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Abstract We propose a new robust method for the computation of scattering of high-
frequency acoustic plane waves by smooth convex objects in 2D. We formulate this
problem by the direct boundary integral method, using the classical combined potential
approach. By exploiting the known asymptotics of the solution, we devise particular
expansions, valid in various zones of the boundary, which express the solution of the
integral equation as a product of explicit oscillatory functions and more slowly varying
unknown amplitudes. The amplitudes are approximated by polynomials (of minimum
degree d) in each zone using a Galerkin scheme. We prove that the underlying bilinear
form is continuous in L2, with a continuity constant that grows mildly in the wavenum-
ber k. We also show that the bilinear form is uniformly L2-coercive, independent of
k, for all k sufficiently large. (The latter result depends on rather delicate Fourier
analysis and is restricted in 2D to circular domains, but it also applies to spheres in
higher dimensions.) Using these results and the asymptotic expansion of the solution,
we prove superalgebraic convergence of our numerical method as d → ∞ for fixed
k. We also prove that, as k → ∞, d has to increase only very modestly to maintain a
fixed error bound (d ∼ k1/9 is a typical behaviour). Numerical experiments show that
the method suffers minimal loss of accuracy as k → ∞, for a fixed number of degrees
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of freedom. Numerical solutions with a relative error of about 10−5 are obtained on
domains of size O(1) for k up to 800 using about 60 degrees of freedom.

Mathematics Subject Classification (2000) High frequency · Acoustic scattering ·
Boundary integral method · Hybrid numerical-asymptotic · Wave-number robust

1 Introduction

In this paper we devise, analyse and implement an algorithm for computing the scat-
tering of plane waves in two space dimensions by an arbitrary smooth convex scatterer.
Our method is based on the direct boundary integral method and the Galerkin approx-
imation, but instead of using ansatz functions constructed directly from (piecewise)
polynomials, we use an ansatz which incorporates the rigorously known asymptotic
properties of the normal derivative of the total field, obtainable from e.g., [37]—see
also [15,17].

If the incident field is a plane wave exp(ikx · â), for some unit vector â, and if the
scatterer is supposed to be of “sound soft” type, then the scattered field everywhere
exterior to the object can be determined by computing the “surface current” v := ∂νu,
on the boundary Γ of the scatterer, where ∂ν denotes the normal derivative on Γ ,
directed outward from the scatterer, and u is the total field (incident plus scattered
fields). It is also known that, in the case of a convex scatterer, v can be expressed as

v(γ (s), k) = kV (s, k) exp(ikγ (s) · â ), (1.1)

with γ denoting arc-length parametrisation on Γ , where V (·, k) oscillates less rapidly
than v(·, k), for large k. The asymptotic analysis for k → ∞ also implies that Γ

can be decomposed into four zones: the illuminated zone, the shadow zone and the
transition or “Fock” domains which lie between these [22]. In each of these regions,
explicit estimates can be given for the rate of growth of V (s, k). The choice of precise
boundaries between the transition zones and the other zones turns out to be of particular
importance in practice.

Our Galerkin method only approximates the slowly varying amplitudes V (s, k) in
each zone, and in computational experiments suffers negligible loss of accuracy for
a fixed number of degrees of freedom as k → ∞. This should be compared to the
usual boundary element methods, which approximate the complete oscillatory solution
v by (piecewise) polynomials. Although these can be very effective for moderate
frequencies (e.g., [23]), to preserve accuracy as k grows, it is normally necessary to
increase the number of degrees of freedom with at least O(k), leading to a growth in
complexity as k increases. The method in the present paper avoids such a growth of
complexity.

The model problem considered here is chosen because it contains enough features
of more general scattering problems to be of general interest, but is also simple enough
to allow a substantial amount of rigorous analysis. Extensions to more general scat-
tering geometries may have to take account of more complicated asymptotics, such
as diffraction from edges or corner points (see [6,8,9] and the references therein)
or multiple scattering [11,12,20]. The idea of this paper is to show that k-robust
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A hybrid numerical-asymptotic boundary integral method 473

numerical methods with a complete error analysis are possible, and to prepare the
ground for further developments.

We remark that several other authors have considered the introduction of oscilla-
tory ansatz functions into numerical boundary element schemes. Our method is most
closely related to those of Abboud et al. [1], Bruno et al. [11] and Giladi and Keller
[26]. In [1] (which considered a different boundary integral equation with spurious
frequencies), an ansatz similar to (1.1) was used globally on Γ , the analogue of V
was approximated by a boundary element Galerkin method and an estimate for the
consistency error was then stated. This suggested that h must be chosen proportional
to k−1/3 to preserve accuracy as k → ∞. In [11] the ansatz (1.1) was used directly,
the resulting integral equation for V (·, k) was solved by a Nyström scheme, and
k-independent convergence was observed experimentally. In the Nyström method, a
cube root change of variable was employed in the transition zones [where V (·, k)

still oscillates, but more moderately than v(γ (·), k)] in order to achieve robustness as
k → ∞. In the Galerkin scheme of the present paper the oscillation in the transition
zones is handled by allowing these zones to shrink with k (according to a delicate
formula described below) and using polynomial approximations there which are inde-
pendent of the polynomials employed in the illuminated part. Neither Abboud et al.
[1] nor Bruno et al. [11] attempt a rigorous error analysis. The paper [26] considers a
collocation method also based on an ansatz similar to (1.1) but with a more particular
treatment of “creeping waves” just behind the shadow boundary. Numerical results are
given showing good robustness properties, but again no error analysis is given. Since
Giladi and Keller [26] considers only single layer potential formulations it also suffers
from spurious frequencies and so a full error analysis will not be possible without
modifications.

In related work, Langdon and Chandler-Wilde [31] consider the case of scatter-
ing from an infinite impedance line, where the asymptotics of the scattered wave
can be derived directly from the mathematical model. They were able to then pro-
pose an algorithm based on approximation only of slow variables and moreover to
prove rigorously its robustness with respect to k, i.e., the constants in the stability and
consistency estimates were shown not to blow up if k → ∞. More recent work of
Arden, Chandler-Wilde and Langdon [4,32] has extended the results of Langdon and
Chandler-Wilde [31] to convex polygons. An extensive survey of other approaches to
the use of oscillatory ansatz functions in high-frequency scattering is given in [31].

In this paper we devise approximations of v(·, k) in (1.1) by using algebraic poly-
nomial approximations of V (·, k) in certain carefully chosen illuminated, shadow and
shadow boundary-zones of Γ . That is, we use a non-standard variant of the p-version
of the boundary element method to approximate V (·, k). The resulting finite dimen-
sional subspaces are then used inside a Galerkin scheme to obtain approximations
of v. We undertake a complete error analysis of this type of approximation and prove
its stability and superalgebraic convergence for fixed k. Most importantly, by a careful
analysis of the k dependence of the constants appearing in the error analysis, we also
prove that, to obtain bounded discretisation error as k → ∞, the polynomial degrees
need to grow only very mildly with k, with k1/9 being typical theoretical growth rate.
Under an assumption on the coercivity of the integral operator (which is satisfied by
circular scatterers), we prove that the actual Galerkin error enjoys the same property.
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In practice the error appears to be essentially independent of k, for the range of k
which we have tested.

The plan of this paper is as follows. In Sect. 2 we review the scattering problem
and its reformulation as a boundary integral equation (using the combined potential
approach). In Sect. 3 we briefly explain the Galerkin scheme for the boundary integral
equation and present the necessary ingredients for its error analysis. In Sect. 4 we
show that the bilinear form underlying the Galerkin method is continuous in L2, for
any suitably smooth 2D boundary, and that the continuity constant grows at worst
with O(k1/2), as k → ∞. We also show using a more delicate Fourier analysis that,
for the case of spherical geometries (in 2D or 3D), the bilinear form is L2-coercive,
with coercivity constant independent of k, as k → ∞ and the O(k1/2) bound on
the continuity constant can be improved to O(k1/3). These results apply to both the
Brakhage-Werner combined potential operator and the closely related formal adjoint
of it (sometimes called the Burton-Miller operator [14]).

The latter operator is the one of chief interest in this paper, since it appears in
the integral equation with the physically relevant solution v in (1.1). In Sect. 5 we
summarise the rigorous asymptotics of v and in particular we obtain estimates for the
derivatives of the slowly varying amplitude V which is approximated in the Galerkin
scheme. In Sect. 6 we use the results from Sect. 5 to derive error estimates for our
Galerkin scheme, in which the dependence on the wave number k is made explicit.

In Sect. 7 we describe numerical experiments which illustrate the convergence
of our algorithm. In our experiments the method converges superalgebraically with
respect to the polynomial degrees used and does not degrade at all as k → ∞.

2 The scattering problem

Suppose that Ω ⊂ R
2 is a closed bounded convex domain with a C∞ boundary Γ and

that Ω ′ := R
2\Ω is the corresponding exterior domain. We shall consider an acoustic

incident plane wave:

uI (x) := exp(ikx · â), x ∈ R
2,

with direction given by the unit vector â ∈ R
2. This is scattered by Ω to produce

a scattered wave uS . The total wave u := uI + uS is a solution of the Helmholtz
equation:

∆u + k2u = 0 in Ω ′, (2.1)

and uS satisfies the usual radiation condition:

∂r uS(x) − ikuS(x) = o
(

|x|−1/2
)

, as |x| → ∞,
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A hybrid numerical-asymptotic boundary integral method 475

where ∂r denotes the radial derivative. We shall consider the sound-soft scattering
problem, in which case

u = 0 on Γ
(

equivalently uS = −uI on Γ
)

. (2.2)

This problem can be formulated as a boundary integral equation in various ways.
Because we wish to exploit known asymptotic formulae involving u (or uS) for large
k, we favour here the direct approach, in which the unknown v(x) := (∂νu)(x), x ∈ Γ

satisfies the combined potential integral equation (see, e.g., [19]):

1

2
v + Dkv − ikSkv = ∂νuI − iku I , or, more abstractly, Rkv = fk (2.3)

where Sk and Dk are the single layer operator and its normal derivative given, for
x ∈ Γ , by:

Skv(x) =
∫

Γ

Φk(x − y)v(y)dy and Dkv(x) =
∫

Γ

∂ν(x)

{

Φk(x − y)
}

v(y) dy

(2.4)

and Φk(x) = (i/4)H (1)
0 (k|x|) (with H (1)

0 denoting the Hankel function of the first
kind of order zero) is the usual fundamental solution of the Helmholtz equation in 2D.

