞-norm. All plots are in log–log axis

Fig. 2 Plot of errors against the coarse grid mesh size for nonlinear problem: left error in H1-norm, right
error in W 1,∞-norm. All plots are in log–log axis

mesh size is H = 1/N , with N = 4, 8, 16, 32, 64, 128, 256. Figure 2 shows the log–
log plot of the deviation uh − uh against the coarse mesh size H . A least-squares fit
of each of these pair of data give the rate of convergence of approximately 2 for both
norms, which confirms Theorems 5.1 and 5.2.
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