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Abstract It is well known that rational interpolation sometimes gives better
approximations than polynomial interpolation, especially for large sequences of points,
but it is difficult to control the occurrence of poles. In this paper we propose and study
a family of barycentric rational interpolants that have no real poles and arbitrarily high
approximation orders on any real interval, regardless of the distribution of the points.
These interpolants depend linearly on the data and include a construction of Berrut as
a special case.
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1 Introduction

A simple way of approximating a function f : [a, b] → R is to choose a sequence of
points

a = x0 < x1 < · · · < xn = b,

and to fit to f the unique interpolating polynomial pn of degree at most n at these
points, i.e., set

pn(xi ) = f (xi ), 0 ≤ i ≤ n.
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316 M. S. Floater, K. Hormann

However, as is well-known pn may not be a good approximation to f , and for large n
it can exhibit wild oscillations. For the well-documented example of Runge in which
f (x) = 1/(1 + x2) and the points xi are sampled uniformly from the interval [−5, 5],
i.e., xi = −5 + 10i/n, the sequence of polynomials (pn) diverges as n → ∞. If
we are free to choose the distribution of the interpolation points xi , one remedy is to
cluster them near the end-points of the interval [a, b], for example using various kinds
of Chebyshev points [6].

On the other hand, if the interpolation points xi are given to us, we have to make
do with them, and then we need to look for other kinds of interpolants. A very pop-
ular alternative nowadays is to use splines (piecewise polynomials) [9], which have
become a standard tool for many kinds of interpolation and approximation algorithms,
and for geometric modelling. However, it has been known for a long time that the use
of rational functions can also lead to much better approximations than ordinary poly-
nomials. In fact, both polynomial and rational interpolation can exhibit exponential
convergence when approximating analytic functions [1,23].

In “classical” rational interpolation, one chooses some M and N such that M +N =
n and fits to the values f (xi ) a rational function of the form pM/qN where pM and
qN are polynomials of degrees at most M and N , respectively. If n is even, it is typical
to set M = N = n/2, and some authors have reported excellent results. The main
drawback, though, is that there is no control over the occurrence of poles in the interval
of interpolation.

Berrut and Mittelmann [5] suggested that it might be possible to avoid poles by
using rational functions of higher degree. They considered algorithms which fit rational
functions whose numerator and denominator degrees can both be as high as n. This
is a convenient class of rational interpolants because, as observed in [5], every such
interpolant can be written in barycentric form

r(x) =
n∑

i=0

wi

x − xi
f (xi )

/ n∑

i=0

wi

x − xi
(1)

for some real values wi . Thus it suffices to choose the weights w0, . . . , wn in order to
specify r , and the idea is to search for weights which give interpolants r that have no
poles and preferably good approximation properties. Various aspects of this kind of
interpolation are surveyed by Berrut et al. [4].

The polynomial interpolant pn itself can be expressed in barycentric form by letting

wi =
n∏

j=0, j �=i

1

xi − x j
, (2)

a fact first observed by Taylor [22] and Dupuy [10], and the favourable numerical
aspects of this way of evaluating Lagrange interpolants are summarized by Berrut and
Trefethen [6]. Thus the weights in (2) prevent poles, but for interpolation points in
general position, they do not yield a good approximation. Another option, suggested
by Berrut [3], is simply to take

wi = (−1)i , i = 0, 1, . . . , n,
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Barycentric rational interpolation with no poles and high rates of approximation 317

giving

r(x) =
n∑

i=0

(−1)i f (xi )

x − xi

/ n∑

i=0

(−1)i

x − xi
, (3)

which is a truly rational function. Berrut showed that this interpolant has no poles
in R. He also used it to interpolate Runge’s function and his numerical experiments
suggest an approximation order of O(1/n) as n → ∞ for various distributions of
points, including evenly spaced ones.

We independently came across the interpolant (3) while working on a method
for interpolating height data given over nested planar curves [15]. Without going into
details, one can view the interpolant (3) as a kind of univariate analogue of the bivariate
interpolant of [15]. Our numerical examples confirmed its rather low approximation
rate of 1/n, and this motivated us to seek rational interpolants with higher approxi-
mation orders.