The operator Rk in (2.3) is closely related to the classical Brakhage–Werner oper-
ator [10]:

Pk := 1

2
I + Lk − ikSk (2.5)

where

Lkv(x) =
∫

Γ

∂ν(y)

{

Φk(x − y)
}

v(y) dy (2.6)

is the double layer potential, and which arises in the indirect approach to scattering
problems. We are only interested in this paper in approximating (2.3) (since its solution
v has physical meaning and the asymptotic analysis below exploits this), but the
estimates in Sect. 4 will be valid for both Rk and Pk .

Suppose

Γ = {γ (s) : s ∈ [0, 2π ]} (2.7)

is a 2π -periodic parametrisation of Γ chosen, for convenience, to be proportional
to arc-length parametrisation on Γ . Then (2.3) can be rewritten as an equation on
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Fig. 1 Physical domain: I
denotes the illuminated zone, S
the shadow zone and T1, T2 the
tangency points

[0, 2π ] in an obvious way. Using the same symbols to denote transformed functions
and operators, we write (2.3) again as

Rkv(s) = fk(s), s ∈ [0, 2π ]. (2.8)

For any measurable Λ ⊂ [0, 2π ], let (v,w)L2(Λ) denote the usual L2 inner product
of complex-valued functions on Λ and let ‖ · ‖L2(Λ) denote the induced norm. When
Λ = [0, 2π ] we denote these simply by (v,w) and ‖v‖ and we write L2[0, 2π ] simply
as L2. We also let L∞ = L∞[0, 2π ], with norm ‖ · ‖L∞ . The variational formulation
of (2.8) then is to seek v ∈ L2 such that

ak(v,w) := (Rkv,w) = ( fk, w), for all w ∈ L2. (2.9)

Below we give estimates for the coercivity and continuity of the sesquilinear
form ak . Although these would hold if the coupling parameter ik in (2.3) was replaced
by iη, for any η proportional to k, we simply set η = k here. Other authors have used
different values of η for different purposes (e.g., [3,25,28,29]).

3 A Non-standard Galerkin method

When a plane wave is incident on a convex two dimensional object, the two tangency
points T1 and T2 naturally divide the boundary into an “illuminated zone” (I) and a
“shadow zone” (S), as depicted in Fig. 1.

We choose the parametrization γ (see 2.7) so that the point γ (0) lies in the shadow
zone, halfway (with respect to arc length) between T2 and T1. Let γ (ti ) = Ti , for
i = 1, 2. Then we can choose three overlapping closed subintervals Λi ⊂ (0, 2π),

i = 1, . . . , 3 with the properties:

ti ∈ Λi\
(∪ j 	=iΛ j

)

, i = 1, 2, and {γ (s) : s ∈ Λ3} ⊂ I.

(That is, if we define Γi := γ (Λi ), i = 1, 2, 3, then the tangency point Ti lies
only in Γi (i = 1, 2) and the illuminated zone contains Γ3.) We assume further that

0 ∈ Λ4 := [0, 2π ]\
(

∪3
j=1Λ j

)

, (i.e., the shadow zone contains Γ4 := γ (Λ4)).
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A hybrid numerical-asymptotic boundary integral method 477

We introduce a corresponding partition of unity {χ j : j = 1, 2, 3, 4}, where, for
each j , χ j ∈ L∞ and

supp χ j = Λ j , 0 ≤ χ j (s) ≤ 1, and

⎛

⎝

4
∑

j=1

χ j

⎞

⎠ (s) = 1, s ∈ [0, 2π ]. (3.1)

The Λ j (and hence χ j ) may depend on k, but we do not reflect this in the notation.
The Λi may overlap their neighbours in either a single point or an interval with non-
empty interior and the χ j may be either characteristic functions of the Λ j or a classical
smooth partition of unity. (In the numerical experiments in Sect. 7 we use a smooth
partition of unity and we adjust the sizes of the Λi as k increases; this turns out to be
important in achieving robustness with respect to k and is used in a key way in the
proofs below.)

Underlying our Galerkin method is the assumption that for each j = 1, 2, 3, there
exist explicitly defined oscillatory functions e j (·, k) ∈ L∞, such that the (k- dependent)
solution v of the integral equation (2.3) satisfies

χ j (s)v(s) = k χ j (s) e j (s, k) Vj (s, k), s ∈ [0, 2π ], (3.2)

with unknown “modulating amplitudes” Vj (s, k) which have to be computed, but
which vary more slowly than v(s, k). For our problem this abstract assumption will be
made concrete in Sect. 6. In the shadow zone Λ4, v is exponentially small as k → ∞
(see also Sect. 6) and so here v can be well-approximated by zero (see Sect. 7 for
further remarks on this point). Note that the explicit factor k appearing on the right-
hand side of (3.2) reflects the fact that since v = ∂νu, the amplitude of v will grow
with O(k) as k → ∞. (See Theorem 5.4 for a precise justification of this.)

On the assumption that (3.2) holds, we formulate our Galerkin scheme as follows.
For any integer d ≥ 0, let P

d denote the algebraic polynomials of degree d or less.
For j = 1, 2, 3 choose integers d j ≥ 0 and set

V j
k = span

{

k χ j (s) e j (s, k) s� : � = 0, . . . , d j

}

.

Then define

Vd
k = ⊕3

j=1V j
k , a space of dimension #(d) = d1 + d2 + d3 + 3.

Note that any function in Vd
k vanishes in Λ4\

{ ∪3
j=1 Λ j

}

, i.e., in the shadow zone.
Hence, we approximate the solution of our problem by zero in this part of the boundary.

The corresponding Galerkin scheme for (3.2) is then to seek ṽ ∈ Vd
k such that

ak(ṽ, w̃) = ( fk, w̃), for all w̃ ∈ Vd
k . (3.3)

The abstract theory of the Galerkin method for coercive problems is standard:
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Lemma 3.1 (Céa’s Lemma) Suppose ak satisfies, for all v,w ∈ L2, the two assump-
tions:

continuity |ak(v,w)| ≤ Bk‖v‖‖w‖, Bk > 0, (3.4)

coercivity |ak(v, v)| ≥ αk‖v‖2, αk > 0. (3.5)

Then both the weak form (2.9) and its Galerkin approximation (3.3) have unique
solutions (v ∈ L2 and ṽ ∈ Vd

k ). Moreover,

‖v − ṽ‖ ≤
(

Bk

αk

)

‖v − w̃‖, for all w̃ ∈ Vd
k . (3.6)

To apply this result to our problem, we use (3.1) and (3.2) to write

v(s) =
4
∑

j=1

χ j (s)v(s) = k
3
∑

j=1

χ j (s)e j (s, k)Vj (s, k) + χ4(s)v(s),

and write w̃ ∈ Vd
k as

w̃(s) = k
3
∑

j=1

χ j e j (s, k)p
d j
j (s), for some p

d j
j ∈ P

d j , j = 1, 2, 3.

From these formulae with (3.6), and recalling (3.1), the following corollary follows
easily.

Corollary 3.2

‖v − ṽ‖ ≤
(

Bk

αk

)[

k
3
∑

j=1

{

‖e j (·, k)‖L∞ inf
p∈P

d j
‖Vj (·, k) − p‖L2(Λ j )

}

+ ‖v‖L2(Λ4)

]

.

In our applications the functions e j (·, k) will be exponentials with pure imaginary
argument, having therefore modulus equal to 1. Thus the only issues for the error
estimate in Corollary 3.2 will be to estimate the constants Bk and αk (this is done in
Sect. 4), together with the errors of the polynomial approximations of Vj (·, k) and the
size of v in the shadow zone. (The latter are investigated in Sect. 6).

We would like to remark that our purpose in this paper is to establish rigorously that
Galerkin methods based on asymptotic information for k large can deliver k−robust
methods. In this first paper we concentrate on investigating the k− dependence of the
constants αk and Bk and of the error in approximation of Vj (·, k) in the space Vd

k .
The numerical analysis of methods for efficiently evaluating the integrals arising in
the implementation of the Galerkin method will be a focus of later work. Related work
in this direction is in [11,24].
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4 Coercivity and continuity

In this section we prove the continuity and the coercivity of the bilinear form ak appear-
ing in the variational formulation (2.9). Since all the estimates of this section are equally
valid for both the (Burton–Miller) operator Rk and the (Brakhage–Werner) operator
Pk (see 2.3 or 2.5), we shall in this section consider the more general sesquilinear
form:

ak(v,w) := (Akv,w), where Ak = Rk or Ak = Pk . (4.1)

For any boundary Γ , the continuity of ak can be established by bounding ‖Ak‖ and
then applying the trivial estimate

|ak(v,w)| ≤ ‖Ak‖‖v‖‖w‖. (4.2)

(By the Riesz representation theorem, ‖Ak‖ is the the least upper bound on ak .)
We shall use this approach in the case of an arbitrary closed smooth boundary Γ

in Sect. 4.2. However our proof of coercivity requires Fourier analysis, and so is
restricted to circular or spherical domains. Since the Fourier analysis can also be used
to give a sharper estimate for the continuity constant (in fact this was first done by
Giebermann [25]), we give the coercivity proof in the first subsection, and demonstrate
the continuity in the following one.

