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Abstract This paper proposes and analyzes a finite element method for a nonlinear
singular elliptic equation arising from the black hole theory in the general relativity.
The nonlinear equation, which was derived and analyzed by Huisken and Ilmanen in
(J Diff Geom 59:353–437), represents a level set formulation for the inverse mean cur-
vature flow describing the evolution of a hypersurface whose normal velocity equals
the reciprocal of its mean curvature. We first propose a finite element method for a
regularized flow which involves a small parameter ε; a rigorous analysis is presented to
study well-posedness and convergence of the scheme under certain mesh-constraints,
and optimal rates of convergence are verified. We then prove uniform convergence of
the finite element solution to the unique weak solution of the nonlinear singular elliptic
equation as the mesh size h and the regularization parameter ε both tend to zero. Com-
putational results are provided to show the efficiency of the proposed finite element
method and to numerically validate the “jumping out” phenomenon of the weak solu-
tion of the inverse mean curvature flow. Numerical studies are presented to evidence
the existence of a polynomial scaling law between the mesh size h and the regulariza-
tion parameter ε for optimal convergence of the proposed scheme. Finally, a numerical
convergence study for another approach recently proposed by R. Moser (The inverse
mean curvature flow and p-harmonic functions. preprint U Bath, 2005) for approxi-
mating the inverse mean curvature flow via p-harmonic functions is also included.
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1 Introduction

The inverse mean curvature flow (IMCF) is a one-parameter family of hypersurfaces
{Γt }t≥0 ⊂ Rd (d ≥ 2) whose normal velocity Vn(t) at each time t equals the inverse
of its mean curvature H(t), that is,

Vn(t) = 1

H(t)
. (1)

If we letΓt := x(Γ0, t), then the parametric description of the geometrical law (hence,
the inverse mean curvature flow) is to find x : Γ0 × [0, T ] → Rd such that

∂x

∂t
= n

H
∀x ∈ Γt , 0 ≤ t ≤ T, (2)

where n denotes the unit outward normal to Γt .
The inverse mean curvature flow was originally introduced in [12,20–22] as a math-

ematical method for proving well-known conjectures from the black hole theory in
general relativity such as Positive Mass Conjecture (which says that the total mass of
any asymptotically flat manifold with nonnegative scalar curvature is nonnegative) (cf.
[21,29]), and Penrose Inequality (which says that the total mass of a spacetime contain-
ing black holes with event horizons of the total area A should be at least

√
A(16π)−1,

hence, it implies Positive Mass Conjecture) (cf. [2,4,17,22]). It was argued in [22] that
the Penrose Inequality would hold if the inverse mean curvature flow would exist for
all times and remain smooth, which is generally not expected to be true. In fact, it is
known (cf. [19]) that without special geometric assumptions, the mean curvature can
tend to zero at some point and singularities develop. When this happens, the classical
solution ceases to exist, and it is not clear how to define and/or extend the flow. The
problem remained open until the work of Huisken and Ilmanen [17] in 1997. They
proposed a level set formulation for the inverse mean curvature flow (1), and defined
a weak notion of solutions using an energy minimization principle in such a way that
the generalized inverse mean curvature flow exists for all times. Using this generalized
flow they then gave the first complete proof of the Penrose Inequality for the case of
a single black hole.

It should be noted that the inverse mean curvature flow was also formulated and
studied in a general Riemannian manifold (M, g). However, in this paper we only
consider the flow in the Euclidean space, i.e., M = Rd , and refer to [17] and the
references therein for detailed expositions on the inverse mean curvature flow in a
general Riemannian manifold.

Starting with an initial hypersurface Γ0 satisfying H(0) ≥ 0, it can be shown that
H(t) ≥ 0 for all t ≥ 0. Huisken–Ilmanen [17] then propose the following level set
formulation for Γt

Γt = ∂Et , Et := {x ∈ Rd; u0(x) < t}
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Finite element methods for the inverse mean curvature flow 95

where the level set function u0 satisfies the singular elliptic equation

div

( ∇u0

|∇u0|
)

= |∇u0| (3)

in the exterior domain Ω := Rd \ E0 (see Sect. 2 for the precise description of the
problem). Note that the left-hand side of (3) describes the mean curvature of the level
set Γt and the right-hand side yields the inverse speed. We also note that the above
level set formulation automatically ensures the mean curvature of the hypersurface is
nonnegative as long as a solution exists.

Unlike the situation of the mean curvature flow [6,11,25], the viscosity solution
(cf. [5]) of Eq. (3) is not unique. In fact, it is not hard to check that if u is a viscosity
solution, so does max{u, s} for any s ∈ R (cf. [17]). To select the physically “correct”
viscosity solution, Huisken and Ilmanen [17] define a weak solution to Eq. (3) as a
locally Lipschitz function u which satisfies

Ju(u) ≤ Ju(v) (4)

with

Ju(v) :=
∫

Ω

( |∇v| + |∇u|v ) dx

for every locally Lipschitz function v such that {v �= u} ⊂⊂ Ω . They proved that
such a weak solution is unique and exists for all times (cf. [17,18]), (G. Huisken and
T. Ilmanen, High regularities of the inverse mean curvature flow, preprint).

To establish existence and uniqueness of weak solutions, Huisken and Ilmanen
regularize the singular/degenerate Eq. (3) to the uniform elliptic equation

div

(
∇uε

√|∇uε|2 + ε2

)

=
√

|∇uε|2 + ε2 (5)

for ε > 0 on an appropriately truncated finite domain ΩL (see Sect. 2 for the precise
definition). Smooth solutions to the regularized equation are shown to exist and be
unique; then taking the limit as ε → 0 yields a weak solution u0 to Eq. (3). As it turns
out, the weak solution often has flat regions where u0 equals a constant. Hence, the
t-level sets Γt of u0 are discontinuous in t , which corresponds to the “jumping out”
phenomenon of the weak solution of the inverse mean curvature flow (cf. [17]). In addi-
tion, due to the singular nature of Eq. (3), numerically it is not feasible to compute its
solution without a regularization. Our earlier experience with another singular problem
of the same type, the total variation flow [13,14], suggests that the regularization (5)
can also be utilized to develop practical numerical methods for approximating the
solution of Eq. (3).

The goal of this paper is to construct and analyze a finite element method for approx-
imating the solution of Eq. (5) for each ε > 0 and for approximating the solution of
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Eq. (3) via Eq. (5) by taking ε → 0. If compared with the total variation flow equation
considered in [13,14], the new nonlinear term on the right-hand side of (5) poses an
additional difficulty for error estimates for any numerical approximation of equation
(5), because the error due to this term in the error equation is too strong to be com-
pletely absorbed by the positive term contributed by the term on the left-hand side.
The error equation in fact resembles a typical error equation of a non-coercive prob-
lem [10,31] although Eq. (5) is uniformly elliptic. To the best of our knowledge, the
only numerical result that appears in the literature for the inverse mean curvature flow
is the work of Pasch [26], which proposed some finite volume method for approximat-
ing the regularized equation (5) with Neumann boundary condition on outer boundary
of the truncated domainΩL . Pasch also provides three-dimensional numerical simula-
tions for the inverse mean curvature flow; however, no rigorous convergence analysis
is known for the proposed finite volume method.

