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Abstract In this work we design and analyze an efficient numerical method to solve
two dimensional initial-boundary value reaction–diffusion problems, for which the
diffusion parameter can be very small with respect to the reaction term. The method
is defined by combining the Peaceman and Rachford alternating direction method to
discretize in time, together with a HODIE finite difference scheme constructed on
a tailored mesh. We prove that the resulting scheme is ε-uniformly convergent of
second order in time and of third order in spatial variables. Some numerical examples
illustrate the efficiency of the method and the orders of uniform convergence proved
theoretically. We also show that it is easy to avoid the well-known order reduction
phenomenon, which is usually produced in the time integration process when the
boundary conditions are time dependent.
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2 B. Bujanda et al.

1 Introduction

We consider the two dimensional parabolic initial-boundary value problem

{
ut + Lεu = f (x, t), (x, t) ∈ �× (0, T ], � = (0, 1)2,
u(x, 0) = ϕ0(x), x ∈ �, u(x, t) = 0, (x, t) ∈ ∂�× (0, T ], (1)

where
Lεu ≡ −ε�u + bu. (2)

This is a simple model of problems appearing, for instance, in chemical reaction
processes. We will assume that the positive diffusion coefficient ε can be very small
and that the reaction term is strictly positive (b(x) = b(x1, x2) ≥ β > 0). Also, some
smoothness and compatibility conditions for functions b, f and ϕ0 are going to be
imposed in order to the solution of problem (1) is sufficiently smooth. Concretely, the
compatibility conditions to ensure the required regularity in time of the exact solution
are the following:

� j (x) = 0, x ∈ ∂�, j = 0, 1, 2, 3,

f (ci , t) = 0, i = 1, 2, 3, 4,

where �0(x) ≡ ϕ0(x), � j (x) ≡ ∂ j−1 f

∂t j−1 (x, 0)− Lε� j−1(x), j = 1, 2, 3, and ci , i =
1, 2, 3, 4, are the corners of the unit square �. Using similar arguments to [7] we can
deduce sufficient compatibility conditions to ensure the required regularity in space
for the exact solution.

It is well-known that the solution of (1) has parabolic boundary layers in ∂� ×
(0, T ] and also that there are corner layers in the neighbourhood of the four spatial
corners ci , i = 1, 2, 3, 4 (see [5,14]). Such behaviour causes that standard numerical
methods defined on uniform meshes provide very inaccurate solutions for small values
of the diffusion parameter ε, unless a high number of mesh points are used. Several
alternatives to avoid this drawback can be found in the literature (see [13,18] and the
references therein). One of the most successful ones is the use of simple finite difference
methods defined on suitable piecewise uniform meshes introduced by Shishkin (see
[6] and the references therein). Such meshes were initially designed for 1D stationary
singularly perturbed problems, but they were soon extended successfully to 2D elliptic
problems (see [6,10,12,13]).

To solve efficiently time dependent diffusion–reaction singularly perturbed pro-
blems, this type of spatial discretizations can be combined with suitable time integra-
tors. Usually, the order of uniform convergence of the methods specially designed for
these problems is not higher than one. For instance, in [15] a numerical scheme was
developed for 1D reaction–diffusion parabolic problems, having first order in time
and second order in space. For the same kind of problems, in [8,9] a defect–correction
technique was proposed to increase the order of convergence in time. Nevertheless, it
does not seem an easy task to prove the uniform convergence of this technique in the
case of 2D parabolic problems.
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A high order scheme for time dependent reaction–diffusion problems 3

In [5] a different discretization way was proposed for problem (1), where a simple
(first order) alternating direction implicit method is combined with central differences
on a Shishkin mesh. The deduced numerical algorithm has two main properties: on
one hand, it is unconditionally and ε-uniformly convergent, i.e, its numerical solution
is reliable for any value of ε and any relation between the time and spatial step sizes.
On the other hand, the totally discrete method is optimal in terms of computational
complexity, being capable of advancing in time with a computational cost which
depends linearly on the number of mesh points and without any restriction between
the sizes of the time step and the thickness of the meshes (unconditional stability).

In this paper we propose a new numerical algorithm preserving essentially the same
advantages of the scheme designed in [5] and also it reaches higher orders of conver-
gence both in space and time. Such feature permits to obtain very accurate solutions
by using larger time steps and coarser spatial meshes than using lower order schemes.
This scheme arises from the combination of the Peaceman and Rachford method [17],
which reaches second order of convergence, and a third order HODIE finite diffe-
rence scheme, defined on an appropriate piecewise uniform mesh of Shishkin type to
discretize in space [2].

The paper is structured as follows. In Sect. 2, we revise the asymptotic behaviour,
with respect to the parameter ε, of the solution of (1) and their partial derivatives.
Also in this section we prove the uniform convergence of second order of the time
semidiscretization proposed, based on the Peaceman and Rachford method. In Sect. 3
we prove the asymptotic behaviour (respect to the singular perturbation parameter ε)
of the semidiscrete solutions, and their spatial derivatives, of the problems resulting of
the application of the Peaceman and Rachford method. In Sect. 4 we define a classical
HODIE finite difference scheme (exact for polynomials of degrees less than or equal
to three), which is going to be used to discretize in space the semidiscrete problems
studied in previous section. We prove that if the spatial discretization is defined on
a mesh of Shishkin type, then the scheme is uniformly convergent of third order.
From the previous results, we will prove the main result of this paper: the uniform
convergence of the totally discrete method. In Sect. 5, we perform some numerical
examples for a problem of type (1), which show a uniformly convergent behaviour,
according to the theoretical results. Also, we analyze a more general problem than (1),
where the boundary conditions are time dependent. It is well-known that a classical
discretization of these boundary conditions causes a order reduction effect in time.
We propose an alternative way to discretize the boundary conditions at each stage in
order to restore the second order of uniform convergence. Some numerical examples
clearly illustrate the practical improvements of this technique.

Henceforth, C and c denote any positive constant independent of the singular per-
turbation parameter ε and the discretization parameters N and �t .

2 The continuous problem and the time semidiscretization

Let us assume that the data b, f and ϕ0 of problem (1) are sufficiently smooth functions
and also that there are sufficient compatibility conditions between them, in order to
ensure that the solution u(x, t) ∈ C6,6,3(�× [0, T ]) (see [11]).
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4 B. Bujanda et al.

In [5] it was proven that the exact solution u of (1) can be decomposed in the form

u = u0 +
4∑

i=1

ui +
4∑

i=1

wi , (3)

where u0 is the regular component, ui , i = 1, 2, 3, 4, are the edge boundary layer
functions associated at each one of the four sides of the unit square and wi , i =
1, 2, 3, 4, are the corner layer functions corresponding to the corner points ci , i =
1, 2, 3, 4, respectively. Also, in [5] the authors give the following bounds for each one
of these components:

∣∣∣∣∣
∂ks+kt u0(x, t)

∂xk1
1 ∂xk2

2 ∂tkt

∣∣∣∣∣ ≤ C,

∣∣∣∣∣
∂ks+kt u1(x, t)

∂xk1
1 ∂xk2

2 ∂tkt

∣∣∣∣∣ ≤ Cε−k1/2 exp

(
−

√
βx1√
ε

)
,

∣∣∣∣∣
∂ks+kt u2(x, t)

∂xk1
1 ∂xk2

2 ∂tkt

∣∣∣∣∣ ≤ Cε−k1/2 exp

(
−

√
β(1 − x1)√

ε

)
,

∣∣∣∣∣
∂ks+kt u3(x, t)

∂xk1
1 ∂xk2

2 ∂tkt

∣∣∣∣∣ ≤ Cε−k2/2 exp

(
−

√
βx2√
ε

)
,

∣∣∣∣∣
∂ks+kt u4(x, t)

∂xk1
1 ∂xk2

2 ∂tkt

∣∣∣∣∣ ≤ Cε−k2/2 exp

(
−

√
β(1 − x2)√

ε

)
,

∣∣∣∣∣
∂ks+ktw1(x, t)

∂xk1
1 ∂xk2

2 ∂tkt

∣∣∣∣∣ ≤ Cε−ks/2 min

{
exp

(
−

√
βx1√
ε

)
, exp

(
−

√
βx2√
ε

)}
,

∣∣∣∣∣
∂ks+ktw2(x, t)

∂xk1
1 ∂xk2

2 ∂tkt

∣∣∣∣∣ ≤ Cε−ks/2 min

{
exp

(
−

√
β(1 − x1)√

ε

)
, exp

(
−

√
βx2√
ε

)}
,

∣∣∣∣∣
∂ks+ktw3(x, t)

∂xk1
1 ∂xk2

2 ∂tkt

∣∣∣∣∣ ≤ Cε−ks/2 min

{
exp

(
−

√
βx1√
ε

)
, exp

(
−

√
β(1 − x2)√

ε

)}
,

∣∣∣∣∣
∂ks+ktw4(x, t)

∂xk1
1 ∂xk2

2 ∂tkt

∣∣∣∣∣ ≤ Cε−ks/2 min

{
exp

(
−

√
β(1 − x1)√

ε

)
, exp

(
−

√
β(1 − x2)√

ε

)}
,

where ks = k1 + k2, ks + 2kt ≤ 6, showing their asymptotic behaviour with respect
to the diffusion parameter ε.