4.1 Fourier analysis

We first consider the 2D case; the extension to 3D will be discussed in Theorem 4.12.
Suppose Γ is the unit circle, with parametrisation γ (θ) = (cos θ, sin θ). Since in this
case Dk = Lk , we assume throughout this subsection that Ak = Rk = 1

2 +Dk −ikSk .
Then, following (2.7) and (2.8), we can also identify the operators Sk and Dk with
operators on spaces of 2π -periodic functions, which will be given the same names. In
the standard way, we represent any 2π -periodic L2 function v as

v(θ) = 1

2π

∑

m∈Z

v̂(m) exp(imθ), where v̂(m) :=
2π
∫

0

v(θ) exp(−imθ) dθ,

in which case, the L2-inner product and norm are given by

(v,w) = 1

2π

∑

m∈Z

v̂(m)ŵ(m), and ‖v‖2 = 1

2π

∑

m∈Z

|̂v(m)|2. (4.3)

We denote the Bessel functions of the first and second kind of order m by Jm and Ym

and introduce the corresponding Hankel function of the first kind H (1)
m = Jm + iYm .

We then have the following Fourier representations of Sk and Dk .
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Lemma 4.1 For all v ∈ L2

(i)(Skv)(θ) = 1

2π

∑

m∈Z

σ̂k(m )̂v(m) exp(imθ)

(ii)(
1

2
v + Dkv)(θ) = (

1

2
v + Lkv)(θ) = 1

2π

∑

m∈Z

̂δk(m )̂v(m) exp(imθ),

with the symbols given by

σ̂k(m) = π i

2
J|m|(k)H (1)

|m|(k), ̂δk(m) = kπ i

2
J ′|m|(k)H (1)

|m|(k), (4.4)

where the prime denotes differentiation with respect to k.

Proof The proof can be easily obtained by adapting a procedure in [28] from the
sphere to the circle. Let u be any radiating solution of the Helmholtz equation exterior
to Γ and let v be any solution of the Helmholtz equation interior to Γ . Then Green’s
identities on Γ read:

Lku − Sk∂νu = 1

2
u, Lkv − Sk∂νv = −1

2
v. (4.5)

Using polar coordinates, and substituting u(x) = H (1)
|m|(kr) exp(imθ) and

v(x) = J|m|(kr) exp(imθ) into (4.5), yields a system of simultaneous equations which
determine the quantities Sk[exp(im·)] and Lk[exp(im·)]. Solving these with the help
of the Wronskian formula from [2, (9.1.16)]:

πk

2
(Jm(k)Y ′

m(k) − J ′
m(k)Ym(k)) = 1, (4.6)

one readily obtains the result. 
�
As a result of Lemma 4.1, we obtain the following Fourier representation for the

operator Ak = 1
2 + Dk − ikSk = 1

2 + Lk − ikSk :

Akv(θ) = 1

2π

∑

m∈Z

ρ̂k(m )̂v(m) exp(imθ) with

ρ̂k(m) = πk

2
H (1)

|m|(k) (J|m|(k) + i J ′|m|(k)) (4.7)

(Note that the choice ik of coupling parameter has ensured that the contributions to
Ak from the single- and double-layer components are of the same order as k → ∞.)
Then

ak(v,w) = (Akv,w) = 1

2π

∑

m∈Z

ρ̂k(m )̂v(m)ŵ(m), (4.8)
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and since ρ̂k(m) is even in m, we can obtain the continuity constant Bk and coercivity
constant αk by showing that

sup
m∈N∪{0}

|ρ̂k(m)| ≤ Bk and inf
m∈N∪{0}

�(ρ̂k(m)) ≥ αk, (4.9)

where � denotes the real part of a complex number.
The first main result in this subsection is that coercivity holds independently of k,

as k → ∞:

Theorem 4.2 There exists ξ > 0 such that for all k ≥ ξ

inf
m∈N∪{0}

�(ρ̂k(m)) ≥ 1

2
.

The proof of Theorem 4.2 will be obtained from several lemmas proved below.
The first lemma shows three equivalent ways of writing the result of Theorem 4.2. To
state it, we need to introduce the moduli of the Hankel function and its derivative (see
[2, (9.2.17) and (9.2.18)]) :

Mm(k) := |H (1)
m (k)| =

√

J 2
m(k) + Y 2

m(k),

Nm(k) := ∣

∣

(

H (1)
m (k)

)′∣
∣ =

√

(

J ′
m(k)

)2 + (Y ′
m(k)

)2
. (4.10)

Notice that since the real zeros of Jm and Ym and also those of J ′
m and Y ′

m interlace
([2, Sect. 9.5]), both Mm and Nm are strictly positive functions of k.

Lemma 4.3 For all k > 0 and m ≥ 0, the following inequalities are equivalent

(i) �(ρ̂k(m)
) = πk

2

[

J 2
m(k) − J ′

m(k)Ym(k)
]

≥ 1

2
;

(ii) J 2
m(k) − 1

2
(Jm(k)Ym(k))′ ≥ 0;

(iii)
(

J ′
m(k)

)2 + J 2
m(k)

M2
m(k)

[

4

πk
− N 2

m(k)

]

≥ 0.

Proof Using the Wronskian formula (4.6), we can write

�(ρ̂k(m)) = πk

2

(

J 2
m(k) − J ′

m(k)Ym(k)
)

= πk

2

(

J 2
m(k) − 1

2
(Jm(k)Ym(k))′

)

+ 1

2

πk

2

(

Jm(k)Y ′
m(k) − J ′

m(k)Ym(k)
)

= πk

2

(

J 2
m(k) − 1

2
(Jm(k)Ym(k))′

)

+ 1

2
,
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and so (i) and (ii) are equivalent. On the other hand, writing

J 2
m(k) − 1

2
(Jm(k)Ym(k))′ = J 2

m(k) − 1

2

(

Jm(k)Y ′
m(k) + J ′

m(k)Ym(k)
)

and multiplying the last term by the left-hand side of (4.6), we obtain

J 2
m(k) − 1

2
(Jm(k)Ym(k))′ = J 2

m(k) − 1

2

πk

2

[

J 2
m(k)

(

Y ′
m(k)

)2 − (J ′
m(k)

)2
Y 2

m(k)
]

= J 2
m(k) − πk

4

[

J 2
m(k)N 2

m(k) − (J ′
m(k)

)2
M2

m(k)
]

.

Dividing the last identity by πk M2
m(k)/4, we obtain the equivalence of (ii) and (iii).


�

The next result shows inequality (i) for any m provided k is sufficiently large
(depending on m).

Proposition 4.4 For all m ≥ 0, there exists κm depending only on m such that

�(ρ̂k(m)
) ≥ 1

2
, when k ≥ κm .

Proof Taking into account the asymptotics of the Bessel functions, for fixed m, as
k → ∞:

Jm(k) =
√

2
πk cos

(

k − mπ
2 − π

4

)+ O(k−3/2
)

,

Ym(k) =
√

2
πk sin

(

k − mπ
2 − π

4

)+ O(k−3/2
)

,

J ′
m(k) = −

√

2
πk sin

(

k − mπ
2 − π

4

)+ O(k−3/2
)

,

Y ′
m(k) =

√

2
πk cos

(

k − mπ
2 − π

4

)+ O(k−3/2
)

,

(see [2, (9.2.1), (9.2.2), (9.2.11) and (9.2.12)] ) we conclude that

J 2
m(k) − 1

2

(

Jm(k)Ym(k)
)′

= 2

πk

[

cos2
(

k − mπ
2 − π

4

)+ 1
2 sin2

(

k − mπ
2 − π

4

)− 1
2 cos2

(

k − mπ
2 − π

4

)

]

+ O(k−2)

= 1

πk
+ O(k−2).

The result follows now readily. 
�
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Notice that, because of the dependence of κm on m, we can only use this lemma to
deal with a finite set of Fourier coefficients of the operator. For the rest of the Fourier
coefficients we need Propositions 4.6 and 4.7 below. First we need a result which is
essentially contained in the PhD thesis of Giebermann [25].

Lemma 4.5 There exist ε > 0 and m0 > 1 such that for all m ≥ m0

(JmYm)′(k) < 0, ∀k ∈ (0, m − εm1/3].

Proof Define the function fm by

fm(k) := Jm(k)Ym(k). (4.11)

Next recall the expressions for the derivatives of the Bessel functions given in
[2, (9.1.27)]:

C′
m(k) = −Cm+1(k) + m

k
Cm(k) = Cm−1(k) − m

k
Cm(k), m ≥ 1, (4.12)

where Cm denotes either Jm or Ym . Using this, we have

f ′
m(k) = J ′

m(k)Ym(k) + Jm(k)Y ′
m(k)

=
(

−Jm+1(k) + m

k
Jm(k)

)

Ym(k) + Jm(k)
(

Ym−1(k) − m

k
Ym(k)

)

= Jm(k)Ym−1(k) − Jm+1(k)Ym(k). (4.13)

Proceeding in a similar way for the second derivative, we obtain

f ′′
m(k) = (Jm(k)Ym−1(k) − Jm+1(k)Ym(k))′

= J ′
m(k)Ym−1(k) + Jm(k)Y ′

m−1(k) − J ′
m+1(k)Ym(k) − Jm+1(k)Y ′

m(k)

=
(

Jm−1(k) − m

k
Jm(k)

)

Ym−1(k) + Jm(k)

(

−Ym(k) + m − 1

k
Ym−1(k)

)

−
(

Jm(k)− m + 1

k
Jm+1(k)

)

Ym(k) − Jm+1(k)
(

−Ym+1(k) + m

k
Ym(k)

)

= Jm−1(k)Ym−1(k) − 1

k
Jm(k)Ym−1(k) − 2Jm(k)Ym(k)

+ 1

k
Jm+1(k)Ym(k) + Jm+1(k)Ym+1(k). (4.14)

Now recall the asymptotic behaviour of the Bessel functions at zero (for fixed
m > 1):

Jm(z)= 1

m!
( z

2

)m +O(zm+2) Ym(z) = − (m − 1)!
π

( z

2

)−m + O(z−m+2), |z| → 0

(4.15)
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(see [2, (9.1.7) and (9.1.9)–(9.1.11)]). Combining (4.15), with (4.11), (4.13) and (4.14)
we obtain, for m > 1,

fm(0) = − 1

πm
, f ′

m(0) = 0, f ′′
m(0) = − 2

π(m + 1)m(m − 1)
< 0. (4.16)

It follows immediately that there exists ηm > 0 (which may depend on m) such that
f ′
m(k) < 0 for k ∈ (0, ηm].