The rest of the paper is organized as follows. In Sect. 2 we first give precise descrip-
tions of the boundary value problem (3) and (5), respectively. We then recall some
theoretical results proved in [17] for both problems. We conclude Sect. 2 with a brief
derivation of the linearization (at the solution) of the differential operator in (5) and
its properties, which will play an important role for the error analysis in Sect. 3. In
Sect. 3 we propose a finite element method for approximating equation (5), address
its well-posedness, and derive optimal order error estimates in W 1,p-norm for the
finite element method provided a mesh-constraint F(ε, h) ≥ 0 and smallness of the
mesh-size h > 0 hold. Our main ideas are to adapt a fixed point argument of [27]
(also see [16]) for general nonlinear problems, and to make strong use of the stability
property of the linearized (weakly coercive) problem and its finite element approxi-
mations. Carrying out each of these ideas requires some mesh-constraint to hold (cf.
Sect. 3.1 for the details). In addition, optimal error estimates in L p-norm are also
derived using a duality argument. In Sect. 4 we show that the finite element solution
converges uniformly to the weak solution of the original nonlinear singular equation
(3) as the regularization parameter ε tends to zero, provided that a mesh-constraint
F(ε, h) ≥ 0 holds. Finally, in Sect. 5 we first present some computational results to
show the efficiency of the proposed finite element method and to numerically validate
the “jumping out” phenomenon of the weak solution of the inverse mean curvature
flow as predicted and proved by Huisken and Ilmanen in [17].

We then give a numerical study for determining the “best” choice of mesh size
h = h(ε), and numerically estimate rates of convergence for both u0 −uεh and u0 −uε,
all in terms of powers of ε. Finally, we include a numerical study of the rates of con-
vergence for a new approach proposed by R. Moser (The inverse mean curvature flow
and p-harmonic functions. preprint U Bath, 2005) for approximating the inverse mean
curvature flow via p-harmonic functions (see Remark 3).

2 Description of problems and preliminaries

Standard space and norm notations are adopted in this paper, for example, W m,p(Ω)

denotes the Sobolev space of functions whose up to mth order derivatives are L p-
integrable, W 0,p(Ω) := L p(Ω), and ‖ · ‖W m,p = ‖ · ‖W m,p(Ω). (·, ·) denotes the
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Finite element methods for the inverse mean curvature flow 97

standard L2-inner product, and 〈·, ·〉 denotes the dual product between a Banach space
X and its dual space X ′. We refer to [1,15,23] for the precise definitions of these
spaces and their norms. In addition, we introduce the following special notation

| z |ε = fε(z) :=
√

|z|2 + ε2 ∀z ∈ Rd . (6)

Throughout this paper, C denotes a generic constant which is independent of ε and
the solutions of Eqs. (3) and (5).

For an initial hypersurface Γ0 ⊂ Rd with nonnegative mean curvature H(0, x) ≥ 0
for all x ∈ Γ0, it is easy to see that H(t, x) of the inverse mean curvature flow (1)
remains nonnegative as long as the flow exists. In other words, the flow Γt only moves
in one direction and expands in time. To exploit this causality of the inverse mean cur-
vature flow, in Huisken–Ilmanen [17] propose to represent the flow as the t level set of
a function u0 which is defined in Rd and takes zero value on the initial hypersurface
Γ0. That is, for t ≥ 0

Γt := {x ∈ Rd ; u0(x) = t } = ∂Et , Et := {x ∈ Rd ; u0(x) < t}. (7)

Physically, one can interpret t = u0(x) as the first arrival time of the flow at x . Note
that the causality of the inverse mean curvature flow guarantees that the flow visits
every x outside of the initial hypersurface Γ0 only once, hence, u0 is a single-valued
function.

Differentiating the equation t = u0(x) with respect to t (note that x is a function
of t), using the chain rule and the fact that

H(t, x) = div

( ∇u0

|∇u0|
)
,

it is easy to check that if (7) is true, then the inverse mean curvature flow (1) reduces to
Eq. (3) for u0. Precisely, the level set function u0 must satisfy the following boundary
value problem [18]

div

( ∇u0

|∇u0|
)

= |∇u0| in Ω := Rd \E0, (8)

u0 = 0 on Γ0, (9)

u0 → ∞ as |x | → ∞. (10)

Remark 1 The differential operator on the left-hand side of Eq. (8) is a singular
elliptic operator. Formally, it may be regarded as 1-Laplacian since it corresponds to
the p-Laplacian div(|∇u0|p−2∇u0) with p = 1. Also formally, it can be obtained
as the Euler–Lagrange operator for the least gradient functional, and more generally
for the total variation functional

J (u) :=
∫

Ω

|∇u| dx .
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We remark that the 1-Laplacian plays a very important role in the Variational PDE
Method for image processing, see [13,14,24] and the references therein.

Due to the success of using the viscosity solution method to analyze the (level set)
mean curvature flow [6,11], it is natural to use the method to analyze the (level set)
inverse mean curvature flow (8)–(10). It turns out that there are some big differences
between the mean curvature flow and the inverse mean curvature flow (see [17] for
more discussions). As pointed out in Sect. 1, one of the differences, observed by
Huisken and Ilmanen [17], is that unlike the level set equation for the mean curvature
flow, the viscosity solution of (8)–(10) is not unique. In fact, if u0 is a viscosity solu-
tion, so does min{u0, s} for any s ∈ R. Hence, a selection criterion must be specified
in order to single out the physically “correct” solution. It turns out that the variation
equation (4) provides such a criterion.

Theorem 1 (Theorem 3.1 of [17], also see [18]) The boundary value problem (8)–(10)
has a unique (Lipschitz continuous) viscosity solution u0 satisfying (4). Moreover,

|∇u0(x)| ≤ sup
y∈Br (x)∩Γ0

|H(0, y)| + C(d)

r
a.e. x ∈ Ω, (11)

for each 0 < r < ∞.

As pointed out in Sect. 1, to prove Theorem 1, Huisken and Ilmanen approxi-
mated equation (8) by the regularized equation (5), which is considered on a truncated
domain. More precisely, the regularized boundary value problem is defined as

div

( ∇uε

| ∇uε |ε
)

= | ∇uε |ε in ΩL ⊂ Ω, (12)

uε = 0 on Γ0, (13)

uε = L on ∂Ω+
L . (14)

Here ΩL := B 1
ε
(0) ∩Ω and L is a (large) positive constant. ∂Ω+

L denotes the outer
boundary of ΩL .