To get our totally discrete numerical method, we consider firstly a time semidiscreti-
zation of (1) by using the classical Peaceman and Rachford fractional step method, with
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A high order scheme for time dependent reaction–diffusion problems 5

a constant time step �t . In order to shorten the notations, we rewrite the differential
operator Lε as Lε = L1,ε + L2,ε, where

Li,ε ≡ −ε ∂
2

∂x2
i

+ bi (x), i = 1, 2, (4)

taking bi (x) such that b(x) = b1(x) + b2(x) and bi (x) ≥ βi > 0, i = 1, 2. Besides,
we decompose the source term as f = f1 + f2 with

f2(x, t) = f (x1, 0, t)+ x2
(

f (x1, 1, t)− f (x1, 0, t)
)
,

f1(x, t) = f (x, t)− f2(x, t), (5)

as it was suggested in [4]. Then, the Peaceman and Rachford method can be written
as

u0 = ϕ0(x),{(
I + �t

2 L1,ε
)
u n+ 1

2 (x) = f̂1,un (x, tn,�t), x2 ∈ (0, 1),

u n+ 1
2 (0, x2) = u n+ 1

2 (1, x2) = 0,
(6)

{(
I + �t

2 L2,ε
)
u n+1(x) = f̂

2,u n+ 1
2

(
x, tn+ 1

2
,�t

)
, x1 ∈ (0, 1),

u n+1(x1, 0) = u n+1(x1, 1) = 0,
(7)

where tn+ 1
2

= (n + 1
2 )�t , with

f̂1,un (x, tn,�t) =
(

I − �t

2
L2,ε

)
un(x)+ �t

2

(
f1

(
x, tn+ 1

2

) + f2(x, tn)
)
,

(8)

f̂
2,u n+ 1

2

(
x, tn+ 1

2
,�t

)
=

(
I −�t

2
L1,ε

)
u n+ 1

2 (x)+�t

2

(
f1

(
x, tn+ 1

2

)+ f2(x, tn+1)
)
,

(9)

and un(x) denotes the approximation of the exact solution u(x, t) at the time level
tn = n�t . Clearly, since the differential operators (I + �t

2 Li,ε), i = 1, 2, satisfy a
maximum principle, it is straightforward to prove that

∥∥(
I + �t

2
Li,ε

)−1 ∥∥∞ ≤ 1

1 + βi
�t
2

, i = 1, 2.

These bounds prove that each one of the steps of the scheme (6)–(7) has a unique
solution u n+1(x), which can be bounded independently of the diffusion parameter ε.

To study the consistency of the Peaceman and Rachford method, we introduce the
local error en+1 = u(x, tn+1) − û n+1(x), where û n+1(x) is the approximation to
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6 B. Bujanda et al.

u(x, tn+1) obtained with one time step of (6)–(7), taking u(x, tn) as the starting value
un(x), i.e., û n+1(x) is the solution of the problem

un(x) = u(x, tn),{(
I + �t

2 L1,ε
)

û n+ 1
2 (x) = f̂1,un (x, tn,�t), x2 ∈ (0, 1),

û n+ 1
2 (0, x2) = û n+ 1

2 (1, x2) = 0,
(10)

{
(I + �t

2 L2,ε )̂u n+1(x) = f̂
2,̂u n+ 1

2
(x, tn+ 1

2
,�t), x1 ∈ (0, 1),

û n+1(x1, 0) = û n+1(x1, 1) = 0,
(11)

where f̂1, f̂2 are defined in (8) and (9), respectively, but substituting un(x) by u(x, tn)

and u n+ 1
2 (x) by û n+ 1

2 (x).

Lemma 1 Let us suppose that

{
u,
∂u

∂t
,
∂2u

∂t2 ,
∂3u

∂t3

}
⊂ C0(�̄× [0, T ]), (12)

and also that they are bounded independently of ε. Then, the local error satisfies

‖en+1‖∞ ≤ C(�t)3. (13)

Proof It follows the same ideas developed in [3]. 	

Using Lemma 1, we are ready to deduce the uniform convergence of this semi-

discretization process. Let En = u(x, tn) − un(x) be the global error associated to
(6)–(7); then, clearly it holds En = en + REn−1, where

R ≡
(

I + �t

2
L2,ε

)−1 (
I − �t

2
L1,ε

) (
I + �t

2
L1,ε

)−1 (
I − �t

2
L2,ε

)
,

is the transition operator defined as follows: REn−1 is the result obtained after one
step of scheme (6)–(7) taking as starting data un = En−1, null boundary conditions
and zero values for the source terms f1 and f2. Using this recurrence, we deduce

En =
n∑

i=1

Rn−i ei .

Thus, if it holds that
‖Ri‖∞ ≤ C, i = 1, 2, . . . , n, (14)

it immediately follows that,

sup
n≤ T

�t

‖En‖∞ ≤ C(�t)2,

123



A high order scheme for time dependent reaction–diffusion problems 7

i.e., the semidiscrete scheme (6)–(7) is a second order ε-uniform convergent method.
Note that (14) is a typical stability condition; for instance, the same type of result was
established in [16] for A-stable one step time discretizations of parabolic problems.
In particular, in [16] the stability, in the maximum norm, of the Crank-Nicolson time
semidiscretization for the heat equation was discussed. In our case, condition (14) can
be obtained in a similar way when the operators L1,ε and L2,ε commute (for instance,
this property is immediately satisfied if b1 ≡ b1(x1) and b2 ≡ b2(x2)). In such
case, the operators Ri can be rewritten in the form Ri

1 Ri
2 where R j ≡ (I + �t

2 L j,ε)
−1

(I −�t
2 L j,ε), j = 1, 2, i.e., R j , j = 1, 2, can be seen as the Crank-Nicolson transition

operator corresponding to the time semidiscretization of a parabolic problem where
the spatial differential operator is L j,ε, j = 1, 2. Then, we can use that the operators
L j,ε, j = 1, 2, are ε-uniformly sectorial, i.e., for 0 < θ < π/2 the spectra of
L j,ε, j = 1, 2, are contained in the set Sθ ≡ {z ∈ C; | arg z| ≤ θ} and for every
z /∈ Sθ it is satisfied that ‖(z − L j,ε)

−1‖∞ ≤ C/|z| independently of ε. From [16] we
can deduce that ‖Ri

j‖∞ ≤ C, j = 1, 2, i = 1, 2, . . ., and consequently (14) follows.
When operators L j,ε, j = 1, 2, do not commute, it is not possible to apply this
argument, but in the numerical experiences performed with our method for many non
commuting cases, the same stable behaviour as in the cases with commuting operators
has been observed.

3 Asymptotic behaviour of the solutions of the semidiscrete problems

This section is devoted to prove that the solutions of the semidiscrete in time problems
and their spatial derivatives, up to certain order, have essentially the same behaviour
that the solution of a stationary 1D diffusion–reaction singularly perturbed problem.
Such feature is the key that allows us to choose suitable spatial discretizations for these
problems, in order to obtain a uniformly convergent numerical algorithm.

Lemma 2 Let û n+ 1
2 (x) and û n+1(x) be the solutions of (10) and (11) respectively.