Moreover, since Jm(k) and Ym(k) have no roots in the interval (0, m] (see [2,
(9.5.2)]), it follows that

fm(k) < 0, k ∈ [0, m]. (4.17)

Clearly the first positive critical point of fm must be a local minimum. We will
show that there exists ε > 0, independent of m, such that this local minimum lies in
the interval (m − εm1/3,

√

m2 − 1/4), thus proving the result. To proceed, define

gm(k) := k3 f ′′
m(k).

Then, from [2, (9.1.59)] it follows that gm satisfies

g′
m(k) = −k

(

1 + 4k2 − 4m2) f ′
m(k) − 4k2 fm(k). (4.18)

Now, suppose that fm has two critical points η1, η2 ∈ (0,
√

m2 − 1/4). Obvi-
ously η1 is a local minimum and η2 a local maximum. Then, for k ∈ [η1, η2] ⊂
(0,
√

m2 − 1/4), we have f ′
m(k) ≥ 0 and 1 + 4k2 − 4m2 ≤ 0, and combining these

with (4.18), we can conclude that

g′
m(k) > 0, ∀k ∈ [η1, η2].

Since gm(η1) ≥ 0, this implies gm(k) > 0, for all k ∈ [η1, η2] and so f ′′
m(k) > 0, for

k ∈ (η1, η2], but this contradicts the fact that η2 is a local maximum of fm . Thus fm

has at most a single critical point in (0,
√

m2 − 1/4).
Now, for any fixed ε > 0, we can use the “transition asymptotics” [2, (9.3.23)–

(9.3.30)] to obtain

f ′
m

(

m − εm1/3) = 2

m
ϕ(ε) + O(m−5/3),

where

ϕ(ε) := Ai
(

21/3ε
)

Bi′
(

21/3ε
)+ Ai′

(

21/3ε
)

Bi
(

21/3ε
)

and Ai, Bi denote the Airy functions. Then, from [2, (10.4.1)–(10.4.5)], we have

ϕ(0) = 0, ϕ′(0) = −24/3

3
1
6 Γ
( 1

3

)2 < 0.
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Hence there exists ε > 0 such that ϕ(ε) < 0. Thus, by choosing m0 ≥ 0 sufficiently

large so that m0 − εm1/3
0 ≤

√

m2
0 − 1/4 we have

f ′
m

(

m − εm1/3) < 0, when m ≥ m0.

The first positive local extremum of f must then lie to the right of m − εm1/3 and the
result follows. 
�

Before continuing with the proof of coercivity, let us recall some more basic prop-
erties of the Bessel functions. First

Jm(k) > 0, Y ′
m(k) > 0, J ′

m(k) > 0, and Ym(k) < 0, when k ∈ (0, m).

(4.19)

These properties can be easily deduced from the bounds on the first positive roots of
these functions, namely that all of them are greater than m, and their (limiting) values
when k → 0 (see [2, (9.5.2), (9.1.7) and (9.1.9)]).

Moreover, since by definition Ym is solution of the Bessel differential equation:

k2Y ′′
m(k) + kY ′

m(k) + (k2 − m2)Ym(k) = 0,

we deduce that

Y ′′
m(k) < 0, k ∈ (0, m). (4.20)

Proposition 4.6 There exists m1 such that for all m ≥ m1

�(ρ̂k(m)) ≥ 1

2
, when k ∈ (0, m].

Proof By Lemma 4.3 we just have to show that there exists m1 such that for all m ≥ m1

J 2
m(k) − 1

2

(

Jm(k)Ym(k)
)′ ≥ 0, k ∈ (0, m] .

But then, by Lemma 4.5, we only have to prove it for m ≥ m0 and k ∈ (m−εm1/3, m
]

.
Using (4.19), we have

J 2
m(k) − 1

2

(

Jm(k)Ym(k)
)′ ≥ J 2

m(k) − 1

2
Jm(k)Y ′

m(k)

≥ J 2
m(k) − 1

4
J 2

m(k) − 1

4
(Y ′

m(k))2

≥ 3

4
J 2

m

(

m − εm1/3)− 1

4

(

Y ′
m

(

m − εm1/3))2,

where in the last step we have applied (4.19) and (4.20).
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Using the asymptotics of the Bessel functions at m − εm1/3 (cf. [2, (9.3.23) and
(9.3.28)]) we deduce that there exists C > 0 such that

3

4
J 2

m

(

m − εm1/3)− 1

4

(

Y ′
m

(

m − εm1/3))2 ≥ Cm−2/3 + O(m−4/3).

Therefore, there exists m′ such that for all m ≥ m′ the left hand side of inequality
above is strictly positive. The result follows on setting m1 = max{m0, m′}. 
�
Proposition 4.7 There exists κ ′ > 0 such that

�(ρ̂k(m)) ≥ 1

2
when κ ′ ≤ m ≤ k.

Proof Again, from Lemma 4.3, it is sufficient to show that, for some κ ′ > 0

k N 2
m(k) ≤ 4

π
, ∀k ∈ [m,∞), when κ ′ ≤ m ≤ k.

We start by noticing that Mm(k) and Nm(k) are related by cf. [2, (9.2.23)]

d

dk

(

k2 N 2
m(k)

)

= −(k2 − m2)
d

dk

(

M2
m(k)

)

.

Therefore, integrating by parts,

k2 N 2
m(k) − m2 N 2

m(m) =
k
∫

m

d

dt

(

t2 N 2
m(t)

)

dt = −
k
∫

m

(t2 − m2)
d

dt

(

M2
m(t)

)

dt

= −(k2 − m2)M2
m(k) + 2

k
∫

m

t M2
m(t) dt.

Using (cf. [42, Sect. 13.74])

2

πk
≤ M2

m(k) ≤ 2

π
√

k2 − m2
, ∀k ≥ m,

and m/k ≤ 1, we obtain

k N 2
m(k) ≤ m2 N 2

m(m)

k
− 4

π

(

k2 − m2

2k2

)

+ 4

πk

k
∫

m

t√
t2 − m2

dt

≤
(

m2/3 Nm(m)
)2

k1/3 + 4

π
ϕ(m/k),
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with ϕ(θ) = −1/2 + θ2/2 + √
1 − θ2, for θ ∈ (0, 1]. Since ϕ(θ) < ϕ(0) = 1/2,

for θ ∈ (0, 1] and |m2/3 Nm(m)| ≤ C with C independent of m (see [2, (9.3.33) and
(9.3.34)]), we conclude that

k N 2
m(k) ≤ 2

π
+ Ck−1/3.

Taking κ ′ large enough concludes the proof. 
�
Gathering the above lemmas together we now have the proof of the first main result.

Proof of Theorem 4.2 Let

κ̂ := max
{

κ ′, m1
}

,

where κ ′, m1 are as in propositions 4.6 and 4.7. Then

�(ρ̂k(m)) ≥ 1

2

for all m, k ≥ κ̂ . Taking � to be the largest integer smaller than κ̂ and

ξ := max
{

κ̂, κ0, . . . , κ�

}

,

with κ� as in Proposition 4.4, and recalling that ρ̂k(−m) = ρ̂k(m), the result follows
readily. 
�
Remark 4.8 To gain more insight into the result in Theorem 4.2, let us recall that it
is shown in [38, Sect. 3.4.37] that the operator �{−iSk} = �{Sk} is actually positive
semidefinite for any sufficiently smooth Γ . Thus the coercivity result proved above is a
consequence of a very delicate balance between the Fourier coefficients of Dk and Sk ,
in such a way that when a specific coefficient of 1/2 +Dk is small that corresponding
to Sk is sufficiently large to compensate it and vice versa.

The analysis developed above to prove coercivity also provides a proof of continuity
on the circle. Because of (4.2), it is sufficient to bound ‖Ak‖, and in turn because of
(4.7), this is achieved by bounding the terms

∣

∣J 2
m(k)

∣

∣,
∣

∣Jm(k)J ′
m(k)

∣

∣,
∣

∣Jm(k)Ym(k)
∣

∣, and
∣

∣J ′
m(k)Ym(k)

∣

∣

uniformly in m ∈ Z and for all k large enough. This we now do.

Lemma 4.9 There exists C > 0 independent of m such that

∣

∣Jm(k)
∣

∣+ ∣∣J ′
m(k)

∣

∣ ≤ Ck−1/3, ∀ k ∈ (0,∞).
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Proof In [30] it is proved that

|Jm(k)| ≤ Ck−1/3.

The bound for the derivative is a simple consequence of (4.12). 
�

Lemma 4.10 For all κ > 0 there exists a constant C independent of m such that for
all k > κ

∣

∣Jm(k)Ym(k)
∣

∣+ ∣∣J ′
m(k)Ym(k)

∣

∣ ≤ Ck−2/3.