For problem (12)–(14), Huisken and Ilmanen proved the following result (cf.
Lemma 3.5 of [17]).

Theorem 2 For every L > 0, there exists ε(L) > 0, such that the boundary value
problem (12)–(14) has a unique smooth solution for all 0 < ε < ε(L).

Remark 2 (a) The proof is based on the study of the auxiliary problem for uε,τ :
ΩL → R to satisfy (12)–(13), and uε,τ

∣
∣
∣
∂Ω+

L

= τ , for 0 ≤ τ ≤ L − 2: solv-

ability for the case τ = 0, and ε ≥ 0 sufficiently small follows from implicit
function theorem. The method of continuity is then applied to extend this result
to 0 ≤ τ ≤ L − 2.

(b) The solution uε also satisfies a number of other properties such as the Maximum
Principle. See Lemma 3.4 of [17].
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Finite element methods for the inverse mean curvature flow 99

(c) In general, the precise dependence of ε(L) on L is complicated. On the other
hand, it is known that ε(L) tends to zero as L tends to infinity. It should be noted
that for a given ε > 0, if L is too large, the boundary value problem (12)–(14) may
have no solution! See Example 3.2 of [17]. Indeed, our numerical experiments
in Sect. 5 also verify this fact.

(d) It is easy to check that the solution of (12)–(14) satisfies the variational equation

∫

ΩL

{∇uε · ∇v
| ∇uε |ε + | ∇uε |ε v

}
dx = 0 ∀v ∈ W 1,2

0 (ΩL). (15)

The above variational equation will serve as the starting point for us to construct
finite element methods in Sect. 3.

By passing to the limit as ε → 0, hence, L → ∞, Huisken and Ilmanen were able
to prove the existence result stated in Theorem 1. Specifically,

Theorem 3 For ε > 0, let uε denote the solution of (12)–(14), then there exists a
Lipschitz function u0 such that

lim
ε→0

‖ u0 − uε ‖L∞
loc

= 0, (16)

and u0 is a viscosity solution of (8)–(10) satisfying (4).

Proof See the proof of Theorem 3.1 on pp. 389–390 of [17]. ��
Remark 3 Recently Moser (The inverse mean curvature flow and p-harmonic func-
tions. preprint U Bath, 2005) constructed proper weak solutions for problem (8)–(10)
using an alternative approach which links problem (8)–(10) to the theory of p-harmonic
functions. Specifically, he proved

(1 − p)log v(p) −→ u0 as p → 1+

locally uniformly in Ω , where v(p) solves

−div
(
| ∇v(p) |p−2∇v(p)

)
= 0 in Ω , v(p) = 1 on ∂Ω (17)

for p > 1. The regularity u0 ∈ C0,1
loc (Ω) then follow from the theory of p-harmonic

functions.
In Sect. 5.2, we shall provide some numerical experiments for Moser’s approach.

In particular, we shall numerically analyze its rate of convergence in terms of powers
of (p − 1).

We conclude this section by studying the linearization (at the solution uε) of the
nonlinear differential operator that results from Eq. (12). The property of this lineari-
zation will play an important role for our error analysis in the next section.
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Let Mε : W 1,2(ΩL) → W −1,2(ΩL) denote this differential operator, that is,

Mε(v) := −div

( ∇v
| ∇v |ε

)
+ | ∇v |ε. (18)

The linearization of Mε at the solution of (12)–(14) is defined by

Luε (ϕ) := −div
(

D2 fε(∇uε)∇ϕ
)

+ D fε(∇uε) · ∇ϕ, (19)

where D fε(z) and D2 fε(z) denote the gradient and the Hessian of fε(z) with respect
to z, that is

D fε(z) = z

| z |ε , D2 fε(z) = | z |2ε I − zt z

| z |3ε
∀z ∈ Rd , (20)

where I stands for d × d identity matrix and zt denotes the transpose of z.
Since

D2 fε(z)ξ · ξ = ε2|ξ |2 + (|ξ |2|z|2 − |z · ξ |2)
| z |3ε

≥ ε2 |ξ |2
| z |3ε

∀ξ ∈ Rd , (21)

then Luε is elliptic for ε ≥ 0, and uniformly elliptic for ε > 0. So is L∗
uε , the adjoint

operator of Luε with respect to L2-inner product, that is,

L∗
uε (ϕ) = −div

(
D2 fε(∇uε)∇ϕ + D fε(∇uε) ϕ

)
. (22)

It is easy to check that there holds the following Gårding’s inequality

〈Luε (ϕ), ϕ〉 ≥ c0 ε
2 ‖∇ϕ ‖2

L2 − dε−2‖ϕ ‖2
L2 ∀ϕ ∈ W 1,2

0 (ΩL), (23)

for some positive constant c0 independent of ε (see p. 389 of [17]).
Since uε is smooth (cf. Theorem 2), from the standard theory for uniformly elliptic

equations (cf. [15,23,28]) we have

Lemma 1 Let ∂ΩL ∈ Ck+2, k ≥ −1 and 1 < p < ∞, for any g ∈ W k,p(ΩL) and
φ ∈ W k+2,p(ΩL), the boundary value problem

L(ϕ) = g in ΩL , (24)

ϕ = φ on ∂ΩL , (25)

has a unique solution ϕ ∈ W k+2,p(ΩL), for L = Luε , or L∗
uε . Moreover, there exists

a positive constant C0 = C0(ε), such that

‖ϕ ‖W k+2,p ≤ C0
( ‖ g ‖W k,p + ‖φ ‖W k+2,p

)
. (26)
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Finite element methods for the inverse mean curvature flow 101

Remark 4 To trace the explicit dependence of C0 = C0(ε) on ε−1 requires sharp
bounds for the solution of (12)–(14) in terms of ε−1 in higher norms, which is a non-
trivial task (G. Huisken, personal commmunication); in fact, asymptotical behavior of
constants C j = C j (ε), 1 ≤ j ≤ 8 for ε → 0 used below could be specified once the
asymptotics of ε �→ C0(ε) would be available. A large part of Sect. 5 is devoted to
numerically address this issue.

3 Finite element approximations

3.1 Formulation, well-posedness, and error estimates in energy norm

Let Th be a quasi-uniform triangulation ofΩL (K ∈ Th are tetrahedrons when d = 3)
with mesh size h ∈ (0, 1). Let V h

r denote the finite element space of continuous, r th
order piecewise polynomials associated with Th , that is, for r ≥ 1

V h
r : =

{
vh ∈ C0(ΩL); vh |K ∈ Pr (K ), ∀K ∈ Th

}
⊂ W 1,2(ΩL),

V h,b
r : =

{
vh ∈ V h

r ; vh = I r
h uε on ∂ΩL

}
,

V h,0
r : = V h

r ∩ W 1,2
0 (ΩL),

where I r
h : C0(ΩL) → V h

r denotes the standard Lagrange interpolation operator.
Based on the variational equation (15), our finite element method for (12)–(14) is
defined as seeking uεh ∈ V h,b

r such that

∫

ΩL

{∇uεh · ∇vh

| ∇uεh |ε + | ∇uεh |ε vh

}
dx = 0 ∀vh ∈ V h,0

r . (27)

To address the solvability of scheme (27), we first need to analyze the solvability
and stability for the finite element approximation of (24), (25) with L = Luε and
φ = I r

h uε. The subsequent assertion evidences small, restricted choices h0 = h0(ε)

for this purpose.