Then, there exists a constant C independent of ε and �t such that, for 0 ≤ i ≤ 6, it
holds

∣∣∣∣∣
∂ i û n+ 1

2 (x)

∂xi
1

∣∣∣∣∣ ≤ C
(

1 + ε−i/2
(

exp
( − √

β1x1/
√
ε
) + exp

(− √
β1(1 − x1)/

√
ε
)))
,

(15)∣∣∣∣∣
∂ i û n+1(x)

∂xi
2

∣∣∣∣∣ ≤ C
(

1+ε−i/2
(

exp
( − √

β2x2/
√
ε
)+exp(−√

β2(1 − x2)/
√
ε)

))
.

(16)

Proof Let us start by studying in detail the behaviour of û n+ 1
2 (x) and their spatial

derivatives. First of all, using that the operator (I + �t
2 L1,ε) satisfies a maximum

principle, the data f1, f2 are ε-uniformly bounded and |u(x, tn)| ≤ C, |L2,εu(x, tn)| ≤
C , it follows that |̂u n+ 1

2 (x)| ≤ C . Let us obtain now the corresponding bounds for
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8 B. Bujanda et al.

the x1-derivatives of û n+ 1
2 (x). We introduce the auxiliary function

ω ≡ û n+ 1
2 (x)− u(x, tn)

�t/2
, (17)

which is the solution of the following boundary value problem

{(
I + �t

2 L1,ε
)
ω(x) = ∂u

∂t
(x, tn)+ f1

(
x, tn+ 1

2

) − f1(x, tn), x2 ∈ (0, 1),

ω(0, x2) = ω(1, x2) = 0.

As the right-hand side of the differential equation is composed of ε-uniformly bounded
terms, we can use again the maximum discrete principle of the operator (I + �t

2 L1,ε)

to deduce that |ω(x)| ≤ C . Then, rewriting the boundary value problem (10) in the
form

{
L1,εû n+ 1

2 (x) = −ω − L2,εu(x, tn)+ f1
(
x, tn+ 1

2

) + f2(x, tn), x2 ∈ (0, 1),

û n+ 1
2 (0, x2) = û n+ 1

2 (1, x2) = 0,

similarly to [14] we can obtain

∣∣∣∣∣
∂ i û n+ 1

2

∂xi
1

(0, x2)

∣∣∣∣∣ ≤ Cε−i/2, i = 1, 2,

and

∣∣∣∣∣
∂ i û n+ 1

2

∂xi
1

(1, x2)

∣∣∣∣∣ ≤ Cε−i/2, i = 1, 2.

Next, differentiating with respect to x1 the differential equation of problem (10), we

see that the functions φi ≡ ∂ i û n+ 1
2

∂xi
1

, i = 1, 2, are the solutions of boundary value

problems of the form

{(
I + �t

2 L1,ε
)
φi (x) = gi (x),

φi (0, x2) = h0
i (x2), φi (1, x2) = h1

i (x2),

where |h j
i (x2)| ≤ Cε−i/2, j = 0, 1, i = 1, 2, and |gi (x)| ≤

C
(
1 + ε−i/2

(
exp(−√

β1x1/
√
ε)+ exp(−√

β1(1−x1)/
√
ε)

))
, i =1, 2.

Using the same barrier function technique that in [5] we deduce the bounds (15) for
i = 1, 2.
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A high order scheme for time dependent reaction–diffusion problems 9

To find the corresponding bounds for i = 3, 4, we firstly observe that ω̄ ≡ L1,εω

is the solution of the boundary value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
I + �t

2 L1,ε
)
ω̄(x) = L1,ε

(
∂u

∂t
(x, tn)+ f1

(
x, tn+ 1

2

) − f1(x, tn)

)
,

ω̄(0, x2) = 2
�t

(
f1

(
0, x2, tn+ 1

2

) − f1(0, x2, tn)
)
,

ω̄(1, x2) = 2
�t

(
f1

(
1, x2, tn+ 1

2

) − f1(1, x2, tn)
)
.

Using again the maximum principle and taking into account that the boundary condi-
tions are bounded independently of �t and ε, we deduce that ω̄ is bounded indepen-

dently of ε and �t . Hence, it follows

∣∣∣∣∣
∂2ω

∂x2
1

∣∣∣∣∣ ≤ Cε−1.

Now we use that φ2 is the solution of the boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L1,εφ2(x) = ∂2

∂x2
1

( − ω − L2,εu(x, tn)+ f1(x, tn+ 1
2
)+ f2(x, tn)

)

−2
∂b1

∂x1

∂ û n+ 1
2

∂x1
− ∂2b1

∂x2
1

û n+ 1
2 ,

φ2(0, x2) = − f1
(
0, x2, tn+ 1

2

)
/ε, φ2(1, x2) = − f1

(
1, x2, tn+ 1

2

)
/ε,

where both the right-hand side of the differential equation and the boundary conditions
are bounded by Cε−1. Again, proceeding as in [14], we can obtain

∣∣∣∣∣
∂ i û n+ 1

2

∂xi
1

(0, x2)

∣∣∣∣∣ ≤ Cε−i/2,

∣∣∣∣∣
∂ i û n+ 1

2

∂xi
1

(1, x2)

∣∣∣∣∣ ≤ Cε−i/2, i = 3, 4.

Next, differentiating with respect to x1 the differential equation of problem (10), it

follows that φi = ∂ i û n+ 1
2

∂xi
1

, i = 3, 4, are the solutions of boundary value problems

of the form
{(

I + �t
2 L1,ε

)
φi (x) = gi (x),

φi (0, x2) = h0
i (x2), φi (1, x2) = h1

i (x2),

where

|gi (x)|≤C
(
1 + ε−i/2

(
exp(−√

β1x1/
√
ε)+ exp(−√

β1(1 − x1)/
√
ε)

))
, i =3, 4,

|h j
i (x2)| ≤ Cε−i/2, j = 0, 1, i = 3, 4.

Using again the barrier function technique of [5], the bounds (15) are obtained for
i = 3, 4.

A similar process can be followed to prove the corresponding bounds for i = 5, 6.
Looking for not repeating similar arguments in excess, we resume this step of the
proof to the main keys. Firstly, we prove that L2

1,εω is ε-uniformly bounded to deduce
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10 B. Bujanda et al.

immediately that

∣∣∣∣∣
∂4ω

∂x4
1

∣∣∣∣∣ ≤ Cε−2. Then, we write φ4 as the solution of a boundary

value problem of type

{
L1,εφ4 = g4(x),
φ4(0, x2) = h0

4(x2), φ4(1, x2) = h1
4(x2),

where functions g4, h0
4, h1

4 are bounded by Cε−2 and we deduce the bounds for∣∣∣∣∣
∂ i û n+ 1

2

∂xi
1

∣∣∣∣∣ , i = 5, 6, first in the boundaries x1 = 0, x1 = 1 and after for x1 ∈ (0, 1).

The process to prove (16) for the x2-derivatives of û n+1(x) is very similar to the

one detailed above for bounding the x1-derivatives of û n+ 1
2 (x). The main difference

is that now it is required to prove previously that

∣∣∣∣∣
∂ i û n+ 1

2 (x)

∂xi
2

∣∣∣∣∣ ≤ C
(

1 + ε−i/2
(

exp(−√
β2x2/

√
ε)+ exp(−√

β2(1 − x2)/
√
ε)

))
,

holds for 1 ≤ i ≤ 6. Fortunately, these bounds are easily deduced by using that

ψi ≡ ∂ i û n+ 1
2

∂xi
2

, 1 ≤ i ≤ 6, are solutions of boundary value problems of type

{
(I + �t

2 L1,ε)ψi (x) = ḡi (x),
ψi (0, x2) = 0, ψi (1, x2) = 0.

The maximum principle satisfied by the operator (I + �t
2 L1,ε) joint to the available

bounds for ḡi , for each value of x2, permit to deduce directly the required bounds.

4 The spatial semidiscretization

In this section we discretize in space the essentially 1D elliptic singularly perturbed
problems (6)–(7). Bounds (15) and (16), which show the asymptotic behaviour of the
exact solutions of (10), (11), respectively, give the key to construct the appropriate
mesh of Shishkin type; next, we define the HODIE finite difference scheme on this
mesh.