Proof We remark that Jm(k)Ym(k) and J ′
m(k)Ym(k) when seen as functions of k and

m are continuous for k > 0, and for all m fixed. Moreover, fixed m, κ0 > 0, they
are bounded for k ≥ κ0. Hence, we just have to study these products for all m large
enough.

Taking ε and m0 as in Lemma 4.5 we conclude that for all m ≥ m0

∣

∣Jm(k)Ym(k)
∣

∣ ≤ ∣∣Jm
(

m − εm1/3)Ym
(

m − εm1/3)
∣

∣

≤ 1

2
M2

m

(

m − εm1/3), k ∈ [0, m − εm1/3]

(recall that Jm(k)Ym(k) < 0 for all k ∈ (0, m]). Hence, using, [2, (9.3.23)–(9.3.24))],
we get

M2
m

(

m − εm1/3) ≤ Cm−2/3 ≤ C ′k−2/3, k ∈ [0, m − εm1/3].

For k ∈ [m −εm1/3,∞)we use [42, Sect. 13.74] and [2, (9.3.23)–(9.3.24))] to obtain

∣

∣Jm(k)Ym(k)
∣

∣ ≤ 1

2k
k M2

m(k) ≤ 1

2k

(

m − εm1/3)M2
m

(

m − εm1/3)

≤ C ′k−1(m − εm1/3)m−2/3 ≤ C ′k−1m1/3 ≤ C ′k−2/3.

This finishes the first part of the proof.
On the other hand, by (4.12) and (4.19)

0 ≤ J ′
m(k), Jm(k) ≤ Jm−1(k), ∀k ∈ [0, m − 1].

Applying the identity (see [2, (9.1.16)])

Jm(k)Ym−1(k) + Jm−1(k)Ym(k) = 2

πk
,
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we conclude that

∣

∣J ′
m(k)Ym(k)

∣

∣ ≤ ∣∣Jm−1(k)Ym(k)
∣

∣

≤ 2

πk
+ ∣∣Jm(k)Ym−1(k)

∣

∣

≤ 2

πk
+ ∣∣Jm−1(k)Ym−1(k)

∣

∣,

and the bound is proved for k ∈ (0, m − 1].
For k ≥ m − 1, we proceed as follows

∣

∣J ′
m(k)Ym(k)

∣

∣ ≤ 1

2

[

∣

∣J ′
m(k)

∣

∣

2 + Y 2
m(k)

]

≤ 1

2

[

∣

∣J ′
m(k)

∣

∣

2 + M2
m(k)

]

.

By Lemma 4.9 and bounding M2
m(k) as before, we prove the result. 
�

Using the last two lemmas we can now bound the continuity constant for the bilinear
form ak in the case of a circular boundary. This result can also be found in [25].

Theorem 4.11 Let Γ be the unit circle, and k0 > 0. Then, there exists C > 0 inde-
pendent of k ≥ k0 such that

‖Ak‖ ≤ Ck1/3.

We prove in the next theorem that the coercivity and a similar continuity estimate
hold also for the sphere. The proof is a simple adaptation of the tools developed to
cover the 2D case. In 3D the operators Sk , Lk and Dk are defined analogously to (2.4)
and (2.6), but with Φk(x) = 1

4π
exp(ik|x |)

|x | . Again Rk = Pk and so Ak = 1
2 +Dk −ikSk .

Theorem 4.12 Consider the operator Ak on the sphere in R
3. Then there exist

C2, c2 > 0 such that, for all sufficiently large k,

‖Ak‖ ≤ C2k1/3 , �(Akv, v) ≥ c2‖v‖2.

Proof Let
{

Y �
m

}

(m = 0, 1, . . . , � = −m,−m +1, . . . , m) be the spherical harmonics
(see [38, Sect. 2.4], [19, Sect. 2.3]). Then it is well known that

{

Y �
m

}

is an orthonormal
basis of L2(S2) (S2 denotes the unit sphere in what follows). We introduce the Fourier
coefficients defined in the usual way by

̂f (m, �) =
∫

S2

f (x)Y �
m(x)dx.
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Then

Skv =
∞
∑

m=0

σ̂k(m)

m
∑

�=−m

v̂(m, �)Y �
m

1

2
v + Dkv =

∞
∑

m=0

̂δk(m)

m
∑

�=−m

v̂(m, �)Y �
m

with the symbols of the operators given by (compare with 4.4)

σ̂k(m) = ik jm(k)h(1)
m (k), ̂δk(m) = ik2 j ′m(k)h(1)

m (k). (4.21)

Here jm and ym are the spherical Bessel functions ([2, Sect. 10.1] )

jm(k) :=
√

π

2k
Jm+1/2(k) , ym(k) :=

√

π

2k
Ym+1/2(k). (4.22)

and h(1)
m = jm + iym . The formulae (4.21) can be found for example in [28,25]—see

also [13].
Proceeding as before, we conclude that the continuity and coercivity are equivalent

to proving

max
m∈N∪{0}

k2
∣

∣

∣

(

j2
m(k) − j ′m(k)ym(k)

)+ i jm(k)
(

j ′m(k) + ym(k)
)

∣

∣

∣ ≤ C2k1/3, (4.23)

αk := min
m∈N∪{0}

k2( j2
m(k) − j ′m(k)ym(k)

) ≥ c2 > 0. (4.24)

The continuity estimate (4.23) is a consequence of lemmas 4.9 and 4.10. For the
coercivity estimate (4.24), observe that from (4.22), it is equivalent to prove that, for
all m = 0, 1, . . . , and for all sufficiently large k,

πk

2

[

J 2
m+1/2(k) − J ′

m+1/2(k)Ym+1/2(k)
]

+ π

4
Jm+1/2(k)Ym+1/2(k) ≥ c2 > 0.

By Theorem 4.2 (see also Lemma 4.3 item (i)) we know that there exists ξ > 0 such
that, for all k ≥ ξ ,

πk

2

[

J 2
m+1/2(k) − J ′

m+1/2(k)Ym+1/2(k)
]

≥ 1

2
.

On the other hand, by Lemma 4.10, there exists C independent of k such that

∣

∣Jm+1/2(k)Ym+1/2(k)
∣

∣ ≤ Ck−2/3.

Collecting both inequalities, we conclude that αk ≥ 1/2 − Ck−2/3 and taking k large
enough, the result follows readily. 
�
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The extension of the proof of coercivity to an arbitrary boundary Γ remains as an
open question at the moment and certainly deserves further investigation.

In the next subsection we shall prove an estimate of ‖Ak‖ when Γ is an arbitrary,
sufficiently smooth closed curve. For this we must abandon Fourier analysis and adopt
more flexible methods.

4.2 General boundaries

Our main result is Theorem 4.14, for which we need the following technical lemma.
Recall the function Mm defined in (4.10).

Lemma 4.13 For each m = 0, 1, . . . , there exists Cm > 0 independent of k such that

2π
∫

0

Mm(2k| sin t/2|) | sin t/2|m dt ≤ Cmk−1/2, for k sufficiently large.

Proof The integral may be written

2π
∫

0

Mm(2k| sin t/2|) | sin t/2|m dt = 4

π/2
∫

0

Mm(2k sin t) sinm t dt.

Since (see [2, (9.2.4)]),

Mm(z) =
√

2

π z
+ O(z−1), as z → ∞. (4.25)

we conclude

π/2
∫

π/6

Mm(2k sin t) sinm t dt ≤ Cmk−1/2,

with Cm > 0 independent of k. Moreover, with the change of variable x = 2k sin t ,
we obtain

π/6
∫

0

Mm(2k sin t) sinm t = (2k)−1−m

k
∫

0

Mm(x)
xm

√

1 − (x/2k)2
dx

≤ 2

(2k)m+1
√

3

k
∫

0

Mm(x)xm dx =: Im(k).
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To bound Im(k), note that, for any fixed L > 0, and k sufficiently large, we can write:

Im(k) = 2

(2k)m+1
√

3

⎧

⎨

⎩

L
∫

0

Mm(x)xmdx +
k
∫

L

Mm(x)xmdx

⎫

⎬

⎭

. (4.26)

We notice that Mm(x)xm is locally integrable in [0,∞) (cf. [2, (9.1.7)–(9.1.9)]).
Hence, using again (4.25), we conclude

Im(k) ≤ Cmk−m−1

⎡

⎣1 +
k
∫

L

xm−1/2dx

⎤

⎦ , as k → ∞,

from which the result follows readily. 
�
Now we can prove the required continuity estimate for general boundaries.

Theorem 4.14 Let Γ be a C∞ closed curve. Then there exists C > 0 independent of
k such that

‖Ak‖ ≤ Ck1/2,

where Ak = Rk or Pk .

Proof We shall give the proof for Ak = Rk . The other case is analogous. Let γ

be the parameterisation in (2.7). Then, with the notational convention in (2.8), the
transformed operator Rk has the form:

(Rkv)(s) = 1

2
v(s) + k

2π
∫

0

{Dk(s, t) − i Sk(s, t)} v(t) dt, (4.27)

where

Sk(s, t) := i

4
H (1)

0 (k|γ (s) − γ (t)|)|γ ′(t)|, and

Dk(s, t) := − i

4

(γ (s) − γ (t)) · ν(s)

|γ (s) − γ (t)| H (1)
1 (k|γ (s) − γ (t)|)|γ ′(t)|.

The result is obtained by estimating the L2 norm of each of the integral operators
appearing on the right-hand side of (4.27). Taking the second operator first, we write

2π
∫

0

∣

∣

∣

∣

∣

∣

2π
∫

0

Sk(s, t)v(t) dt

∣

∣

∣

∣

∣

∣

2

ds = 1

16

2π
∫

0

∣

∣

∣

∣

∣

∣

2π
∫

0

Wk(s, t)H (1)
0 (2k| sin((s − t)/2)|)v(t) dt

∣

∣

∣

∣

∣

∣

2

ds
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with

Wk(s, t) := Sk(s, t)

(i/4)H (1)
0 (2k| sin((s − t)/2)|)

.