Lemma 2 Let ϕ ∈ W 2+k,p(ΩL) denote the unique solution of (24), (25) with L =
Luε , and h0 = O(ε3C−1

0 ). Then, for all h ≤ h0, there exists a unique solution

ϕh ∈ V h,b
r to the problem

〈Luε (ϕh), vh〉 = 〈g, vh〉 ∀ vh ∈ V h,0
r . (28)

Moreover, for 1 < p < ∞

‖ϕ − ϕh ‖L2 + h‖∇(ϕ − ϕh) ‖L2 ≤ C1hr+1 (‖ g ‖Wr−1,2 + ‖φ ‖Wr+1,2
)
, (29)

‖ϕh ‖W 1,p ≤ C2
( ‖ g ‖W−1,p + ‖φ ‖W 1,p

)
, (30)

‖ϕ − ϕh ‖W 1,p ≤ C3 hr ( ‖ g ‖Wr−1,p + ‖φ ‖Wr+1,p
)
, (31)

where C j = C j (ε) are some positive constants which depend on ε−1.
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Proof The existence and uniqueness, as well as estimate (29) follow immediately
from (26), (20), (23), and an application of [3, Theorem 5.7.6], whose proof is known
as the Schatz argument [31].

The Assertions (30) and (31) follow from appealing to the general results of [3,
Theorem 7.5.3] and using (26). ��

Next, for a given wh ∈ V h,b
r , we define T (wh) ∈ V h,b

r by

〈Luε (wh − T (wh)), ψh〉 =
( ∇wh

| ∇wh |ε ,∇ψh

)
+ ( | ∇wh |ε, ψh ) (32)

for all ψh ∈ V h,0
r . Clearly, T is a mapping from V h,b

r into itself, and from Lemma 2
we conclude that T (wh) is well defined and one-to-one if h ≤ h0.

We note that the right-hand side of (32) is the left-hand side of (27) with (wh, ψh)

in the place of (uεh, vh), and it is trivial to see that any fixed point uh of the mapping T
(i.e., uh = T (uh)) is a solution of problem (27). In the following we shall show that
the mapping T has a unique fixed point, hence problem (27) has a unique solution, in
a small neighborhood of I r

h uε. To this end, we define

Bp,h(ρ) = Bp(I
r
h uε, ρ) := { vh ∈ V h,b

r : ‖ vh − I r
h uε ‖W 1,p ≤ ρ},

then we have

Lemma 3 There exist a positive constant C4 = C4(ε), and a sufficiently small number
h1 > 0 such that for h ≤ min{h0, h1} there holds

‖ I r
h uε − T (I r

h uε) ‖W 1,p ≤ C4 hr‖ uε ‖Wr+1,p ∀ 1 < p < ∞. (33)

Proof From the definition of T (I r
h uε)we conclude that I r

h uε − T (I r
h uε) is the unique

solution of (28) with zero boundary value and

g = −div

( ∇ I r
h uε

| ∇ I r
h uε |ε

)
+ | ∇ I r

h uε |ε,

provided that h ≤ h0. It then follows from (30) that

‖ I r
h uε − T (I r

h uε) ‖W 1,p ≤ C2 ‖ g ‖W−1,p . (34)

Now, let p′ be the conjugate number of p, Ph denote the L2-projection operator onto
V h,b

r , and ηεh = I r
h uε − uε. Using (15) and Schwarz inequality we get for ψh = Phψ

with ψ ∈ W 1,p′
(ΩL) that

〈 g, ψh 〉 =
( ∇ I r

h uε

| ∇ I r
h uε |ε − ∇uε

| ∇uε |ε ,∇ψh

)
+ ( | ∇ I r

h uε |ε − | ∇uε |ε, ψh
)

= (
Aεh∇ηεh,∇ψh

) + (
aεh · ∇ηεh, ψh

)
,
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where

Aεh : =
1∫

0

D2 fε
(∇uε + t∇(I r

h uε − uε)
)

dt,

aεh : =
1∫

0

D fε
(∇uε + t∇(I r

h uε − uε)
)

dt.

Since

∣
∣(Aεh)i j

∣
∣ ≤ 2ε−1,

∣
∣(aεh)i

∣
∣ ≤ 1 for 1 ≤ i, j ≤ d,

and the W 1,p′
-continuity of the projection operator Ph (cf. [8]), there exists a suffi-

ciently small number h1 = h1(ε) > 0 such that for h ≤ h1

‖ g ‖W−1,p ≤ 2 sup
ψ∈W 1,p′

(ΩL )‖ψ ‖
W 1,p′ ≤1

|〈 g, ψ 〉| (35)

≤ 6ε−1‖∇ηεh ‖L p ≤ C ε−1hr ‖ uε ‖Wr+1,p .

The proof is complete after setting C4 = C2Cε−1. ��

Next lemma establishes a contracting property of the mapping T .

Lemma 4 Let h0 and h1 be same as in Lemma 3. Then, there exists another small

number h2 > 0 such that for h ≤ min{h0, h1, h2}, let ρ0 = 1
144 C−1

2 h
d
p ε2, the map-

ping T is a contracting mapping in the ball Bp,h(ρ0) with the contraction factor 1
2 ,

that is, for any vh, wh ∈ Bp,h(ρ0)

‖ T (vh)− T (wh) ‖W 1,p ≤ 1

2
‖ vh − wh ‖W 1,p ∀ p ∈

(
d

r
,∞

)
. (36)

Proof For any vh, wh ∈ Bp,h(ρ0), let ξh = vh −wh , subtracting the two copies of Eq.
(32) which define T (vh) and T (wh) and using the Mean Value Theorem of integration
yield that for any ψh ∈ V h,0

r

〈Luε (T (vh)− T (wh)), ψh 〉 =
(

[D2 fε(∇uε)− Aεh]∇ξh,∇ψh

)

+ ( [D fε(∇uε)− aεh] · ∇ξh, ψh
)
, (37)
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where

Aεh : =
1∫

0

D2 fε (∇wh + t∇(vh − wh)) dt,

aεh : =
1∫

0

D fε (∇wh + t∇(vh − wh)) dt.

Note that we have abused the notation by using Aεh and aεh to denote different expres-
sions in different proofs.