Let N = 4k where k is a positive integer; we define the transition parameters
σl , l = 1, 2, in the form

σl = min
{
1/4, σl,0

√
ε ln N

}
, l = 1, 2, (18)
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A high order scheme for time dependent reaction–diffusion problems 11

where σl,0, l = 1, 2, are positive constants to be fixed later. On each spatial direction

we consider the meshes I
N
l,ε = {xl, j ; j = 0, . . . , N }, where

xl, j =

⎧⎪⎪⎨
⎪⎪⎩

jhl , j = 0, . . . , N/4,

xl,N/4 + ( j − N/4)Hl , j = N/4 + 1, . . . , 3N/4,

xl,3N/4 + ( j − 3N/4)hl , j = 3N/4 + 1, . . . , N ,

(19)

with Hl = 2(1 − 2σl)/N , hl = 4σl/N , l = 1, 2; also, we will denote the local step
sizes as hl, j = xl, j − xl, j−1, j = 1, . . . , N , l = 1, 2. Then, the mesh is defined as the

tensor product of the corresponding 1D Shishkin meshes, i.e.,�
N
ε = I

N
1,ε× I

N
2,ε. Note

that if σl = 1/4, � = 1, 2, then the mesh is uniform, N−1 is very small respect to ε and
therefore a classical analysis could be made to prove the convergence of the scheme.
So, in our theoretical analysis we only consider the case σl = σl,0

√
ε ln N , l = 1, 2.

To discretize (10)–(11) on this mesh, we use a classical HODIE finite difference
scheme, which is exact only for polynomial functions of degrees less than or equal to
three (see [2] for the details of the construction). This scheme is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
I + �t

2 L N
1,ε

)
Û

n+ 1
2

x1, j ,x2 ≡ r1,−
j Û

n+ 1
2

x1, j−1,x2 + r1,c
j Û

n+ 1
2

x1, j ,x2 + r1,+
j Û

n+ 1
2

x1, j+1,x2

= q1,1
j F̂1,un

(
x1, j−1, x2, tn,�t

) + q1,2
j F̂1,un

(
x1, j , x2, tn,�t

)
+ q1,3

j F̂1,un
(
x1, j+1, x2, tn,�t

)
, j = 1, . . . , N − 1, x2 ∈ I N

2,ε,

Û
n+ 1

2
0,x2

= Û
n+ 1

2
N ,x2

= 0,

(20)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
I + �t

2 L N
2,ε

)
Û n+1

x1,x2, j
≡ r2,−

j Û n+1
x1,x2, j−1

+ r2,c
j Û n+1

x1,x2, j
+ r2,+

j Û n+1
x1,x2, j+1

= q2,1
j F̂

2,Û n+ 1
2

(
x1, x2, j−1, tn+ 1

2
,�t

)+q2,2
j F̂

2,Û n+ 1
2

(
x1, x2, j , tn+ 1

2
,�t

)
+ q2,3

j F̂
2,Û n+ 1

2

(
x1, x2, j+1, tn+ 1

2
,�t

)
, j = 1, . . . , N − 1, x1 ∈ I N

1,ε,

Û n+1
x1,0

= Û n+1
x1,N

= 0,

(21)

where

F̂1,un (x1, j , x2, tn,�t) = u(x1, j , x2, tn)+ �t

2

( − L
N
2,εu(x1, j , x2, tn)

+ f1
(
x1, j , x2, tn+ 1

2

) + f2(x1, j , x2, tn)
)
, (22)

F̂
2,Û n+ 1

2

(
x1, x2, j , tn+ 1

2
,�t

) = Û
n+ 1

2
x1,x2, j + �t

2

( − L
N
1,εÛ

n+ 1
2

x1,x2, j

+ f1
(
x1, x2, j , tn+ 1

2

) + f2(x1, x2, j , tn+1)
)
, (23)
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12 B. Bujanda et al.

and the operators L
N
i,ε, i = 1, 2, are defined by

L
N
2,εu(x1, x2, tn) = L2,ε(u

(
x1, x2, tn)

)
, (24)

L
N
1,εÛ

n+ 1
2

x1,x2 = −L
N
2,εu(x1, x2, tn)− 2

Û
n+ 1

2
x1,x2 − u

(
x1, x2, tn

)
�t

+ f1
(
x1, x2, tn+ 1

2

) + f2
(
x1, x2, tn+1

)
. (25)

The values of the coefficients rl,•
j , j = 1, . . . , N − 1, l = 1, 2, • = −, c,+, are

given by

rl,−
j = �t

2

( −2ε

hl, j (hl, j + hl, j+1)
+ ql,1

j

(
b̄l, j−1 + 2

�t

))
,

rl,+
j = �t

2

( −2ε

hl, j+1(hl, j + hl, j+1)
+ ql,3

j

(
b̄l, j+1 + 2

�t

))
, (26)

rl,c
j = �t

2

(
ql,1

j b̄l, j−1 + ql,2
j b̄l, j + ql,3

j b̄l, j+1

)
− rl,−

j − rl,+
j + 1,

where b̄l , l = 1, 2, denote the restriction on the mesh�
N
ε of the functions bl , l = 1, 2

( i.e., b̄1, j = b1(x1, j , x2), b̄2, j = b2(x1, x2, j )). Note that the values of the coefficients
rl,•

j , j = 1, . . . , N − 1, l = 1, 2, • = −, c,+, depend on the location of the mesh

points and also on the relation between Hl and ε, because the coefficients ql,m
j , j =

1, . . . , N − 1, l = 1, 2, m = 1, 2, 3, are defined in two different ways. In the cases
xl, j ∈ (0, σl)

⋃
(1 − σl , 1) the coefficients ql,m

j , l = 1, 2, j = 1, . . . , N/4 − 1 and
j = 3N/4 + 1, . . . , N − 1 for m = 1, 2, 3, are given by

ql,1
j = 1

6

(
1 − h2

l, j+1

hl, j (hl, j + hl, j+1)

)
,

ql,3
j = 1

6

(
1 − h2

l, j

hl, j+1(hl, j + hl, j+1)

)
, (27)

ql,2 = 1 − ql,1 − ql,3.

For xl, j ∈ [σl , 1−σl ] we must distinguish two cases depending on the relation between
Hl and ε. First, when c1 H2

l ‖bl‖∞ ≤ ε, l = 1, 2 (c1 is a fixed positive constant

independent of ε, see [2]), the coefficients ql,m
j , l = 1, 2, j = N/4, . . . , 3N/4 for

m = 1, 2, 3 are defined again by (27). On the other hand, when c1 H2
l ‖bl‖∞ > ε, l =

1, 2, then the coefficients ql,m
j , l = 1, 2, j = N/4, . . . , 3N/4, m = 1, 2, 3, are given

by
ql,1

j = ql,3
j = 0, ql,2

j = 1. (28)
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A high order scheme for time dependent reaction–diffusion problems 13

Lemma 3 Let N0 be the smallest positive integer such that

max
l=1,2

{
4σ 2

l,0(‖bl‖∞ + 2/�t)/3
}
< N 2

0 / ln2 N0. (29)

Then, for any N ≥ N0, there exists a constant c independent of ε such that

rl,−
j + rl,c

j + rl,+
j ≥ c > 0, rl,−

j < 0, rl,+
j < 0, l = 1, 2, 1 ≤ j < N .

Therefore, the finite difference operators defined by (20)–(21) are both of positive
type, they satisfy a discrete maximum principle and they are uniformly stable in the
maximum norm.

Proof In the case that xl, j ∈ [σl , 1 − σl ] and c1 H2
l ‖bl‖∞ > ε, l = 1, 2 holds, the

proof is trivial. In other case, using (26), (27), the condition (29) and the definition
of the step sizes of the mesh, it easily follows that rl,−

j , rl,+
j < 0, l = 1, 2, and

rl,−
j + rl,c

j + rl,+
j ≥ c > 0, l = 1, 2.

Once checked the ε-uniform stability of the HODIE scheme, we must study the
local error associated to it. Firstly, we consider the local error corresponding to the
problems in the x1 direction; to simplify the expressions we omit the dependence of
x2 ∈ I N

2,ε. We know that the local error is defined by

τ 1

û n+ 1
2
(x1, j ) =

(
I + �t

2
L N

1,ε

) [
û

n+ 1
2

x1, j − Û
n+ 1

2
x1, j

]
.

From (10) and (22) we find that

F̂1,un (x1, j , x2, tn,�t) = f̂1,un (x1, j , x2, tn,�t)

=
(

I + �t

2
L1,ε

)
û n+ 1

2 (x1, j , x2)

≡
(

I + �t

2
L1,ε

)
û

n+ 1
2

x1, j .