The purpose of this paper is to report that there is in fact a whole family of bary-
centric rational interpolants with arbitrarily high approximation orders which includes
Berrut’s interpolant (3) as a special case. The construction is very simple. Choose any
integer d with 0 ≤ d ≤ n, and for each i = 0, 1, . . . , n − d, let pi denote the unique
polynomial of degree at most d that interpolates f at the d + 1 points xi , . . . , xi+d .
Then let

r(x) =
∑n−d

i=0 λi (x)pi (x)
∑n−d

i=0 λi (x)
, (4)

where

λi (x) = (−1)i

(x − xi ) · · · (x − xi+d)
. (5)

Thus r is a blend of the polynomial interpolants p0, . . . , pn−d with λ0, . . . , λn−d

acting as the blending functions. Note that these functions λi only depend on the
interpolation points xi , so that the rational interpolant r depends linearly on the data
f (xi ). This construction gives a whole family of rational interpolants, one for each
d = 0, 1, . . . , n, and it turns out that none of them have any poles in R. Furthermore,
for fixed d ≥ 1 the interpolant has approximation order O

(
hd+1

)
as h → 0, where

h := max
0≤i≤n−1

(xi+1 − xi ), (6)

as long as f ∈ Cd+2[a, b], a property comparable to spline interpolation of (odd)
degree d and smoothness Cd−1 [9]. The interpolant r can also be expressed in the
barycentric form (1) and is easy and fast to evaluate in that form.

The concept of blending local approximations to form a global one is certainly not
a new idea in computational mathematics. For example, Catmull and Rom [7] sug-
gested blending polynomial interpolants using B-splines as the blending functions
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318 M. S. Floater, K. Hormann

(see also [2]). Shepard’s method and its variants [11–13,19,21] for interpolating
multivariate scattered data can also be viewed as blends of local interpolants, where
the blending functions are based on Euclidean distance to the interpolation points.
Moving least squares methods [17,18] have become quite popular recently, where
again a global approximation is formed from local ones. However, we have not seen
the idea of blending developed in the context of rational interpolation and we have
not seen the construction (4) in the literature. Unlike many blending methods, the
blending functions λi in (5) do not have local support. This could be seen as a disad-
vantage, but on the other hand, an advantage of the interpolant r is that it is infinitely
smooth.

In the following sections, we derive the main properties of the interpolant and finish
with some numerical examples. As well as offering an alternative way of interpolating
univariate data, we hope that these interpolants might also lead to generalizations of
the bivariate interpolants of [15].

2 Absence of poles

An important property of the interpolants in (4) is that they are free of poles. In order
to establish this, it will help to rewrite r as a quotient of polynomials. Multiplying the
numerator and denominator in (4) by the product

(−1)n−d(x − x0) · · · (x − xn)

(the factor (−1)n−d simplifies subsequent expressions) gives

r(x) =
∑n−d

i=0 µi (x)pi (x)
∑n−d

i=0 µi (x)
, (7)

where

µi (x) = (−1)n−d(x − x0) · · · (x − xn)λi (x), (8)

or

µi (x) =
i−1∏

j=0

(x − x j )

n∏

k=i+d+1

(xk − x). (9)

Here, we understand an empty product to have value 1. Equation (7) shows that the
degrees of the numerator and denominator of r are at most n and n − d, respectively.
Since neither degree is greater than n, r can be put in barycentric form. We will treat
this later in Sect. 4. Using the form of r in (7) we now show that it is free of poles.
For d = 0 this was shown by Berrut [3].
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Barycentric rational interpolation with no poles and high rates of approximation 319

Theorem 1 For all d, 0 ≤ d ≤ n, the rational function r in (7) has no poles in R.

Proof We will show that the denominator of r in (7),

s(x) =
n−d∑

i=0

µi (x), (10)

is positive for all x ∈ R. Here and later in the paper it helps to define the index set

I := {0, 1, . . . , n − d}.

We first consider the case that x = xα for some α, 0 ≤ α ≤ n, and we set

Jα := {i ∈ I : α − d ≤ i ≤ α}. (11)

Then it follows from (9) that µi (xα) > 0 for all i ∈ Jα and µi (xα) = 0 for i ∈ I \ Jα .
Hence, since Jα is non-empty,

s(xα) =
∑

i∈I

µi (xα) =
∑

i∈Jα

µi (xα) > 0.