For h ≤ h0, (37) implies that T (vh) − T (wh) is the unique solution to (28) with
zero boundary value and

g = −div
(
[D2 fε(∇uε)− Ah]∇ξh

)
+ [D fε(∇uε)− ah] · ∇ξh .

Then, it follows from (30) that

‖ T (vh)− T (wh) ‖W 1,p ≤ C2‖ g ‖W−1,p . (38)

From
∂

∂zk
(D2 fε(z))i j = − zkδi j + z jδik + ziδ jk

| z |3ε
+ 3zi z j zk

| z |5ε
, (39)

and the Mean Value Theorem we get

∣
∣
∣D2 fε(∇uε)− Aεh

∣
∣
∣ ≤ 9ε−2 ( |∇(uε − vh)| + |∇(uε − wh)|

)

≤ 18ε−2 ( |∇(uε − I r
h uε)| + |∇(I r

h uε − vh)| + |∇(I r
h uε − wh)|

)
,

∣
∣D fε(∇uε)− aεh

∣
∣ ≤ 2ε−1 ( |∇(uε − vh)| + |∇(uε − wh)|

)

≤ 4ε−1 ( |∇(uε − I r
h uε)| + |∇(I r

h uε − vh)| + |∇(I r
h uε − wh)|

)
,

which together with the Schwarz inequality and an inverse inequality imply for ψh =
Phψ with ψ ∈ W 1,p′

(ΩL) that

|〈 g, ψh 〉| ≤ 9ε−2
{
‖∇(uε − vh) ‖L∞ + ‖∇(uε − wh) ‖L∞

+ ε−1 (‖∇(uε − vh) ‖L∞ + ‖∇(uε − wh) ‖L∞
)} ‖∇ξh ‖L p‖ψh ‖L p′

≤ 72ε−2
(

hr + ρ0h− d
p

)
‖∇ξh ‖L p‖∇ψh ‖L p′ .

Hence, as above, there exists a small number h2 = h2(ε) such that for h ≤ h2

‖ g ‖W−1,p ≤ 72ε−2
(

hr + ρ0h− d
p

)
‖∇ξh ‖L p . (40)
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It follows from (38), (40), and the definition of ρ0 that

‖ T (vh)− T (wh) ‖W 1,p ≤ 72C2ε
−2

(
hr + ρ0h− d

p

)
‖ vh − wh ‖W 1,p

≤ 1

2
‖ vh − wh ‖W 1,p .

The proof is complete. ��
Remark 5 The reason for restricting p > d

r is to ensure that T maps the center I r
h uε

of the ball Bp,h(ρ0) into the ball, this fact will be used in the proof of the next theorem.

We are now ready to state the first main theorem of this paper.

Theorem 4 Let uε denote the unique solution to problem (12)–(14) (cf. Theorem 2),
h0, h1 and h2 be same as in Lemma 4. For h ≤ min{h0, h1, h2}, let ρ1 = 2C4hr ,
then the finite element method (27) has a unique solution uεh in the ball Bp,h(ρ1) for
p > d

r . Moreover, there exists C5 = C5(ε), such that

‖ uε − uεh ‖W 1,p ≤ C5 hr‖ uε ‖Wr+1,p ∀r ≥ 1, p >
d

r
. (41)

Proof Since Bp,h(ρ1) ⊂ Bp,h(ρ0), Lemma 4 implies that the mapping T is also a
contracting mapping in Bp,h(ρ1) with the contraction factor 1

2 . We shall show that T
also maps Bp,h(ρ1) into itself.

For any vh ∈ Bp,h(ρ1), it follows from Lemma 3, Lemma 4, and the triangle
inequality that

‖ I r
h uε − T (vh) ‖W 1,p

≤ ‖ I r
h uε − T (I r

h uε) ‖W 1,p + ‖ T (I r
h uε)− T (vh) ‖W 1,p

≤ C4 hr + 1

2
‖ I r

h uε − vh ‖W 1,p ≤ ρ1

2
+ ρ1

2
= ρ1. (42)

Hence, T (vh) ∈ Bp,h(ρ1). Consequently, T has a unique fixed point in uεh ∈ Bp,h(ρ1),
which is a unique solution of (27) in Bp,h(ρ1).

The Assertion (41) follows immediately from the fact that uεh ∈ Bp,h(ρ1) and the
following estimate (cf. [3])

‖ uε − I r
h uε ‖W 1,p ≤ C6 hr‖ uε ‖Wr+1,p

for some constant C6 = C6(ε) > 0. The proof is complete. ��

3.2 Error estimates in L p-norm

In this subsection, we shall derive an error estimate for the finite element method (27)
in L p-norm using the error estimates derived in the previous subsection. Our main idea
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is to use a duality argument on the linearized operator Luε to handle the nonlinearity
contributed by the right-hand side of Eq. (12).

The following is the second main theorem of this paper.

Theorem 5 Let uε and uεh denote the solutions of (12)–(14) and (27), respectively.
Let h0, h1, and h2 be same as in Theorem 4, then for h ≤ min{h0, h1, h2}, there holds
for p ∈ ( d

r ,∞), and some C7 = C7(ε) > 0,

‖ uε − uεh ‖L p ≤ C7

(
hr+1‖ uε ‖Wr+1,p + h2r‖ uε ‖2

Wr+1,2p

)
. (43)

Proof Subtracting (27) from (15) yields the error equation

∫

ΩL

{ ∇uε

| ∇uε |ε − ∇uεh
| ∇uεh |ε

}
· ∇ϕh dx (44)

+
∫

ΩL

{| ∇uε |ε − | ∇uεh |ε
}
ϕh dx = 0 ∀ϕh ∈ V h,0

r .

Using the Mean Value Theorem we get

∫

ΩL

Aεh ∇(uε − uεh) · ∇ϕh dx +
∫

ΩL

aεh · ∇(uε − uεh) ϕh dx = 0, (45)

where

Aεh : = =
1∫

0

D2 fε
(∇uε + t∇(uεh − uε)

)
dt,

aεh : =
1∫

0

D fε
(∇uε + t∇(uεh − uε)

)
dt.