Then, from here, using (20) and taking Taylor expansions, it is straightforward to see
that the local error satisfies

τ 1

û n+ 1
2
(x1, j ) = �t

2
τ̄ 1

û n+ 1
2
(x1, j ),

where τ̄ 1

û n+ 1
2

is the local error associated to the HODIE scheme defined in [2], corres-

ponding to the discretization of a steady 1D singularly perturbed problem of reaction
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14 B. Bujanda et al.

diffusion type, where now the reaction term is (b1 + 2/�t). From [2] we know that

τ̄ 1

û n+ 1
2
(x1, j )=ε ∂

3û n+ 1
2

∂x3
1

(x1, j )

(
h1, j − h1, j+1

3
− q1,1

j h1, j + q1,3
j h1, j+1

)

+ ε ∂
4û n+ 1

2

∂x4
1

(x1, j )

(
− h3

1, j + h3
1, j+1

24(h1, j + h1, j+1)
+ q1,1

j

h2
1, j

2
+ q1,3

j

h2
1, j+1

2

)

− 2εR5(x1, j , x1, j−1, û n+ 1
2 )

h1, j (h1, j + h1, j+1)
− 2εR5(x1, j , x1, j+1, û n+ 1

2 )

h1, j+1(h1, j + h1, j+1)

+ q1,1
j εR3

(
x1, j , x1, j−1,

∂2û n+ 1
2

∂x2
1

)
+q1,3

j εR3

(
x1, j , x1, j+1,

∂2û n+ 1
2

∂x2
1

)
,

where Rn(a, p, g) is the Taylor remainder.

Lemma 4 Let û n+ 1
2 be the exact solution of (10), Û n+ 1

2 the solution of the finite
difference HODIE scheme (20) and let us choose N0 satisfying (29). For any N ≥ N0,
the global error satisfies

∣∣∣∣̂u n+ 1
2

x1, j − Û
n+ 1

2
x1, j

∣∣∣∣ ≤ C�t
(

max
{

N−4σ 4
1,0 ln4 N , N−3} + N−√

β1σ1,0
)
. (30)

Proof It is a straightforward consequence from the bounds of the local error associated
to the steady 1D singularly perturbed problem (see [2]) and the uniform stability proved
in Lemma 3.

In order to find appropriate bounds for the global error |̂u n+1
x2, j

− Û n+1
x2, j

|, we need

the following result (now we omit the dependence of x1 ∈ I N
1,ε).

Lemma 5 Let û n+ 1
2 be the exact solution of (10), Û n+ 1

2 the solution of the finite
difference HODIE scheme (20) and let us choose N0 satisfying (29). For any N ≥ N0,
it holds

∣∣∣∣L1,εû
n+ 1

2
x1, j − L

N
1,εÛ

n+ 1
2

x1, j

∣∣∣∣ ≤ C
(

max
{

N−4σ 4
1,0 ln4 N , N−3} + N−√

β1σ1,0
)
.

Proof Using Lemma 4 and the expressions (10), (24) and (25) the result follows.

Lemma 6 Let û n+1 be the exact solution of (11), Û n+1 the solution of the finite
difference HODIE scheme (21) and let us chose N0 satisfying (29). If N ≥ N0, then
the global error satisfies

∣∣∣̂u n+1
x2, j

− Û n+1
x2, j

∣∣∣ ≤ C�t
(

max
{

N−4(σ 4
1,0 + σ 4

2,0

)
ln4 N , N−3}

+ N−√
β1σ1,0 + N−√

β2σ2,0
)
. (31)
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A high order scheme for time dependent reaction–diffusion problems 15

Proof It is similar to the proof of the previous lemma except in the study of the local
error. Now, the local error is defined by

τ 2
û n+1(x2, j ) =

(
I + �t

2
L N

2,ε

)[
û n+1

x2, j
− Û n+1

x2, j

]
.

From (11) and (23) we find that

F̂2,Û n+1/2(x1, x2, j , tn+1/2,�t)

= Û n+1/2
x1,x2, j − ûn+1/2

x1,x2, j

+ �t

2

(
L1,εû

n+1/2
x1,x2, j − L1,εÛ

n+1/2
x1,x2, j

)

+
(

I − �t

2
L1,ε

)
ûn+1/2

x1,x2, j + �t

2

(
f1(x1, x2, j , tn+1/2)+ f2(x1, x2, j , tn+1)

)

≡ K n+1/2
x2, j + f̂2,̂un+1/2

(
x1, x2, j , tn+1/2,�t

)

= K n+1/2
x2, j +

(
I + �t

2
L2,ε

)
û n+1(x1, x2, j )

≡ K n+1/2
x2, j +

(
I + �t

2
L2,ε

)
û n+1

x2, j
.

Then, from here, using (21) and taking Taylor expansion, we obtain that

τ 2
û n+1(x2, j ) = �t

2
τ̄ 2

û n+1(x2, j )

−
3∑

l=1

q2,l
j

[(
Û

n+ 1
2

x1,x2, j−2+l − û
n+ 1

2
x1,x2, j−2+l

) + �t

2

(
L1,εû

n+ 1
2

x1,x2, j−2+l

− L
N
1,εÛ

n+ 1
2

x1,x2, j−2+l

)]
.

The first term, τ̄ 2
û n+1(x2, j ), is analyzed exactly as in previous lemma, and for the other

ones it is sufficient to use Lemmas 4 and 5.

Now jointing the two discretization processes, we write the numerical algorithm
that we propose here to compute the approximated solutions of (1) and, afterwards,
we prove that it is ε-uniformly convergent of second order in time and of third order
in space. Concretely, the numerical approaches U n

x1,i ,x2, j
of u(x1,i , x2, j , n�t), for

i, j = 1, . . . , N and n = 1, . . . , T/�t , are obtained by the following scheme:
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16 B. Bujanda et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U 0
x1,i ,x2, j

= ϕ0(x1,i , x2, j ), 0 ≤ i, j ≤ N ,

L̄ N
2,εU

0
x1,i ,x2, j

= L2,εϕ0(x1,i , x2, j ), 0 ≤ i, j ≤ N ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
I + �t

2 L N
1,ε

)
U

n+ 1
2

x1,i ,x2 ≡ r1,−
i U

n+ 1
2

x1,i−1,x2 + r1,c
i U

n+ 1
2

x1,i ,x2 + r1,+
i U

n+ 1
2

x1,i+1,x2

= q1,1
i F̂1,U n (x1,i−1, x2, tn,�t)+ q1,2

i F̂1,U n (x1,i , x2, tn,�t)
+ q1,3

i F̂1,U n (x1,i+1, x2, tn,�t), i = 1, . . . , N − 1,

Û
n+ 1

2
0,x2

= Û
n+ 1

2
N ,x2

= 0, x2 ∈ I N
2,ε,

L̄ N
1,εU

n+ 1
2

x1,x2 = −L̄ N
2,εU

n
x1,x2

− 2
U

n+ 1
2

x1,x2 − U n
x1,x2

�t
+ f1

(
x1, x2, tn+ 1

2

)
+ f2(x1, x2, tn), (x1, x2) ∈ �N

ε ,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
I + �t

2 L N
2,ε

)
U n+1

x1,x2, j
≡ r2,−

j U n+1
x1,x2, j−1

+ r2,c
j U n+1

x1,x2, j
+ r2,+

j U n+1
x1,x2, j+1

= q2,1
j F̂

2,Û n+ 1
2

(
x1, x2, j−1, tn+ 1

2
,�t

) + q2,2
j F̂

2,Û n+ 1
2

(
x1, x2, j , tn+ 1

2
,�t

)
+ q2,3

j F̂
2,Û n+ 1

2

(
x1, x2, j+1, tn+ 1

2
,�t

)
, j = 1, . . . , N − 1,

Û n+1
x1,0

= Û n+1
x1,N

= 0, x1 ∈ I N
1,ε,

L̄ N
2,εU

n+1
x1,x2

= −L̄ N
1,εU

n+ 1
2

x1,x2 − 2
U n+1

x1,x2
− U

n+ 1
2

x1,x2

�t
+ f1(x1, x2, tn+ 1

2
)

+ f2
(
x1, x2, tn+1

)
, (x1, x2) ∈ �N

ε ,

n = 0, 1, . . . , T
�T ,

(32)
where rl,•

j and ql,m
j are defined in (26) and (27).