Next suppose that x ∈ (xα, xα+1) for some α, 0 ≤ α ≤ n − 1. Then let

I1 := {i ∈ I : i ≤ α − d}, I2 := {i ∈ I : α − d + 1 ≤ i ≤ α},
I3 := {i ∈ I : α + 1 ≤ i}. (12)

We then split the sum s(x) into three parts,

s(x) = s1(x) + s2(x) + s3(x), with sk(x) =
∑

i∈Ik

µi (x). (13)

For each k = 1, 2, 3, we will show that sk(x) > 0 if Ik is non-empty. Since by defini-
tion sk(x) = 0 if Ik is empty, and since at least one of I1, I2, I3 is non-empty (since
their union is I ), it will then follow that s(x) > 0.

To this end, consider first s2. If d = 0 then I2 is empty. If d ≥ 1 then I2 is non-empty
and from (9) we see that µi (x) > 0 for all i ∈ I2 and therefore s2(x) > 0.

Next, consider s3. If α ≥ n − d then I3 is empty. Otherwise, α ≤ n − d − 1 and I3
is non-empty and

s3(x) = µα+1(x) + µα+2(x) + µα+3(x) + · · · + µn−d(x).

Using (9) we see that µα+1(x) > 0, µα+2(x) < 0, µα+3(x) > 0, and so on, i.e., the
first term in s3(x) is positive and after that the terms oscillate in sign. Moreover, one
can further show from (9) that the terms in s3(x) decrease in absolute value, i.e.,

|µα+1(x)| > |µα+2(x)| > |µα+3(x)| > · · · .
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To see this suppose i ≥ α + 1 and compare the expression for µi+1,

µi+1(x) =
i∏

j=0

(x − x j )

n∏

k=i+d+2

(xk − x),

with that of µi in (9). Since

xi+d+1 − x > xi+1 − x,

it follows that |µi (x)| > |µi+1(x)|. Hence, by expressing s3(x) in the form

s3(x) = (
µα+1(x) + µα+2(x)

) + (
µα+3(x) + µα+4(x)

) + · · · ,

it follows that s3(x) > 0.
A similar argument shows that s1(x) > 0 if I1 is non-empty, for then we can express

s1 as

s1(x) = (
µα−d(x) + µα−d−1(x)

) + (
µα−d−2(x) + µα−d−3(x)

) + · · · .

We have now shown that s(x) > 0 for all x ∈ [x0, xn]. Finally, using similar
reasoning, the positivity of s for x < x0 follows from writing it as

s(x) = (
µ0(x) + µ1(x)

) + (
µ2(x) + µ3(x)

) + · · · ,

and for x > xn by writing it as

s(x) = (
µn−d(x) + µn−d−1(x)

) + (
µn−d−2(x) + µn−d−3(x)

) + · · · .

��
Having established that r has no poles, and in particular no poles at the interpolation

points x0, . . . , xn , it is now quite easy to check that r does in fact interpolate f at these
points. Indeed, if x = xα in (7) for some α with 0 ≤ α ≤ n, let Jα be as in (11).
Then pi (xα) = f (xα) for all i ∈ Jα , and recalling that µi (xα) > 0 for all i ∈ Jα and
µi (xα) = 0 otherwise, and that Jα is non-empty,

r(xα) =
∑

i∈Jα
µi (xα)pi (xα)

∑
i∈Jα

µi (xα)
= f (xα)

∑
i∈Jα

µi (xα)
∑

i∈Jα
µi (xα)

= f (xα).

We also note that r reproduces polynomials of degree at most d. For if f is such a
polynomial then pi = f for all i = 0, 1, . . . , n − d, and so

r(x) = f (x)

∑n−d
i=0 µi (x)

∑n−d
i=0 µi (x)

= f (x).

123



Barycentric rational interpolation with no poles and high rates of approximation 321

However, r does not reproduce rational functions. Runge’s function f (x) = 1/(1+x2)

is rational but its interpolant is clearly different, as can be seen from the numerical
tests in Sect. 5.