Again, we abuse the notation Aεh and aεh .
Let eεh := uε − uεh , it follows from Lemma 1 that there exists a unique ϕ ∈

W 2,p′
(ΩL) ∩ W 1,p′

0 (ΩL) (recall that 1
p + 1

p′ = 1) such that

2L∗
uε (ϕ) = |eεh |p−1sign(eεh) in ΩL ,

ϕ = 0 on ∂ΩL ,

and
‖ϕ ‖W 2,p′ ≤ C0 ‖ |eεh |p−1sign(eεh) ‖L p′ ≤ C0 ‖ eεh | ‖p−1

L p . (46)
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Testing the equation with eεh and using (45) with ϕh = I r
hϕ yield

‖ eεh ‖p
L p =

∫

ΩL

{
D2 fε(∇uε)∇eεh · ∇ϕ + D fε(∇uε) · ∇eεh ϕ

}
dx

=
∫

ΩL

D2 fε(∇uε)∇eεh · ∇(ϕ − I r
hϕ) dx

+
∫

ΩL

D fε(∇uε) · ∇eεh (ϕ − I r
hϕ) dx

+
∫

ΩL

[
D2 fε(∇uε)− Aεh

]
∇eεh · ∇ I r

hϕ dx

+
∫

ΩL

[
D fε(∇uε)− aεh

] · ∇eεh I r
hϕ dx (47)

Here we have used the fact that D2 f (z) is a symmetric matrix to get the first equality.
We now bound the first two terms on the right-hand side of (47) as follows

∣
∣
∣
∣
∣
∣
∣

∫

ΩL

D2 fε(∇uε)∇eεh · ∇(ϕ − I r
hϕ) dx

∣
∣
∣
∣
∣
∣
∣

(48)

≤ 2ε−1 ‖∇eεh ‖L p‖∇(ϕ − I r
hϕ) ‖L p′ ≤ Cε−1h ‖∇eεh ‖L p‖ϕ ‖W 2,p′ ,

∣
∣
∣
∣
∣
∣
∣

∫

ΩL

D fε(∇uε) · ∇eεh (ϕ − I r
hϕ) dx

∣
∣
∣
∣
∣
∣
∣

(49)

≤ ‖∇eεh ‖L p‖ϕ − I r
hϕ ‖L p′ ≤ Ch2 ‖∇eεh ‖L p‖ϕ ‖W 2,p′ .

It follows from (39) and the Mean Value Theorem that

∣
∣
∣D2 fε(∇uε)− Aεh

∣
∣
∣ ≤ 9ε−2|∇eεh |, ∣

∣D fε(∇uε)− aεh
∣
∣ ≤ 2ε−1|∇eεh |.

Also, notice that Aεh and aεh are controlled by the same upper bounds as D2 fε(∇uε)
and D fε(∇uε) are, respectively, that is

∣
∣(Aεh)i j

∣
∣ ≤ 2ε−1

∣
∣(aεh)i

∣
∣ ≤ 1 for 1 ≤ i, j ≤ d,
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Using approximation properties of I r
h and the Poincaré inequality we get

∣
∣
∣
∣
∣
∣
∣

∫

ΩL

[
D2 fε(∇uε)− Aεh

]
∇eεh · ∇ I r

hϕ dx

∣
∣
∣
∣
∣
∣
∣

≤
∫

ΩL

∣
∣
∣D2 fε(∇uε)− Aεh

∣
∣
∣ |∇eεh | |∇ I r

hϕ| dx

≤ 9ε−2
∫

ΩL

| ∇eεh |2| ∇ I r
hϕ | dx ≤ Cε−2 ‖∇eεh ‖2

L2p‖ϕ ‖W 2,p′ , (50)

∣
∣
∣
∣
∣
∣
∣

∫

ΩL

[
D fε(∇uε)− aεh

] · ∇eεh I r
hϕ dx

∣
∣
∣
∣
∣
∣
∣

≤ 2ε−1
∫

ΩL

|∇eεh |2 |I r
hϕ| dx ≤ Cε−1 ‖∇eεh ‖2

L2p‖ϕ ‖W 2,p′ . (51)

Substituting (48), (49), (50), (51), and (46) into (47) yields

‖ eεh ‖L p ≤ CC0ε
−2

(
h ‖∇eεh ‖L p + ‖∇eεh ‖2

L2p

)
,

which together with Theorem 4 lead to the desired estimate. The proof is complete. ��
Remark 6 We note that the proof of Theorem 5 can not be carried over to the case
p = ∞ because the estimate (46) does not hold for p′ = 1 in general. On the other
hand, one can get an L∞-norm error estimate by using a unique continuation idea as
utilized in [9]. However, the explicit dependence of the error constant on the parameter
ε will be lost in the derivation.

4 Passing to the limit as ε → 0

The goal of this section is to address convergence of the finite element solution uεh to
the solution of (8)–(10). It turns out that the convergence actually is a simple corollary
of the error estimate (43) and the convergence (16), which gives the third main theorem
of this paper.

Theorem 6 Let u0 and uεh denote the solution of (8)–(10) and (27), respectively.
Then, there exists a constant C8 = C8(ε) > 0, such that for h ≤ C−1

8 (ε) there holds
that

lim
ε→0

‖ u0 − uεh ‖L∞
loc

= 0. (52)

Proof For any compact subset A ⊂ Ω , there exists ε0 > 0 such that A ⊂ ΩL for
ε ∈ (0, ε0). By (16) we know that uε converges to u0 uniformly on A.
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Using the error bound (43), the inverse inequality bounding the L∞-norm in terms
of the L p-norm, the approximation properties of the interpolation operator I r

h (cf. [7]),
and the fact that 2r ≥ r + 1 we get for 0 < ε < ε0

‖ uε − uεh ‖L∞(A) ≤ ‖ uε − uεh ‖L∞(ΩL )

≤ ‖ uε − I r
h uε ‖L∞(ΩL ) + ‖ I r

h uε − uεh ‖L∞(ΩL )

≤ C hr+1‖ uε ‖Wr+1,∞(ΩL )
+ C h− d

p ‖ I r
h uε − uεh ‖L p(ΩL )

≤ C hr+1‖ uε ‖Wr+1,∞(ΩL )

+C h− d
p
{ ‖ I r

h uε − uε ‖L p(ΩL ) + ‖ uε − uεh ‖L p(ΩL )

}

≤ C hr+1‖ uε ‖Wr+1,∞(ΩL )
+ hr+1− d

p
{ ‖ uε ‖Wr+1,p(ΩL )

+ C7
}
.

Since r + 1 > d
p for p ≥ 2 and r ≥ 1, there exists C8 = C8(ε) > 0, such that

hr+1− d
p {‖ uε ‖Wr+1,p + C7} tends to zero for h ≤ C−1

8 , and ε → 0.
Finally, (52) follows from the following triangle inequality

‖ u0 − uεh ‖L∞(A) ≤ ‖ u0 − uε ‖L∞(A) + ‖ uε − uεh ‖L∞(A) → 0

as ε → 0. The proof is complete. ��
Remark 7 Since the convergence (16) does not give a rate of convergence for
‖ u0 − uε ‖L∞

loc
, hence, the above proof does not provide any rate of convergence

for ‖ u0 − uεh ‖L∞
loc

either. It may be possible to derive a rate convergence by directly
examining the error u0 − uεh , in particular, in a weaker norm.