Here we have used a “singularity division” trick: the denominator in Wk(s, t) is the
(convolution kernel) which results from evaluating the numerator on the unit circle
γ (s) = (cos s, sin s). The singularity as s → t on the top and bottom of Wk are
the same, and the asymptotic behaviour as k → ∞, for s 	= t are also the same.
A little analysis shows that |Wk(s, t)| can be bounded independent of k ≥ 1, and
s, t ∈ [0, 2π ]2. Hence

2π
∫

0

∣

∣

∣

∣

∣

∣

2π
∫

0

Sk(s, t)v(t) dt

∣

∣

∣

∣

∣

∣

2

≤ C

2π
∫

0

⎡

⎣

2π
∫

0

M0(2k| sin((s − t)/2)|) |v(t)| dt

⎤

⎦

2

ds

≤ C

[
2π
∫

0

M0(2k| sin(t/2)|) dt

]2

‖v‖2,

with C independent of k, where we have used the standard convolution estimate:
‖ f ∗ g‖ ≤ ‖ f ‖L1(0,2π)‖g‖. The required estimate for the second integral in (4.27) is
now a consequence of Lemma 4.13 with m = 0.

The first integral on the right-hand side of (4.27) is estimated in an analogous
way, but instead we perform singularity subtraction using the function (−i/4)H (1)

1
(2k| sin(s − t)/2|)|2 sin(s − t)/2|, and apply Lemma 4.13 with m = 1. 
�

5 Asymptotics of the normal derivative of the total field

In this section we discuss the high frequency asymptotic behaviour of the function V
appearing in the decomposition (1.1), i.e.,

v(s, k) := v(γ (s), k) = kV (s, k) exp(ikγ (s) · â), s ∈ [0, 2π ], (5.1)

where v is the solution of (2.8). Throughout we shall require that Γ is a simple convex
C∞ contour with non-vanishing curvature.

The first (nonrigorous) results on this topic were by Fock (e.g., [22]). This was
followed by Ludwig [35] (applying the notion of “uniform” asymptotics) and subse-
quently by the rigorous analysis of Buslyaev [15,17]—see also [5,7].

We begin by quoting, in Theorem 5.1 below, a well-known result from Melrose and
Taylor [37]. This is then used in Corollary 5.3 to obtain a decomposition of V into a
finite sum of explicit k−dependent terms, plus a controllable remainder. In turn this
is used to prove Theorem 5.4, which gives bounds on the derivatives of V (valid as
k → ∞), suitable for use in the subsequent numerical analysis.

The following result is [37, Theorem 9.27] restricted to the two-dimensional case.
(The analysis in [37] is valid for all dimensions.) Note that here the formula in
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[37, Theorem 9.27] has been scaled by k−1, because k is an explicit factor in (5.1).
Theorem 5.1 can essentially be found elsewhere in the literature. For example
“Fundamental Theorem” in [17, Sect. 1.9] is stated for the case of Neumann boundary
conditions and a point source incident wave, although the general method used there
can also be directly extended to the Dirichlet boundary conditions and plane wave
incidence which are relevant here [16].

Theorem 5.1 There exists ∆ > 0 such that V (s, k) has the asymptotic expansion:

V (s, k) ∼
∑

�,m≥0

k−1/3−2�/3−mb�,m(s)Ψ (�)(k1/3 Z(s)), (5.2)

valid for s ∈ I∆ := (t1 − ∆, t1 + ∆) ∪ (t2 − ∆, t2 + ∆), where γ (t1) and γ (t2) are
the tangency points as described in Sect. 3. The functions b�,m, Ψ and Z have the
following properties.

(i) b�,m are C∞ complex-valued functions on I∆.
(ii) Z is a C∞ real-valued function on I∆, with simple zeros at t1 and t2, which is

positive-valued on (t1, t2) ∩ I∆ and negative-valued on (t2 − 2π, t1) ∩ I∆.
(iii) Ψ : C → C is an entire function specified by

Ψ (τ) := exp
(− iτ 3/3

)

∫

c

exp(−i zτ)

Ai
(

e2π i/3z
) dz, (5.3)

where Ai is the Airy function ([2] Sect. 10.4) and c the is contour depicted in Fig. 2
(cf. [37, (9.8)], where θ is any sufficiently small positive angle, thus ensuring the
absolute convergence of (5.3), cf. [5, p.362]). Note that A+(s) in [37, (9.8)] is
exactly Ai(e2π i/3s). Although this is not explicitly stated in [37], it is implicit
there - for example compare [37, (3.19)] with [2, (9.3.37)]. Note also that [37]
works in the context of the distributional theory of Fourier analysis, thus treating
Fourier integrals in the weakest possible sense. Thus, although the domain of
integration is not specified in [37, (9.8)], it is implicitly the real line. Deforming
the integration path into the complex plane in the way we have described is a
standard procedure which allows us to obtain an absolutely convergent integral
with the same value. As a consequence the asymptotics of Ψ (τ) for large |τ | are
known. In particular, (see [37, Lemma 9.9]):

Ψ (τ) = a0τ + a1τ
−2 + a2τ

−5 + · · · + anτ 1−3n

+ O(τ 1−3(n+1)
)

, as τ → ∞, where a0 	= 0, (5.4)

and this expansion remains valid for all derivatives of Ψ by formally differenti-
ating each term on the right hand side, including the error term. Moreover, there
exists β > 0 and c0 	= 0 such that for any n ∈ N ∪ {0}

Dn
τ Ψ (τ) = c0 Dn

τ

{

exp
(− iτ 3/3 − iτα1

)

}

(1 + O(exp(−|τ |β))), as τ → −∞,

(5.5)
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Fig. 2 The contour c in the
complex plane

where α1 = exp(−2π i/3)ν1 and ν1 < 0 is the right-most root of Ai. (Recall
that the roots of Ai(z) are all real and negative cf. [2] Sect. 10.4). Hence, when
τ → −∞ the function Ψ , as well as its derivatives decrease exponentially but
in a very oscillating way.

Remark 5.2 We would like to make several clarifying remarks about Theorem 5.1.
The function Ψ defined in (5.3) is often called “Fock’s integral” and can be found

in the works of Fock e.g., [22, Sect. 7, 12]. Its properties were studied in detail in
e.g., [15, Sect. 3]. [Note that Fock’s 1965 book [22] is in fact a collection of English
translations of his earlier papers written in Russian, in particular Chap. 7 (1948) and
Chap. 12 (1949).]

The asymptotics in (5.5) are not given explicitly in [37] but may be deduced easily
by applying the theory of residues to the contour integral in (5.3)—see, e.g., [5, p.393],
[15, Lemma 8]. The function Z(s) can be found explicitly in the two-dimensional case,
see e.g., [15, (45.1)].

The precise meaning of the asymptotic expansion in (5.2) can be made clear
using the symbol classes of Hörmander (see, e.g., [27, p. 236, Definition 7.8.1], [37,
p. 249]). In the context of our problem, a function p = p(s, k) (where s ∈ [0, 2π ] and
k ∈ (0,∞)), is said to lie in the class Sµ

ρ,δ (for all (s, k) in some subdomain of
[0, 2π ] × (0,∞)), if

∣

∣Dα
k Dn

s p(s, k)
∣

∣ ≤ Cα,n(1 + k)µ−ρα+δn, α, n ∈ N ∪ {0}.

Using this formalism, (5.2) can be written more explicitly as follows: Choose any
µ < 0. Then, for all L , M ∈ N∪{0} sufficiently large (depending on µ), the remainder

RL ,M := V (s, k) −
L ,M
∑

�,m=0

k−1/3−2�/3−mb�,m(s)Ψ (�)(k1/3 Z(s)),

satisfies

RL ,M ∈ Sµ
2/3,1/3 for (s, k) ∈ I∆ × (0,∞) (5.6)
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(i.e., ρ = 2/3, δ = 1/3 in this case). Note that although the symbol class Sµ
2/3,1/3

is explicit in [37, (1.17)], it remains implicit in much of the rest of [37]. The above
interpretation of (5.2) is equivalent to saying that (5.2) is a conventional asymptotic
expansion and remains so under term-by-term differentiation on both sides with respect
to both s and k. This standard use of the ∼ symbol is prevalent throughout the rigorous
asymptotics and microlocal analysis literature and it always has the same meaning.

In view of our explicit definition, the functions b�,m , Ψ and Z are all necessarily
smooth (C∞) functions of their arguments.

It is also clear that the function Z can be extended (nonuniquely) to a C∞ 2π -
periodic function which is positive-valued on (t1, t2) and negative-valued on
(t2 − 2π, t1) and from now on we assume this extension has been made.

Corollary 5.3 With the same notation as Theorem 5.1, the functions b�,m can be
extended to 2π -periodic C∞ functions such that, for all L , M ∈ N ∪ {0}, the decom-
position

V (s, k) =
⎡

⎣

L ,M
∑

�,m=0

k−1/3−2�/3−mb�,m(s)Ψ (�)(k1/3 Z(s))

⎤

⎦+ RL ,M (s, k). (5.7)

holds for all s ∈ [0, 2π ], with remainder term satisfying, for all n ∈ N ∪ {0},
∣

∣Dn
s RL ,M (s, k)

∣

∣ ≤ CL ,M,n(1 + k)µ+n/3, where

µ := − min

{

2

3
(L + 1), (M + 1)

}

. (5.8)

and CL .M,n is independent of k.