3 Approximation error

Next we deal with the approximation power of the rational interpolants. Here we treat
the two distinct cases d = 0 and d ≥ 1 separately. The advantage in the case d ≥ 1 is
that the index set I2 in (12) is non-empty and then we can use the partial sum s2(x)

from (13) to get an error bound. Let ‖ f ‖ := maxa≤x≤b| f (x)|.
Theorem 2 Suppose d ≥ 1 and f ∈ Cd+2[a, b], and let h be as in (6). If n − d is
odd then

‖r − f ‖ ≤ hd+1(b − a)
‖ f (d+2)‖

d + 2
.

If n − d is even then

‖r − f ‖ ≤ hd+1

(
(b − a)

‖ f (d+2)‖
d + 2

+ ‖ f (d+1)‖
d + 1

)
.

Proof Since the error f (x) − r(x) is zero whenever x is an interpolation point, it
is enough to treat x ∈ [a, b] \ {x0, . . . , xn}. For such x , the function λi (x) in (5) is
well-defined and we can express the error as

f (x) − r(x) =
∑n−d

i=0 λi (x)( f (x) − pi (x))
∑n−d

i=0 λi (x)
.

Using the Newton error formula [16, Chap. 6],

f (x) − pi (x) = (x − xi ) · · · (x − xi+d) f [xi , . . . , xi+d , x],

where f [xi , . . . , xi+d , x] denotes the divided difference of f at the points xi , . . . ,

xi+d , x , we thus arrive at

f (x) − r(x) =
∑n−d

i=0 (−1)i f [xi , . . . , xi+d , x]
∑n−d

i=0 λi (x)
. (14)

We will derive an upper bound on the numerator and a lower bound on the denominator
of this quotient. Consider first the numerator,

n−d∑

i=0

(−1)i f [xi , . . . , xi+d , x].
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322 M. S. Floater, K. Hormann

This is a sum of n−d +1 terms and to avoid a bound which depends on n and therefore
also h, we exploit the oscillating signs and go to divided differences of higher order.
By combining the first and second terms, and the third and fourth and so on, we can
express the sum as

−
n−d−1∑

i=0, i even

(xi+d+1 − xi ) f [xi , . . . , xi+d+1, x]

if n − d is odd and

−
n−d−2∑

i=0, i even

(xi+d+1 − xi ) f [xi , . . . , xi+d+1, x] + f [xn−d , . . . , xn, x]

if n − d is even. Then, because

n−d−1∑

i=0

(xi+d+1 − xi ) =
n−d−1∑

i=0

i+d∑

k=i

(xk+1 − xk) ≤ (d + 1)

n−1∑

k=0

(xk+1 − xk)

= (d + 1)(b − a),

it follows that

∣∣∣∣∣

n−d∑

i=0

(−1)i f [xi , . . . , xi+d , x]
∣∣∣∣∣ ≤ (d + 1)(b − a)

‖ f (d+2)‖
(d + 2)! (15)

if n − d is odd and

∣∣∣∣∣

n−d∑

i=0

(−1)i f [xi , . . . , xi+d , x]
∣∣∣∣∣ ≤ (d + 1)(b − a)

‖ f (d+2)‖
(d + 2)! + ‖ f (d+1)‖

(d + 1)! (16)

if n − d is even.
Next we consider the denominator in (14) and suppose that x ∈ (xα, xα+1) for

some α with 0 ≤ α ≤ n − 1. Because d ≥ 1, the set I2 in (13) is non-empty, so let j
be any member of I2. Then

s(x) ≥ s2(x) ≥ µ j (x) > 0,

and so, by the definition of µi in (8),

∣∣∣∣∣

n−d∑

i=0

λi (x)

∣∣∣∣∣ = s(x)∏n
i=0|x − xi | ≥ µ j (x)∏n

i=0|x − xi | = |λ j (x)| = 1

|x − x j | · · · |x − x j+d | .
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Barycentric rational interpolation with no poles and high rates of approximation 323

Since x j ≤ xα < x < xα+1 ≤ x j+d , one has

|x − x j | · · · |x − x j+d | ≤
α∏

i= j

(xα+1 − xi )

j+d∏

i=α+1

(xi − xα)

≤ (α − j + 1)! (d − α + j)! hd+1

≤ d! hd+1,

hence

∣∣∣∣∣

n−d∑

i=0

λi (x)

∣∣∣∣∣ ≥ 1

d! hd+1 .