5 Numerical experiments and rates of convergence

In this section we first provide several 2-D numerical experiments to show the effi-
ciency of the finite element method developed in the previous section, and numerically
to validate the “jumping out” phenomenon of the weak solution of the inverse mean
curvature flow, which corresponds to the discontinuity in t of the function t = u0(x),
where u0 is the solution to (8)–(10). We numerically study the “best” choice of the
mesh size h = h(ε), which also alludes dependence of C7 on ε−1 in (43), and rates of
convergence for both, u0 − uεh and u0 − uε, in terms of powers of ε. We note that no
rate of convergence for u0 − uε was given in [17]. Moreover, we present a numerical
study of the rates of convergence for Moser’s approach (The inverse mean curvature
flow and p-harmonic functions. preprint U Bath, 2005) for approximating the inverse
mean curvature flow via p-harmonic functions (see Remark 3).

5.1 Validation of the “jumping out” phenomenon

All our numerical experiments given in this subsection are done on the domainΩL :=
B10(0)\E0 for different choices of the initial domain E0 or the initial curve Γ0 = ∂E0.
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Fig. 1 Contours of computed solution uεh of Test 1

Also all our numerical experiments are done using regularization parameter ε = 10−2,
mesh parameter h = 10−4, and linear finite element. As pointed out in (b) of Remark 2,
choosing the “correct” Dirichlet boundary value L is very tricky for designing a numer-
ical test problem, since (12)–(14) may have no solution if L is chosen too large.
This theoretical prediction of [17] is indeed observed in our numerical experiments.
In all our numerical experiments we find out the “correct” L simply by trial and
error.

Test 1: In this experiment, we choose L = 3 and the starting curve is the ellipse
centered at the origin with long radius 1 and short radius 0.5. As expected, the inverse
mean curvature flow Γt is a family of expanding ellipses at the very beginning of the
evolution, and quickly rounds to a circle. From there the flow becomes a family of
expanding circles as seen in Tests 1 and 2.

Figure 1 shows 20 contour plots of the computed solution uεh , the graph on left
shows both the contours and the heights of uεh values, while the graph on right only
shows the contours of uεh . In this test, the “magic” number for L is around 3, we find
numerically that the finite element equation (27) has no solution when L ≥ 3.1.

The goal of the next experiment is to show the ability of the generalized inverse
mean curvature flow to evolve curves with flat parts. We remark that since the mean
curvature equal zero on the flat parts, the classical inverse mean curvature flow (1) is
not defined for such curves.

Test 2: In this experiment, we choose L = 4 and E0 is the unit square centered
at the origin. Hence, our starting curve is Γ0 = {(x1, x2); x1 = ±0.5,−0.5 ≤ x2 ≤
0.5 and x2 = ±0.5,−0.5 ≤ x1 ≤ 0.5}. As expected, the inverse mean curvature flow
Γt is a family of expanding squares at the very beginning of the evolution, and quickly
rounds to a circle. From there the flow becomes a family of expanding circles as seen
in Tests 1 and 2.

Figure 2 shows 20 contour plots of the computed solution uεh , the graph on the left
shows both, the contours and the heights of uεh values, while the graph on right only
shows the contours of uεh . The “magic” number for L in this test is around 4, we find
numerically that the finite element equation (27) has no solution when L ≥ 4.1.
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Fig. 2 Contours of computed solution uεh of Test 2

From the definition it is easy to see that the (level set) weak formulation of the
inverse mean curvature flow does not require the starting hypersurface to be con-
nected. In fact, it does not matter if the starting hypersurface has two or more disjoint
components. The goal of the next experiment is to show the ability of the general-
ized inverse mean curvature flow to evolve two disjoint circles, and to observe the
“jumping out” phenomenon of the the weak solution of the flow, which corresponds
to discontinuity of the function t = u0(x) in t .

Test 3: In this experiment we take L = 4, and Γ0 are two disjoint unit circles
centered at (−2, 0) and (2, 0) (hence, separated by a distance of two units). The
classical solution for the inverse mean curvature flow exists up to the point t =
ttouch when the two expanding circles would touch. However, the weak formulation
jumps to the minimizing hull at t = tjump long before t = ttouch is reached. Notice
that a catenoid is formed to bridge the two circles at t = tjump, from that point on
the connected curve becomes round and round, and quickly evolves into a bigger
circle. Afterward, the flow becomes a family of expanding circles as seen in Tests
1 and 2.

Figure 3 shows 20 contour plots of the computed solution uεh , which captures all the
actions described above. The graph on left shows both the contours and the heights of
uεh values, while the graph on right only shows the contours of uεh . Again, the “magic”
number for L in this test is around 4, we find numerically that the finite element
equation (27) has no solution when L ≥ 4.1.

Test 4: The only difference between this experiment and the previous experiment
is that the starting curve Γ0 is changed to two disjoint circles of radius 2 centered
at (−3, 0) and (3, 0), respectively. So the two larger circles are still separated by a
distance of two units. The computed solution uεh is given in Fig. 4. The simulation
shows that because the two starting circles are so close to each other (relative to their
sizes), they jump to form a connected curve in almost no time under the generalized
inverse mean curvature flow. Also, we estimate that the “magic” number for L in this
test is around 4.

123



112 X. Feng et al.

Fig. 3 Contours of computed solution uεh of Test 3

Fig. 4 Contours of computed solution uεh of Test 4

5.2 Rates of convergence for u0 − uεh and u0 − uε

It is interesting and important to know how fast uε converges to u0 as ε → 0 and how
fast uεh converges to u0 as ε → 0, with h ≤ C8(ε). Theoretically, it is very difficult
to estimate these rates of convergence, if it is possible. In this subsection, we shall
address these issues numerically, that is, to estimate these rates of convergence by
numerical tests and to make predictions based on the numerical results.

Test 5: In this test, we examine the rate of convergence of the error ‖uε−uεh‖L2 for
a fixed ε in the case of linear finite element. We solve the following nonhomogeneous
equation

−div

(
∇uε

√|∇uε |2 + ε2

)

+
√

|∇uε |2 + ε2 = gε,
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Table 1 Change of ‖eεh‖L2

with respect to h and ε
(eεh := uε − uεh )

# of elements n h ‖eεh‖L2 ‖eεh‖L2/h2

ε = 0.1
5 0.2 0.013372718 0.334317962

10 0.1 0.003338604 0.33386045

20 0.05 0.000834378 0.333751093

40 0.025 0.000208577 0.333722874

80 0.0125 5.21431E−05 0.333715909

160 0.00625 1.30358E−05 0.333715614

ε = 0.01

5 0.2 0.013372307 0.33430768

10 0.1 0.003338495 0.333849517

20 0.05 0.00083435 0.333740114

40 0.025 0.00020857 0.33371202

80 0.0125 5.21415E−05 0.33370559

160 0.00625 1.30354E−05 0.333707366

ε = 0.001

5 0.2 0.013372303 0.334307587

10 0.1 0.003338495 0.333849517

20 0.05 0.00083435 0.333739995

40 0.025 0.00020857 0.333711866

80 0.0125 5.21415E−05 0.333705353

160 0.00625 1.30354E−05 0.333706679

ε = 0.0001

5 0.2 0.013372303 0.334307587

10 0.1 0.003338495 0.333849517

20 0.05 0.00083435 0.333739995

40 0.025 0.00020857 0.333711866

80 0.0125 5.21415E−05 0.333705292

160 0.00625 1.30354E−05 0.333706679

on the domain Ω = {(x, y); 1 < x < 2, 1 < y < 2}, where

gε := −4

ϕε(x, y)
+ 8x2 + 8y2

ϕε(x, y)3
+ ϕε(x, y), ϕε :=

√
4x2 + 4y2 + ε2.