Theorem 1 Let u be the exact solution of (1), u(tn)|�N
ε

the restriction of the exact

solution to the mesh�
N
ε and U n the numerical solution obtained with the method (32)

on the same mesh, at time level tn = n�t . Under the hypotheses of Lemma 3, there
exists a positive constant C, independent of ε, N and �t , such that the global errors
E N

n = u(tn)|�N
ε

− U n satisfy

‖E N
n ‖∞ ≤ C

(
(�t)2 + max

{
N−4(σ 4

1,0 + σ 4
2,0

)
ln4 N , N−3}

+ N−√
β1σ1,0 + N−√

β2σ2,0
)
. (33)

Proof Let E N
n = [u(x1,i , x2, j , tn)−U n

i, j ]i, j be the vector of global errors at time level

tn , eN
n = [u(x1,i , x2, j , tn)− ûn(x1,i , x2, j )]i, j the restrictions to the mesh of the local

errors considered in the time semidiscretization process and d N
n = [̂un(x1,i , x2, j ) −

Û n(x1,i , x2, j )]i, j . Then,

E N
n = eN

n + d N
n + RN E N

n−1,

where RN is a linear operator, called the transition operator associated to the totally
discrete method (32), defined in the following way: RN V is the application of one
step of scheme (32) taking U n = V and the source terms f1, f2 equal to zero. From
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A high order scheme for time dependent reaction–diffusion problems 17

this recurrence relation, it is immediately deduced that

E N
n =

n∑
i=1

Rn−i
N eN

i +
n∑

i=1

Rn−i
N d N

i ,

and taking into account that the powers of the transition operators of the totally discrete
scheme R j

N preserve the uniform boundedness behaviour observed for R j , it holds
that

‖E N
n ‖∞ ≤

n∑
i=1

‖Rn−i
N ‖∞

(
‖eN

i ‖∞ + ‖d N
i ‖∞

)

≤ C
n∑

i=1

(
(�t)3 +�t

(
max

{
N−4(σ 4

1,0 + σ 4
2,0) ln4 N , N−3} + N−√

β1σ1,0

+ N−√
β2σ2,0

)) ≤ C
(
(�t)2 + (

max
{

N−4(σ 4
1,0 + σ 4

2,0) ln4 N , N−3}

+ N−√
β1σ1,0 + N−√

β2σ2,0
))
.

Remark 1 From the previous theorem it is immediate to deduce the second order of
uniform convergence in time variable. Also, if we take the constants σl,0, l = 1, 2,
such that σ1,0 ≥ 3/

√
β1 and σ2,0 ≥ 3/

√
β2, then we obtain third order of uniform

convergence in spatial variables.

5 Numerical experiments

In this section we show the results given by the method (32) to solve some test problems.
In all examples, according to Remark 1, we take the values σ1,0 = 3/

√
min

x
b1(x) and

σ2,0 = 3/
√

min
x

b2(x).

The first example that we consider is given by

⎧⎨
⎩

ut − ε�u + (
5 + x1 (1 − x1)+ x2 (1 − x2)

)
u = f, (x, t) ∈ �× (0, 1],

u(x, t) = 0, x ∈ ∂�, t ∈ (0, 1],
u(x, 0) = 0, x ∈ �,

(34)

with � = (0, 1)2, the source term is f (x, t, ε) = ((t + 1) exp(−t) − 1)(h(x1, 1) −
1)(h(x2, 4)− 1) and

h(z, α) = exp(−α z/
√
ε)+ exp(−α(1 − z)/

√
ε)

1 + exp(−α/√ε) . (35)

We decompose the reaction term in the form b1 = 2 + (x1 (1 − x1) +
x2 (1 − x2))/2, b2 = 3 + (x1 (1 − x1) + x2 (1 − x2))/2. Note that, according to
the theoretical results, the decomposition b1 = 2 + x1 (1 − x1), b2 = 3 + x2 (1 − x2)
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18 B. Bujanda et al.

(commuting operators) seems more appropriate because it fulfils the requirements to
prove the unconditional stability of the method. Nevertheless, we have observed that
these decompositions hardly affect to the behaviour of our method. As the exact so-
lution is unknown, we estimate the numerical errors at times tn = n�t for each point
(x1,i , x2, j ) of the spatial mesh by

Eε,N ,�t (i, j, n) =
∣∣∣∣U ε,N ,�t

i, j,n − U
ε,2N , �t

2
i, j,n

∣∣∣∣ ,

where U ε,N ,�t
i, j,n is the numerical solution obtained using a constant time step �t and

(N + 1) points in both spatial directions and U
ε,2N , �t

2
i, j,n is computed using �t

2 as
constant time step and (2N + 1) points in both spatial directions, but preserving the
same transition points of the meshes used to compute U ε,N ,�t . For each fixed value
of ε, the maximum global errors are estimated by

Eε,N ,�t = max
i, j,n

Eε,N ,�t (i, j, n),

and, in standard way, we compute the corresponding numerical orders of convergence
by

p = log
(
Eε,N ,�t/Eε,2N ,�t/23/2

)
log 2

.

From these values we obtain the ε-uniform errors and the ε-uniform orders of
convergence by

EN ,�t = max
ε

Eε,N ,�t , puni = log
(
EN ,�t/E2N ,�t/23/2

)
log 2

. (36)

Table 1 displays the maximum errors and their corresponding numerical orders of
convergence; note that we reduce in a special way the size of �t in order to the
reduction of the errors associated to the time and the spatial discretizations be similar.
Clearly these results are in agreement with the theoretical result proved in Theorem 1.

The second test problem that we consider is given by

⎧⎨
⎩

ut − ε�u + (3 + 2 exp(x2
1 x2

2 ))u = f, (x, t) ∈ �× (0, 1],
u(x, t) = g(x, t), x ∈ ∂�, t ∈ (0, 1],
u(x, 0) = 0, x ∈ �,

(37)

where � = (0, 1)2, f and g are such that the exact solution is

u = (
(t + 1) exp(−t)− 1

)
h(x1, 1)h(x2, 2),

with h(z, α) defined in (35), for which the boundary conditions are not homogenous
and also time dependent. This example belongs to a more general version of the original
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A high order scheme for time dependent reaction–diffusion problems 19

Table 1 Maximum errors and numerical orders for problem (34)

N ,�t N = 32 N = 64 N = 128 N = 256 N = 512
�t = 0.5 �t=0.5/23/2 �t = 0.5/23 �t = 0.5/29/2 �t = 0.5/26

ε = 2−6 4.1596E-3 5.1776E-4 6.4851E-5 8.1090E-6 1.0136E-6

3.0061 2.9971 2.9995 3.0000

ε = 2−8 4.3011E-3 5.3440E-4 6.6938E-5 8.3695E-6 1.0461E-6

3.0087 2.9970 2.9996 3.0001

ε = 2−10 4.4613E-3 5.5983E-4 6.8478E-5 8.3946E-6 1.0475E-6

2.9944 3.0313 3.0281 3.0025

ε = 2−12 4.4590E-3 5.5965E-4 7.0497E-5 8.5911E-6 1.0577E-6

2.9941 2.9889 3.0367 3.0220

ε = 2−14 4.4577E-3 5.5956E-4 7.0485E-5 8.5897E-6 1.0575E-6

2.9940 2.9889 3.0366 3.0219

ε = 2−16 4.4572E-3 5.5951E-4 7.0479E-5 8.5890E-6 1.0575E-6

2.9939 2.9889 3.0366 3.0219

ε = 2−18 4.4568E-3 5.5948E-4 7.0475E-5 8.5885E-6 1.0574E-6

2.9939 2.9889 3.0366 3.0219

ε = 2−20 4.4567E-3 5.5948E-4 7.0474E-5 8.5884E-6 1.0574E-6

2.9938 2.9889 3.0366 3.0219

ε = 2−22 4.4566E-3 5.5947E-4 7.0473E-5 8.5883E-6 1.0574E-6

2.9938 2.9889 3.0366 3.0219

ε = 2−24 4.4566E-3 5.5947E-4 7.0473E-5 8.5883E-6 1.0574E-6

2.9938 2.9889 3.0366 3.0219

ε = 2−26 4.4566E-3 5.5947E-4 7.0473E-5 8.5883E-6 1.0574E-6

2.9938 2.9889 3.0366 3.0219

EN ,�t 4.4613E-3 5.5983E-4 7.0497E-5 8.5911E-6 1.0577E-6

puni 2.9944 2.9894 3.0367 3.0220

problem (1), which can be written in the form

⎧⎨
⎩

ut + Lεu = f (x, t), (x, t) ∈ �× (0, T ],
u(x, 0) = ϕ0(x), x ∈ �,
u(x, t) = g(x, t), (x, t) ∈ ∂�× (0, T ].