The result now follows from this estimate combined with (15) and (16). ��
Thus for d ≥ 1, r converges to f at the rate of O(hd+1) as h → 0, independently

of how the points are distributed, as long as f is smooth enough.
In the remaining case d = 0 we establish a convergence rate of O(h) but only

under the condition that the local mesh ratio

β := max
1≤i≤n−2

min

{
xi+1 − xi

xi − xi−1
,

xi+1 − xi

xi+2 − xi+1

}

remains bounded as h → 0. This agrees with what we have observed in our numerical
tests: for d = 0 the interpolant behaves rather unpredictably when pairs of points are
close together relative to the others. However, when the points are evenly spaced, β

reduces to 1, and we get the unconditional convergence order O(h) (or O(1/n)) that
Berrut conjectured in [3].

Theorem 3 Suppose d = 0 and f ∈ C2[a, b]. If n is odd then

‖r − f ‖ ≤ h(1 + β)(b − a)
‖ f ′′‖

2
.

If n is even then

‖r − f ‖ ≤ h(1 + β)
(
(b − a)

‖ f ′′‖
2

+ ‖ f ′‖
)
.

Proof We again employ the error formula (14). The estimates for the numerator remain
valid for d = 0 and reduce to

∣∣∣∣∣

n∑

i=0

(−1)i f [xi , x]
∣∣∣∣∣ ≤ (b − a)

‖ f ′′‖
2
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324 M. S. Floater, K. Hormann

if n is odd and

∣∣∣∣∣

n∑

i=0

(−1)i f [xi , x]
∣∣∣∣∣ ≤ (b − a)

‖ f ′′‖
2

+ ‖ f ′‖

if n is even. Thus it remains to show that the denominator in (14) satisfies the lower
bound

∣∣∣∣∣

n∑

i=0

λi (x)

∣∣∣∣∣ ≥ 1

h(1 + β)
. (17)

To this end, suppose x ∈ (xα, xα+1) for some α with 0 ≤ α ≤ n − 1. Since d = 0,
the partial sum s2(x) in (13) is zero and we turn to s1(x) and s3(x). Suppose first that
α = n − 1. Then

s(x) ≥ s3(x) = µn(x),

and so

∣∣∣∣∣

n∑

i=0

λi (x)

∣∣∣∣∣ ≥ |λn(x)| = 1

xn − x
≥ 1

h
,

which proves (17). Similarly, if α = 0, we have

s(x) ≥ s1(x) = µ0(x),

and so

∣∣∣∣∣

n∑

i=0

λi (x)

∣∣∣∣∣ ≥ |λ0(x)| = 1

x − x0
≥ 1

h
,

which again proves (17). Otherwise, 1 ≤ α ≤ n − 2 and we get a bound both from s1
and s3. Using s3, we have

s(x) ≥ s3(x) ≥ µα+1(x) + µα+2(x),

and then

∣∣∣∣∣

n∑

i=0

λi (x)

∣∣∣∣∣ ≥ |λα+1(x) + λα+2(x)| = 1

xα+1 − x
− 1

xα+2 − x

= xα+2 − xα+1

(xα+1 − x)(xα+2 − x)
,
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Barycentric rational interpolation with no poles and high rates of approximation 325

implying

∣∣∣∣∣

n∑

i=0

λi (x)

∣∣∣∣∣ ≥ xα+2 − xα+1

h(xα+2 − xα)
= 1

h(1 + (xα+1 − xα)/(xα+2 − xα+1))
.

On the other hand, using s1 we have

s(x) ≥ s1(x) ≥ µα(x) + µα−1(x),

and a similar argument to the above yields

∣∣∣∣∣

n∑

i=0

λi (x)

∣∣∣∣∣ ≥ 1

h(1 + (xα+1 − xα)/(xα − xα−1))
.