Proof Our first step is to derive the result for s ∈ I∆ from Theorem 5.1. To do this,
simply choose any L , M ∈ N ∪ {0} and µ as in (5.8) and, for convenience, set

a�,m(s, k) = k−1/3−2�/3−mb�,m(s)Ψ (�)(k1/3 Z(s)).

Then, by Remark 5.2, there exist integers L ′ ≥ L and M ′ ≥ M such that RL ′,M ′ ∈
Sµ

2/3,1/3 and (by (5.7) written in two different ways),

RL ,M (s, k) =
⎧

⎨

⎩

L ′
∑

�=L+1

M ′
∑

m=0

+
L
∑

�=0

M ′
∑

m=M+1

⎫

⎬

⎭

a�,m(s, k) + RL ′,M ′(s, k). (5.9)

Now, using the expansions (5.4), (5.5) and the fact that Ψ ∈ C∞(R), we obtain, for
all τ ∈ R, the estimates

|Ψ (τ)| ≤ C0(1 + |τ |), (5.10)

|Ψ ′(τ )| ≤ C1, (5.11)

|Ψ (�)(τ )| ≤ C�(1 + |τ |)−2−�, for � ≥ 2, (5.12)
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with C� independent of k. Using (5.10)–(5.12), a direct calculation shows that
a0,m(s, k) ∈ S−m

2/3,1/3 and a�,m(s, k) ∈ S−1/3−2�/3−m
2/3,1/3 , when � ≥ 1. Hence for the

range of � and m in the double summations in (5.9), we have a�,m ∈ Sµ
2/3,1/3, with µ

as chosen above. Combining this and the stated property of L ′, M ′ with (5.9) shows
that the first term on the right-hand side of (5.9) is in Sµ

2/3,1/3 for (s, k) ∈ I∆ × (0,∞).
Since RL ′,M ′ has the same property, the required result follows.

To complete the proof we shall extend the result to all s ∈ [0, 2π ], with appropriate
2π -periodicC∞ complex-valued functions b�,m . A way to establish this is, for example,
by employing known asymptotic results in the illuminated zone (t1 +∆/2, t2 −∆/2)

(“geometrical optics”) and in the shadow zone (t2 − 2π + ∆/2, t1 − ∆/2) (“extra-
polynomial decay”—i.e., decay faster that any inverse power of k).

Consider first the illuminated zone. The required asymptotics can be found (for
example) in [37, (1.15)], stated there without proof or a precise reference as a com-
monly well-known fact as V (s, k) ∼∑ j≥0 k− j d j (s), with d j ∈ C∞(t1 + ∆/2,

t2 − ∆/2). Interpreting this as in Corollary 5.3, this may be written:

V (s, k) =
N
∑

j=0

k− j d j (s) + rN (s, k), (5.13)

where, for all n ≥ 0,

∣

∣Dn
s rN (s, k)

∣

∣ ≤ cN ,n(1 + k)−N−1, s ∈ (t1 + ∆/2, t2 − ∆/2), (5.14)

with cN ,n independent of k (but dependent on ∆). (The first term in (5.13) is the
well-known geometric optics approximation d0(s) = 2iν(s).â, where ν is the out-
ward unit normal to the scatterer Γ .) For additional statements and proofs, see e.g.,
[36, Theorem II], [18], [17, Theorem 8] and [45]. (The reference [17] discusses the
Neumann boundary condition and point source incidence; the extension to Dirichlet
conditions is straightforward while plane wave incidence can be handled by viewing
it as a limit of a sequence of increasingly remote and appropriately magnified point
sources, as in e.g., [6, Sect. A.2].)

We argue next that (5.13) implies the validity of (5.7) on all of (t1, t2), with b�,m

replaced by a suitable C∞ extension. To see this, first suppose that such an exten-
sion does exist and denote it b̃�,m . Then, for s ∈ (t1 + ∆/2, t2 − ∆/2), replacing
Ψ (�)(k1/3 Z(s)) in (5.7) by its asymptotics as k → ∞ (using 5.4), and performing
a straightforward re-arrangement, we see that (5.7) adopts the form (5.13) for suffi-
ciently large L and M , provided the b̃�,m satisfy the equations (with an as in 5.4):

d0(s) = a0b̃0,0(s)Z(s),

d1(s) = a0

(

b̃0,1(s)Z(s) + b̃1,0

)

+ a1b̃0,0(s)(Z(s))−2,
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d j (s) = a0

(

b̃0, j (s)Z(s) + b̃1, j−1

)

+
∑

�+m+n= j
n≥1

⎡

⎣

�−1
∏

p=0

(1 − 3n − p)

⎤

⎦ anb̃�,m(s)(Z(s))1−3n−�, j ≥ 2,

(5.15)

(with the convention that
∏−1

p=0 x p := 1). Since a0 	= 0 and Z(s) 	= 0 for s ∈
(t1 + ∆/2, t2 − ∆/2), it is easy to see that one can always (non-uniquely) select b̃�,m

so that the Eq. (5.15) hold for this range of s. Inserting the chosen b̃�,m into (5.7) and
using this to define RL ,M (s, k) for s ∈ (t1 + ∆, t2 − ∆), we then see that (5.8) holds
there.

Finally we join the illuminated and transition zones by “matching” b̃�,m and b�,m

in the overlapped regions (t1 + ∆/2, t1 + ∆) and (t2 − ∆, t2 − ∆/2) in a standard
way, i.e., re-defining b�,m(s) on [t1 − ∆, t2 + ∆] as χ(s)b̃�,m(s) + (1 − χ(s))b�,m(s),
where χ ∈ C∞ is a cut-off function: χ(s) ≡ 1 for s ∈ [t1 + ∆, t2 − ∆], χ(s) ≡ 0 for
s ≤ t1 + ∆/2 and s ≥ t2 − ∆/2.

The extension into the (deep) shadow zone (t2 − 2π + ∆, t1 − ∆) is performed in
a similar way by employing results on extra-polynomial decay of the total wave field,
see e.g., [36, Sect. 2], [17, Sect. 1.9]. These results imply an asymptotic expansion of
the form (5.13) and (5.14) with all the coefficients d j (s) being identically zero, for
s ∈ (t2 − 2π + ∆/2, t1 − ∆/2). Combining this with (5.5) implies in fact that any
C∞ continuation of b�,m into the shadow zone would suffice. Notice in passing that
although this argument is sufficient for the present proof, it can be further sharpened
to prove exponential, rather than extra-polynomial, decay in the deep shadow. This is
important later in the paper (see Theorem 6.5). 
�

We make use of this theorem by deriving the following estimates for the derivatives
of V (s, k) with respect to s, which will be directly useful in our numerical analysis.

Theorem 5.4 For all n ∈ N ∪ {0} there exist constants Cn > 0 independent of k and
s such that for all k sufficiently large,

|Dn
s V (s, k)| ≤

⎧

⎪

⎨

⎪

⎩

Cn, n = 0, 1,

Cn

[

1 +
n
∑

j=2

k( j−1)/3(1 + k1/3|ω(s)|)− j−2
]

, n ≥ 2,
(5.16)

where ω(s) := (s − t1)(t2 − s).

Proof Throughout this proof Cn denotes a generic constant independent of s and k
but possibly depending on n, whose value may change from line to line. Note first
that, by the properties of Z (see Theorems 5.1 and 5.2), we have

Z(s) = h(s)ω(s), (5.17)

where h is a smooth positive real function bounded away from zero on s ∈ [0, 2π ].
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Choosing any n ∈ N ∪ {0} we can select L , M so that −µ ≥ n/3, where µ is
defined in (5.8). Then apply Corollary 5.3 to obtain

V (s, k) = AL ,M (s, k) + RL ,M (s, k),

where

AL ,M (s, k) := k−1/3
L
∑

�=0

k−2�/3 B�,M (s)Ψ (�)
(

k1/3 Z(s)
)

, B�,M :=
M
∑

m=0

k−mb�,m(s).

and the derivatives of RL ,M are bounded as in (5.8). Since µ + n/3 ≤ 0, it follows
that

∣

∣Dn
s RL ,M (s, k)

∣

∣ ≤ Cn, for allk.

By the Leibnitz rule, since all derivatives of B�,M are bounded independently of k, we
obtain

|Dn
s AL ,M (s, k)| ≤ k−1/3

L
∑

�=0

k−2�/3
∣

∣

∣Dn
s

[

B�,M (s)Ψ (�)(k1/3 Z(s))
]∣

∣

∣ (5.18)

≤ Cnk−1/3
n
∑

j=0

L
∑

�=0

k( j−2�)/3
∣

∣

∣

∣

Ψ (�+ j)(k1/3 Z(s))

∣

∣

∣

∣

. (5.19)

We split the sum on the right-hand side of (5.19) into three components: for j = 0,
j = 1 and j ≥ 2. For the third component, we use (5.12) and (5.17) to obtain

k−1/3
n
∑

j=2

L
∑

�=0

k( j−2�)/3
∣

∣Ψ (�+ j)(k1/3 Z(s))
∣

∣

≤ Cnk−1/3
n
∑

j=2

L
∑

�=0

k( j−2�)/3
(

1 + k1/3|ω(s)|
)−2− j−�

≤ Cn

n
∑

j=2

k( j−1)/3
(

1 + k1/3|ω(s)|
)− j−2

[

L
∑

�=0

k−2�/3(1 + k1/3|ω(s)|)−�

]

.

The result for j = 0, 1 follows analogously, using (5.10), (5.11). 
�
The next result is now a simple consequence of Theorem 5.4.