(38)

It is well-known that the classical application of one step methods (for example
Runge-Kutta methods) to semidiscretize in time problem (38), in general, causes a re-
duction in the order of consistency when the boundary conditions are time dependent.
Such reduction can be related to the order of consistency that the internal stages possess,
if they are considered as approximations of the exact solution at suitable intermediate
times. This phenomenon also happens if we apply the semidiscretization scheme (6)
and (7) to problem (38), obtaining only first order if we consider the corresponding
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20 B. Bujanda et al.

classical boundary conditions:

⎧⎨
⎩

u n+ 1
2 (0, x2) = g

(
0, x2, tn+ 1

2

)
,

u n+ 1
2 (1, x2) = g

(
1, x2, tn+ 1

2

)
,

(39)

{
u n+1(x1, 0) = g

(
x1, 0, tn+1

)
,

u n+1(x1, 1) = g
(
x1, 1, tn+1

)
.

(40)

Fortunately, this order reduction can be avoided if we modify the boundary conditions

for u n+ 1
2 and u n+1 using the technique proposed in [1] for general fractional step

methods. Such technique ensures that if we choose the following boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u n+ 1
2 (0, x2) = g(0, x2, tn)+ �t

2

[(
∂g

∂t
+ L2,ε g

) (
0, x2, tn+ 1

2

)
− L2,εg(0, x2, tn)− f2

(
0, x2, tn+ 1

2

) + f2(0, x2, tn)
]
,

u n+ 1
2 (1, x2) = g(1, x2, tn)+ �t

2

[(
∂g

∂t
+ L2,ε g

) (
1, x2, tn+ 1

2

)
− L2,εg(1, x2, tn)− f2

(
1, x2, tn+ 1

2

) + f2(1, x2, tn)
]
,

(41)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u n+1(x1, 0) = g(x1, 0, tn)+ �t

2

[
∂g

∂t
(x1, 0, tn)+ ∂g

∂t

(
x1, 0, tn+1

)
+ L1,ε

(
g(x1, 0, tn)− 2g

(
x1, 0, tn+ 1

2

) + g
(
x1, 0, tn+1

))
−

(
f1(x1, 0, tn)− 2 f1

(
x1, 0, tn+ 1

2

) + f1
(
x1, 0, tn+1

))]
,

u n+1(x1, 1) = g(x1, 1, tn)+ �t

2

[
∂g

∂t
(x1, 1, tn)+ ∂g

∂t

(
x1, 1, tn+1

)
+ L1,ε

(
g(x1, 1, tn)− 2g

(
x1, 1, tn+ 1

2

) + g
(
x1, 1, tn+1

))
−

(
f1(x1, 1, tn)− 2 f1

(
x1, 1, tn+ 1

2

) + f1
(
x1, 1, tn+1

))]
,

(42)

we recover the second order of consistency of the Peaceman and Rachford method.
Moreover, without loosing the second order of consistency, in this particular case we
can shorten the boundary conditions proposed in (42) for u n+1 to the following ones

⎧⎪⎪⎨
⎪⎪⎩

u n+1(x1, 0) = g(x1, 0, tn)+ �t

2

(
∂g

∂t
(x1, 0, tn)+ ∂g

∂t
(x1, 0, tn+1)

)
,

u n+1(x1, 1) = g(x1, 1, tn)+ �t

2

(
∂g

∂t
(x1, 1, tn)+ ∂g

∂t
(x1, 1, tn+1)

)
,

(43)

since the removed terms are clearly O((�t)3).
Now we decompose the reaction term in the form b1 = exp(x2

1 x2
2 ), b2 = 3 +

exp(x2
1 x2

2 ). As the exact solution is known, we calculate exactly the numerical errors,
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A high order scheme for time dependent reaction–diffusion problems 21

Table 2 Maximum errors and numerical orders for problem (37): classical boundary conditions

N ,�t N = 32 N = 64 N = 128 N = 256 N = 512
�t = 0.5 �t = 0.5/23/2 �t = 0.5/23 �t = 0.5/29/2 �t = 0.5/26

ε = 2−6 3.5163E-2 7.3599E-3 1.2047E-3 1.7277E-4 2.3350 E-5

2.2563 2.6110 2.8017 2.8874

ε = 2−8 2.1669E-2 5.0148E-3 8.5993E-4 1.2911E-4 1.8222 E-5

2.1114 2.5439 2.7356 2.8249

ε = 2−10 8.8377E-3 2.6909E-3 5.8816E-4 1.0198E-4 1.53035-5

1.7156 2.1938 2.5279 2.7364

ε = 2−12 5.3595E-3 1.2459E-3 2.5641E-4 5.1329E-5 1.0086E-6

2.1048 2.2807 2.3206 2.3475

ε = 2−14 5.7532E-3 1.3194E-3 2.662E-4 4.8639E-5 8.1758E-6

2.1246 2.3092 2.4524 2.5727

ε = 2−16 5.9615E-3 1.3599E-3 2.7163E-4 4.9354E-5 8.2694E-6

2.1321 2.3238 2.4604 2.5773

ε = 2−18 6.0780E-3 1.3820E-3 2.7469E-4 4.9749E-5 8.3218E-6

2.1368 2.3309 2.4651 2.5797

ε = 2−20 6.1373E-3 1.3938E-3 2.7637E-4 4.9967E-5 8.3507E-6

2.1385 2.3344 2.4675 2.5810

ε = 2−22 6.1698E-3 1.4002E-3 2.7727E-4 5.0085E-5 8.3664E-6

2.1396 2.3362 2.4688 2.5817

ε = 2−24 6.1863E-3 1.4035E-3 2.7775E-4 5.0149E-5 8.3749E-6

2.1400 2.3372 2.4695 2.5821

ε = 2−26 6.1951E-3 1.4053E-3 2.7800E-4 5.0182E-5 8.3795E-6

2.1402 2.3376 2.4698 2.5822

EN ,�t 3.5163E-2 7.3599E-3 1.2047E-3 1.7277E-4 2.3350 E-5

puni 2.2563 2.6110 2.8017 2.8874

at the times tn = n�t for the mesh points (x1,i , x2, j ), by

Eε,N ,�t (i, j, n) =
∣∣∣uε(x1,i , x2, j , tn)− U ε,N ,�t

i, j,n

∣∣∣ . (44)

Table 2 displays the global errors obtained by using the evaluations of the classical
boundary conditions (39) at the mesh points of ∂� and Table 3 displays the global
errors computed with the evaluations of the improved boundary conditions (41) and
(42) at the same points of ∂�. In both tables we have also displayed the corresponding
orders of convergence.

From Tables 2 and 3 we see that the results obtained by using the improved boundary
conditions are better, because the maximum errors are smaller and also the orders of
convergence are higher. Therefore, we can conclude that this technique is useful also
in the discretizations of the singularly perturbed problems considered in this paper.
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22 B. Bujanda et al.