Taking the maximum of these two lower bounds gives (17). ��

4 The barycentric form

Since the degrees of the numerator and denominator of r in (7) are both at most n, we
know from [5] that r can be put in the barycentric form (1). To derive this, we first
write the polynomial pi in (4) in the Lagrange form

pi (x) =
i+d∑

k=i

i+d∏

j=i, j �=k

x − x j

xk − x j
f (xk).

Substituting this into the numerator of (4) gives

n−d∑

i=0

λi (x)pi (x) =
n−d∑

i=0

(−1)i
i+d∑

k=i

1

x − xk

i+d∏

j=i, j �=k

1

xk − x j
f (xk)

=
n∑

k=0

wk

x − xk
f (xk),

where

wk =
∑

i∈Jk

(−1)i
i+d∏

j=i, j �=k

1

xk − x j
, (18)

with Jk as in (11). This is already the form we want for the numerator of r . Similarly,
for the denominator, the fact that

1 =
i+d∑

k=i

i+d∏

j=i, j �=k

x − x j

xk − x j
,
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leads to

n−d∑

i=0

λi (x) =
n∑

k=0

wk

x − xk
.

This shows that r has the barycentric form (1) with the weights w0, . . . , wn given
by (18). This form provides an extremely simple and fast method of evaluating r .
Moreover, this form can be used to evaluate derivatives of r using the derivative for-
mulas of Schneider and Werner [20]. Since we know by Theorem 1 that r has no poles
in R, another result of Schneider and Werner [20] shows that the weights wk must
oscillate in sign. This we can now verify by observing that wk can be written as

wk = (−1)k−d
∑

i∈Jk

i+d∏

j=i, j �=k

1

|xk − x j | .

Now we look at some examples. The case d = 1 gives

wk = (−1)k−1
(

1

xk − xk−1
+ 1

xk+1 − xk

)

for 1 ≤ k ≤ n − 1 and

w0 = −1

x1 − x0
, wn = (−1)n−1

xn − xn−1
.

For general d, when the points xi are uniformly spaced with spacing h, we get

wk = (−1)k−d

hd

∑

i∈Jk

1

(k − i)! (i + d − k)! .

Since a uniform scaling of these weights does not change the interpolant r , we can
multiply them by d! hd to give integer weights

wk = (−1)k−d
∑

i∈Jk

(
d

k − i

)
.

By further writing δk = (−1)k−dwk = |wk |, the first few sets of values δ0, . . . , δn are

1, 1, . . . , 1, 1, d = 0,

1, 2, 2, . . . , 2, 2, 1, d = 1,

1, 3, 4, 4, . . . , 4, 4, 3, 1, d = 2,

1, 4, 7, 8, 8, . . . , 8, 8, 7, 4, 1, d = 3,

1, 5, 11, 15, 16, 16, . . . , 16, 16, 15, 11, 5, 1, d = 4.
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Thus in the uniform case, most of the weights have the same absolute value; the only
change occurs near the ends of the sequence. Yet as we have shown, this “small”
change increases the approximation order of the method. A similar concept is known
in numerical quadrature in the form of “end-point corrections” for the composite trap-
ezoidal rule [8, Sects. 2.8–2.9]. Note that the weights for the uniform case with d = 1
have also been advocated in [3] as an improvement of the case d = 0.

5 Numerical examples

We have tested the rational interpolants using the Matlab code for barycentric inter-
polation proposed by Berrut and Trefethen in [6, Sect. 7]. The basic approach to
evaluating r at a given x is to check whether x is close to some xk , within machine
precision. If it is then the routine returns f (xk). Otherwise the quotient expression
for r(x) in (1) with (18) is evaluated. This method seems to be perfectly stable in
practice. We also note that Higham [14] has shown that if the Lebesgue constant is
small, Lagrange polynomial interpolation using the barycentric formula is forward
stable in the sense that small errors in the data values f (xk) lead to a small relative
error in the interpolant. In view of the good approximation properties of the rational
interpolants r , it seems likely that they too are stable in the same sense, but this has
yet to be verified.