It is easy to check that u(x, y) = x2 + y2 is the unique exact solution of the above
equation with matched boundary condition.

The numbers on the last column of Table 1 clearly show that ‖uε−uεh‖L2 = O(h2)

for each fixed ε, which is expected for the linear finite element. Moreover, this rate is
robust with respect to ε since the constants do not deteriorate as ε becomes small.

Test 6: The goals of this test are: (1) to determine the rate of convergence u0 − uε;
(2) to find the “best” choice of h in terms of ε such that the global error u0 − uεh is of
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Fig. 5 Change of ‖u0 − uεh‖L2 as a function of ε

the same convergence rate as that for u0 − uε. LetΩ be same as in Test 5, and choose
g such that u(x, y) = x2 + y2 solves

−div

( ∇u

|∇u|
)

+ |∇u| = g.

Figure 5 displays the error ‖u0 − uεh‖L2 using various parameter laws h = O(εα).
The aim here is to determine the rates of convergence for ‖u0 −uεh‖L2 and ‖u0 −uε‖L2

in terms of ε. From all graphs we see that the error ‖u0 − uεh‖L2 becomes a linear
function of ε as soon as ε is less than a threshold value ε0. As expected, this threshold
value ε0 depends on the choice of h = O(εα). Since for large α (such as α ≥ 4), h is
extremely small, so is error ‖uε−uεh‖L2 . Hence, ‖u0 −uε‖L2 ≈ ‖u0 −uεh‖L2 = O(ε)
for ε ∈ (0, ε0). Based on this heuristic argument, we predict that ‖u0 −uε‖L2 = O(ε).
Moreover, since the threshold value ε0 is reasonably large when h = ε2, we conjecture
that h = O(ε2) is the “best” choice for practical simulations.

123



Finite element methods for the inverse mean curvature flow 115

5.3 Rates of convergence for u0 − uεp,h and u0 − u p

In this subsection, we present some numerical tests for Moser’s approach (The inverse
mean curvature flow and p-harmonic functions. preprint U Bath, 2005) which approx-
imates the inverse mean curvature flow via p-harmonic functions (cf. Remark 3). To
the end, we first approximate the degenerate exterior domain problem

2div
(
|∇vp|p−2∇vp

)
= gpv

p−1
p

(p − 1)p−1 in Ω,

vp = 1 on ∂Ω−,
vp → ∞ as |x | → ∞,

by the following regularized problem

2div
(
(|∇vεp|2 + ε2

) p−2
2 ∇vεp) = gpv

p−1
p

(p − 1)p−1 in ΩL , (53)

vεp = 1 on ∂Ω−
L , (54)

vεp = L on ∂Ω+
L , (55)

where L >> 1. Here we have used the fact that if u p solves

−div
(
|∇u p|p−2∇u p

)
+ |∇u p|p = gp,

then vp = e− u p
p−1 solves

div
(
|∇vp|p−2∇vp

)
= gpv

p−1
p

(p − 1)p−1 .

Let Ω = {(x, y); 0 < x < 1, 0 < y < 1}, we choose an appropriate function gp

such that u(x, y) = x2 + y2 solves

−div
(
|∇u p|p−2∇u p

)
+ |∇u p|p = gp.

In the following we shall compute the finite element solution vεp,h for (53)–(55), and
then define uεp,h = (1 − p) log(vεp,h).

Figure 6 displays the error ‖u p − uεp,h‖L2 for p = 1.5 fixed while varying the
mesh size h and parameter ε. The aim here is to determine the rates of convergence
for ‖u p − uεp,h‖L2 and ‖u p − uεp‖L2 in terms ε. From all graphs we see that the error
‖u p − uεp,h‖L2 becomes a linear function of ε as soon as ε is less than a threshold
value ε1. As expected, this threshold value ε1 depends on the choice of h = O(εα).
Since for large α (such as α ≥ 4), h is extremely small, so is error ‖uεp − uεp,h‖L2 .
Hence, ‖u p −uεp‖L2 ≈ ‖u p −uεp,h‖L2 = O(ε) for ε ∈ (0, ε1). Based on this heuristic
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Fig. 6 Error ‖u p − uεp,h‖L2 as a function of ε

argument, we predict that ‖u p − uεp‖L2 = O(ε). Moreover, since the threshold value
ε1 is reasonably large when h = ε2, we conjecture that h = O(ε2) is the “best” choice
for practical simulations.

Test 7: The goal of this test is to determine the rate of convergence of ‖u0 −uεp,h‖L2

and ‖u0 − u p‖L2 in terms of p − 1. To the end, we fix h = ε in all simulations. Let
Ω be the same as in Test 6, and choose g to be an appropriate function such that
u(x, y) = x2 + y2 solves

−div

( ∇u

|∇u|
)

+ |∇u| = g.

Figure 7 displays the error ‖u0 −uεp,h‖L2 as a function of (p−1)with fixed param-

eter law ε = h with various choices of h. We observe that the error ‖u0 − uεp,h‖L2

becomes a linear function of (p − 1) when p − 1 is less than a threshold value σ0,
that is, when p < 1 + σ0. We then predict that ‖u0 − uεp,h‖L2 = O(p − 1). Since for

very small ε = h, ‖u0 − u p‖L2 ≈ ‖u0 − uεp,h‖L2 = O(p − 1), so we also predict that

‖u0 − u p‖L2 = O(p − 1) as p tends to 1.
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Fig. 7 Error ‖u0 − uεp,h‖L2 in p − 1 and ε with h = ε

Fig. 8 Error ‖u0 − uεp,h‖L2(Ω1)
as a function of (p − 1)

Test 8: To confirm the convergence rate prediction of Test 7, we perform some
more simulations using extremely high resolutions which correspond to choices of
extremely small parameter ε and h. To the end, we need to zoom in at a small part
of the computational domain otherwise the amount of computations is too large to be
done on a desktop computer. SetΩ1 = {(x, y)|0 < x < 0.001, 0 < y < 0.001}, let u
and g be same as in Test 7. Figure 8 displays the error ‖u0 −uεp,h‖L2(Ω1)

as a function
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of (p−1). The graphs clearly show the asymptotic rate ‖u0−uεp,h‖L2(Ω1)
= O(p−1),

hence ‖u0 − u p‖L2(Ω1)
= O(p − 1), as p tends to 1.
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