Table 3 Maximum errors and numerical orders for problem (37): improved boundary conditions

N ,�t N = 32 N = 64 N = 128 N = 256 N = 512
�t = 0.5 �t = 0.5/23/2 �t = 0.5/23 �t = 0.5/29/2 �t = 0.5/26

ε = 2−6 8.9285E-3 7.8891E-4 5.3346E-5 6.1151E-6 7.4261E-7

3.5005 3.8864 3.1249 3.0417

ε = 2−8 6.5266E-3 6.9612E-4 6.7693E-5 8.2635E-6 1.0237E-6

3.2289 3.3622 3.0342 3.0130

ε = 2−10 5.0289E-3 7.6147E-4 8.8084E-5 1.0827E-5 1.3450E-6

2.7234 3.1118 3.0243 3.0089

ε = 2−12 4.9533E-3 7.9077E-4 1.0029E-4 1.2493E-5 1.5575E-6

2.6471 2.9791 3.0050 3.0038

ε = 2−14 5.3878E-3 8.5944E-4 1.0833E-4 1.3570E-5 1.6908E-6

2.6482 2.9880 2.9970 3.0046

ε = 2−16 5.6399E-3 8.9839E-4 1.1307E-4 1.4181E-5 1.7686E-6

2.6502 2.9902 2.9951 3.0033

ε = 2−18 5.7720E-3 9.2008E-4 1.1577E-4 1.4525E-5 1.8122E-6

2.6492 2.9905 2.9947 3.0027

ε = 2−20 5.8445E-3 9.3184E-4 1.1726E-4 1.4713E-5 1.8361E-6

2.6489 2.9904 2.9945 3.0024

ε = 2−22 5.8827E-3 9.3815E-4 1.1806E-4 1.4815E-5 1.8491E-6

2.6486 2.9903 2.9944 3.0022

ε = 2−24 5.9030E-3 9.4153E-4 1.1849E-4 1.4870E-5 1.8561E-6

2.6484 2.9901 2.9944 3.0021

ε = 2−26 5.9137E-3 9.4332E-4 1.1873E-4 1.4899E-5 1.8597E-6

2.6483 2.9901 2.9944 3.0021

EN ,�t 8.9285E-3 9.4332E-4 1.1873E-4 1.4899E-5 1.8597E-6

puni 3.2426 2.9901 2.9944 3.0021

The last test problem that we consider has a solution with a really small variation
in time; the reason to take this example is that we wish that the error associated to
the spatial discretization stage dominates in the global error. In previous examples
it is observed that the contribution to the global error of the time semidiscretization
dominates to the error in space for many values of ε, N and�t . The problem is given by

⎧⎨
⎩

ut − ε�u + (20 + 0.2 sin(πx1) sin(πx2))u = f, (x, t) ∈ �× (0, 1],
u(x, t) = g(x, t), x ∈ ∂�, t ∈ (0, 1],
u(x, 0) = 0, x ∈ �,

(45)

where � = (0, 1)2, b1 = b2 = 10 + 0.1 sin(πx1) sin(πx2) and f and g are such that
the exact solution is

u = (1 + exp(−t/100)) exp(−√
10x1/

√
ε) exp(−√

10x2/
√
ε).
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Table 4 Maximum errors for problem (45) with �t = 0.4

ε/N N = 32 N = 64 N = 128 N = 256 N = 512

2−6 2.7247E-4 2.2576E-5 2.1998E-6 2.6134E-6 2.7995E-7

2−8 1.1954E-3 2.5976E-4 2.2565E-5 2.4317E-6 2.8190E-6

2−10 1.1955E-3 2.5976E-4 3.8790E-5 3.8247E-6 2.7571E-6

2−12 1.1955E-3 2.5976E-4 3.8784E-5 3.8179E-6 2.8284E-6

2−14 1.1955E-3 2.5975E-4 3.8781E-5 3.8143E-6 2.8680E-6

2−16 1.1955E-3 2.5975E-4 3.8778E-5 3.8125E-6 2.8897E-6

2−18 1.1955E-3 2.5975E-4 3.8778E-5 3.8115E-6 2.9015E-6

2−20 1.1955E-3 2.5975E-4 3.8778E-5 3.8111E-6 2.9078E-6

2−22 1.1955E-3 2.5975E-4 3.8778E-5 3.8109E-6 2.9111E-6

2−24 1.1955E-3 2.5975E-4 3.8778E-5 3.8107E-6 2.9129E-6

2−26 1.1955E-3 2.5975E-4 3.8778E-5 3.8107E-6 2.9138E-6

Table 5 Maximum errors for problem (45) with �t = 0.2

ε/N N = 32 N = 64 N = 128 N = 256 N = 512

2−6 2.7108E-4 2.1970E-5 1.1311E-6 7.5213E-7 8.1030E-7

2−8 1.1748E-3 2.5845E-4 2.1967E-5 1.1225E-6 8.0183E-7

2−10 1.1749E-3 2.5846E-4 3.7444E-5 4.0744E-6 7.7919E-7

2−12 1.1749E-3 2.5846E-4 3.7442E-5 4.0719E-6 7.9594E-7

2−14 1.1749E-3 2.5846E-4 3.7441E-5 4.0719E-6 8.0484E-7

2−16 1.1749E-3 2.5846E-4 3.7441E-5 4.0700E-6 8.0947E-7

2−18 1.1749E-3 2.5846E-4 3.7440E-5 4.0696E-6 8.1184E-7

2−20 1.1749E-3 2.5846E-4 3.7440E-5 4.0695E-6 8.1305E-7

2−22 1.1749E-3 2.5846E-4 3.7440E-5 4.0694E-6 8.1366E-7

2−24 1.1749E-3 2.5846E-4 3.7440E-5 4.0694E-6 8.1396E-7

2−26 1.1749E-3 2.5846E-4 3.7440E-5 4.0694E-6 8.1416E-7

Again we know the exact solution and therefore we calculate exactly the maximum
global errors by (44).

To illustrate the influence of the spatial discretization in the errors, we display four
tables with the maximum errors obtained for different values of �t . As the boundary
conditions are time dependent and, in this test, we wish a small contribution of the
time discretization to the global error, we have chosen the same improved boundary
condition technique explained in the previous numerical example. We indicate in
boldface the errors where the contribution of the time discretization to the global error
dominates and then we cannot deduce anything about the order of convergence in
space. Excluding these numbers, from Tables 4, 5, 6 and 7 it is easy to observe the
uniform convergence of third order in space according to Theorem 1.
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Table 6 Maximum errors for problem (45) with �t = 0.1

ε/N N = 32 N = 64 N = 128 N = 256 N = 512

2−6 2.5376E-4 2.0067E-5 1.1802E-6 2.2560E-7 2.5690E-7

2−8 1.0528E-3 2.4215E-4 2.0066E-5 1.1782E-6 2.4916E-7

2−10 1.0528E-3 2.4215E-4 3.3894E-5 3.7880E-6 2.9215E-7

2−12 1.0529E-3 2.4215E-4 3.3894E-5 3.7873E-6 2.9178E-7

2−14 1.0529E-3 2.4215E-4 3.3893E-5 3.7869E-6 2.9158E-7

2−16 1.0529E-3 2.4215E-4 3.3893E-5 3.7867E-6 2.9158E-7

2−18 1.0529E-3 2.4215E-4 3.3893E-5 3.7867E-6 2.9142E-7

2−20 1.0529E-3 2.4215E-4 3.3893E-5 3.7866E-6 2.9139E-7

2−22 1.0529E-3 2.4215E-4 3.3893E-5 3.7865E-6 2.9137E-7

2−24 1.0529E-3 2.4215E-4 3.3893E-5 3.7865E-6 2.9137E-7

2−26 1.0529E-3 2.4215E-4 3.3893E-5 3.7865E-6 2.9137E-7

Table 7 Maximum errors for problem (45) with �t = 0.05

ε/N N = 32 N = 64 N = 128 N = 256 N = 512

2−6 2.2634E-4 1.6828E-5 1.0599E-6 6.2938E-8 7.5500E-8

2−8 1.0373E-3 2.1542E-4 1.6828E-5 1.0598E-6 7.0429E-8

2−10 1.0374E-3 2.1542E-4 2.7971E-5 3.1628E-6 3.0314E-7

2−12 1.0374E-3 2.1542E-4 2.7971E-5 3.1626E-6 3.0308E-7

2−14 1.0374E-3 2.1542E-4 2.7971E-5 3.1625E-6 3.0305E-7

2−16 1.0374E-3 2.1542E-4 2.7971E-5 3.1624E-6 3.0303E-7

2−18 1.0374E-3 2.1542E-4 2.7971E-5 3.1624E-6 3.0303E-7

2−20 1.0374E-3 2.1542E-4 2.7971E-5 3.1624E-6 3.0302E-7

2−22 1.0374E-3 2.1542E-4 2.7971E-5 3.1624E-6 3.0302E-7

2−24 1.0374E-3 2.1542E-4 2.7971E-5 3.1624E-6 3.0302E-7

2−26 1.0374E-3 2.1542E-4 2.7971E-5 3.1624E-6 3.0302E-7
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