We applied the method first to Runge’s example f (x) = 1/(1+x2) for x ∈ [−5, 5],
which we sampled at the uniformly spaced points xi = −5+10i/n, for various choices
of n. Figure 1 shows plots of the rational interpolant with d = 3 for respectively,
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Fig. 1 Interpolating Runge’s example with d = 3 and n = 10, 20, 40, 80
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n = 10, 20, 40, 80. The second column of Table 1 shows the numerically computed
errors in this example, for n up to 640, and the third column the estimated approxima-
tion orders, and they support the fourth order approximation predicted by Theorem 2.
Figure 2 shows plots of the rational interpolant of the function f (x) = sin(x) at the
same equally spaced points as in the previous example, but this time with d = 4.
The fourth and fifth columns of Table 1 show the computed errors and orders, which
support the fifth order approximation predicted by Theorem 2.

We also tested the method on the function f (x) = |x | which has a discontinuous
first derivative at x = 0. Figure 3 shows the rational interpolant with d = 3 for
respectively n = 10, 20, 40, 80 evenly spaced points in [−5, 5]. The computed errors
and orders of approximation can be found in the sixth and seventh columns of Table 1.

Table 1 Error in rational interpolant

n Runge (d = 3) order sine (d = 4) order abs (d = 3) order

10 6.9e−02 1.7e−02 1.9e−01

20 2.8e−03 4.6 3.9e−04 5.5 9.5e−02 1.0

40 4.3e−06 9.4 7.1e−06 5.8 4.8e−02 1.0

80 5.1e−08 6.4 1.3e−07 5.7 2.4e−02 1.0

160 3.0e−09 4.1 2.7e−09 5.6 1.2e−02 1.0

320 1.8e−10 4.0 6.0e−11 5.5 5.9e−03 1.0

640 1.1e−11 4.0 1.5e−12 5.3 3.0e−03 1.0
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Fig. 2 Interpolating the sine function with d = 4 and n = 10, 20, 40, 80
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Fig. 3 Interpolating |x | over [−5, 5] with d = 3 and n = 10, 20, 40, 80

Table 2 Error in Runge’s
example, varying d

n best d value error

10 d = 0 3.6e−02

20 d = 1 1.5e−03

40 d = 3 4.3e−06

80 d = 7 2.0e−10

160 d = 10 1.3e−15

We found that for any fixed d, the interpolants converge numerically at the rate of
O(h) as h = 1/n → 0, which indicates that Theorem 2 really depends on f being
smooth enough.

One advantage of the rational interpolants is the ease with which we can change
the degree d of the blended polynomials. We can exploit this by finding the value of
d which minimizes the numerically computed approximation error for a given set of
points. Table 2 shows the errors in the Runge example, where, for each n, the optimal
d was used. As the table shows, for this function, it is beneficial to increase d as n
increases. When interpolating the sine function at the same equally spaced points it
was found that d = n gives the smallest error.

Finally, we make a comparison with C2 cubic spline interpolation using clamped
end conditions (i.e., taking the first derivative of the spline at the end-points equal to the
corresponding derivative of the given function f ). The error is O(h4) for f ∈ C4[a, b]
(see [9, Chap. V]), the same order as for the rational interpolant with d = 3 (provided
f ∈ C5[a, b]). Table 3 shows the errors in the Runge example, of the two methods.
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Table 3 Error in rational and
spline interpolation of Runge’s
function

n rational (d = 3) cubic spline

10 6.9e−02 2.2e−02

20 2.8e−03 3.2e−03

40 4.3e−06 2.8e−04

80 5.1e−08 1.6e−05

160 3.0e−09 9.5e−07

320 1.8e−10 5.9e−08

640 1.1e−11 3.7e−09

Table 4 Error in rational and
spline interpolation of the sine
function

n rational (d = 3) cubic spline

10 1.3e−02 3.3e−03

20 1.2e−03 1.7e−04

40 8.4e−05 1.0e−05

80 5.4e−06 6.4e−07

160 3.4e−07 4.0e−08

320 2.1e−08 2.5e−09

640 1.3e−09 1.6e−10

For large n, the error in the rational interpolant is smaller than that of the spline inter-
polant, by a factor of more than 100, for this data set. On the other hand, when the two
methods are applied to the sine function, the error in the spline interpolant is about 10
times smaller than that of the rational interpolant, as indicated in Table 4.

Acknowledgments We wish to thank Tom Lyche for helpful comments concerning a draft version of this
paper.
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