Corollary 5.5 For all n ≥ 1 there exists Cn independent of k and s such that, for k
sufficiently large,

∣

∣Dn
s V (s, k)

∣

∣ ≤ Cn(1 + k)(n−1)/3, s ∈ [0, 2π ].
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We note that this estimate holds globally, including therefore near the tangency
points s = t1 and s = t2. However this estimate is not sharp in the illuminated zone,
well away from the tangency points, where the fact that ω(s) is bounded away from
zero allows the negative power of

(

1 + k1/3|ω(s)|) in the right-hand side of (5.16) to
become active. The different estimates in the illuminated and shadow zones will be
exploited in the next section.

6 Error estimates

In this section we study the approximation of the solution v of (2.8) by the non-
standard Galerkin procedure outlined in Sect. 3. In this case, via (5.1), the expansion
(3.2) holds for j = 1, 2, 3 with

e j (s, k) = exp(ikγ (s) · â ), Vj (s) =
{

V (s), s ∈ Λ j ,

0, otherwise.
(6.1)

For good approximation of Vj , we need to choose the domains Λ j carefully, and
possibly depending on k. For parameters ε, δ ∈ (0, 1/3], c1 > 0, c2 > 0 and for
sufficiently large k > 0, we define

• the transition zones:

Λ1 :=
[

t1 − c2k−1/3+δ, t1+c1k−1/3+ε
]

, Λ2 :=
[

t2 − c1k−1/3+ε, t2+c2k−1/3+δ
]

;
(6.2)

• the illuminated zone:

Λ3 :=
[

t1 + c1k−1/3+ε,, t2 − c1k−1/3+ε
]

; (6.3)

• and the shadow zone:

Λ4 :=
[

t2 − 2π + c2k−1/3+δ,, t1 − c2k−1/3+δ
]

. (6.4)

The zones Λ j touch only at their endpoints.
We shall see that the choice of the constants c1, c2 does not affect the asymptotic

behaviour of the error in approximation of each Vj as k → ∞, but tuning c1, c2 turns
out in practice to be useful, if we seek methods which perform well across a range of
wavenumbers k. The zones Λ j depend on ε, δ, c1 and c2 but we do not reflect this in
the notation.

Recall that P
d denotes the univariate polynomials of degree ≤ d. Given an interval

I = (a, b) and n ∈ N ∪ {0}, we introduce the (semi)norms (for suitable f ):

| f |n,I :=
⎡

⎣

b
∫

a

| f (n)(s)|2(s − a)n(b − s)n ds

⎤

⎦

1/2

.
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Then it is well-known (cf. [40, Cor. 3.12]) that there exists Cn > 0 such that, for all
nonnegative integers n with n ≤ d + 1,

inf
p∈Pd

‖ f − p‖L2(I ) ≤ Cnd−n| f |n,I . (6.5)

(Again throughout this section, Cn denotes a generic n-dependent and k-independent
constant.) We shall use this to obtain bounds for polynomial approximation of Vj in
zone Λ j , for j = 1, 2, 3. Our first lemma concerns the illuminated zone Λ3.

Proposition 6.1 For n ≥ 2 and for sufficiently large k, there exists Cn independent
of k and ε such that

|V (·, k)|n,Λ3 ≤ Cn

[

1 + k−(1+3ε)/2k(1−3ε)n/6
]

.

Proof Let us define

ak,ε := t1 + c1k−1/3+ε, bk,ε := t2 − c1k−1/3+ε.

By Theorem 5.4

|V (·, k)|n,Λ3 ≤ Cn

⎡

⎢

⎣
1 + k−1/3 max

j=2,...,n
k j/3

⎧

⎪

⎨

⎪

⎩

bk,ε
∫

ak,ε

(s − ak,ε)
n(bk,ε − s)n

(1 + k1/3|ω(s)|)2 j+4 ds

⎫

⎪

⎬

⎪

⎭

1/2⎤

⎥

⎦
.

(6.6)

To estimate this, we assume without loss of generality 0 < t1 < π < t2 < 2π and
write

k2 j/3

bk,ε
∫

ak,ε

(s − ak,ε)
n(bk,ε − s)n

(

1 + k1/3|ω(s)|)2 j+4 ds

= k2 j/3

π
∫

ak,ε

(s − ak,ε)
n(bk,ε − s)n

(

1 + k1/3|ω(s)|)2 j+4 ds + k2 j/3

bk,ε
∫

π

(s − ak,ε)
n(bk,ε − s)n

(

1 + k1/3|ω(s)|)2 j+4 ds.

(6.7)

Consider the first term on the right hand side. Since ω(s) ≥ (t2 − π)(s − t1) > 0
when s ∈ [ak,ε, π ], we have
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k2 j/3

π
∫

ak,ε

(s − ak,ε)
n
(

bk,ε − s)n

(1 + k1/3|ω(s)|)2 j+4 ds ≤ Cnk2 j/3

π
∫

ak,ε

(s − ak,ε)
n

k(2 j+4)/3(s − t1)2 j+4
ds

= Cnk−4/3

π
∫

ak,ε

(s − t1)
−2 j−4(s − ak,ε)

n ds

≤ Cnk−4/3

π
∫

ak,ε

(s − t1)
n−2 j−4 ds.

It is easy to see that, for all j = 0, . . . , n, the right-hand side can be bounded (up to a
constant factor) by the case of j = n. Hence, for j = 0, . . . , n,

k2 j/3

π
∫

ak,ε

(s − ak,ε)
n(s − bk,ε)

n

(

1 + k1/3|ω(s)|)2 j+4 ds ≤ Cn

(

1 + k−(1/3+3ε)k(1−3ε)n/3
)

.

An analogous estimate holds for the second integral in the right-hand side of (6.7).
Combining these in (6.6) yields the result. 
�
Remark 6.2 The preceding result can be extended to cover different “growths” of the
interval in terms of k. For instance, if

ak,ε = t1 + c1 log k k−1/3 bk,ε = t2 − c1 log k k−1/3

we can prove

|V (·, k)|n,Λ3 ≤ Cn

[

1 + k−1/2+n/6(log(k))−(n+3)/2
]

.

Now we can give an estimate for the error in approximating V3 by polynomials.

Theorem 6.3 For all fixed n, there exists Cn > 0 such that, for all d ≥ n − 1 and k
sufficiently large,

inf
p∈Pd

‖V3(·, k) − p‖L2(Λ3) ≤ Cnkτ d−n, as d → ∞

with

τ := max
{

0,−(1 + 3ε)/2 + (1 − 3ε)n/6
}

.

Proof The result is a direct consequence of combining Proposition 6.1 with (6.5). 
�
Notice that if 0 < ε < 1/3 and n ≥ 3(1 + 3ε)/(1 − 3ε), then Theorem 6.3 implies:

inf
p∈Pd

‖V3(·, k) − p‖L2(Λ3) ≤ Cnk−(1+3ε)/2

(

k(1−3ε)/6

d

)n

,
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which emphasises the mild dependence of d on k which would be required to preserve
the accuracy of the approximation if k → ∞ (and there is no dependence at all if
ε = 1/3).

Now we turn to the error in approximation by polynomials in the transition zones
Λ1,Λ2.

Theorem 6.4 For all n ≥ 2 and d ≥ n −1 there exists Cn independent of k such that,
for j = 1, 2,

inf
p∈Pd

‖Vj (·, k) − p‖L2(Λ j ) ≤ Cnk(η−1)/2
(

kη

d

)n

, as d → ∞,

where η = max{ε, δ}.
Proof Without loss of generality we can restrict attention to Λ1 = [ck,δ, dk,ε], with

ck,δ = t1 − c2k−1/3+δ, dk,ε = t1 + c1k−1/3+ε.

Applying (6.5) on this domain, and recalling the definition (6.1) of V1, we have

inf
p∈Pd

‖V1(·, k) − p‖L2(Λ1) ≤ Cnd−n|V (·, k)|n,Λ1 . (6.8)

By Corollary 5.5, we have

|V (·, k)|2n,Λ1
≤ Cnk2(n−1)/3

c1k−1/3+ε
∫

−c2k−1/3+δ

(

c1k−1/3+ε − s
)n (

s + c2k−1/3+δ
)n

ds,

and therefore

|V (·, k)|n,Λ1 ≤ Cnk(n−1)/3k(−1/3+η)(n+1/2). (6.9)

Substituting in (6.8), the result follows immediately. 
�
The next result shows that v decreases exponentially as k → ∞ in the shadow zone

Λ4, which means that it is safe to approximate it by zero in our numerical scheme.

Theorem 6.5 There exist positive constants c0, c′
0 such that for all k sufficiently large,

‖v‖L2(Λ4) ≤ c′
0 exp(−c0kδ). (6.10)

Remark 6.6 The stated result can be obtained (formally) by estimating the expansion
given in Corollary 5.3 in the shadow region, using the asymptotic result (5.5) and
ignoring the error term RL ,M (s, k). The rigorous proof of the exponential decay in the
shadow zone is a long-established result in diffraction theory and we refer for example
to [21,33,34,39,43,44] for the highly non-trivial proofs. The case of a circle is given
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in detail in e.g., [41]. We give here a brief account of how Theorem 6.5 follows from
the results in the literature.

To establish (6.10) it is sufficient to prove that in the shadow (s ∈ Λ4)

|v(s, k)| ≤ C1(1 + k)2/3 exp
(

−C2k1/3ρ(s)
)

, (6.11)

where ρ(s) := min{t1 − s, s − t2 + 2π} and C1, C2 are independent of k and s. In
turn, (6.11) can be derived for example from [44, Theorem 2]. We remark that [44,
Theorem 2] states the result in a form in effect implying (6.11) for a point source at an
arbitrary distance from the scatterer rather than for a plane wave incidence. However,
the error term obtained in [44, (1.13),(1.11)] is “uniform” with respect to the location
of the source (see, [21,43,44]) and this allows the extension to the case of a plane
wave incidence using the procedure outlined in the proof of Corollary 5.3 above.

We note in passing that the results on the exponential decay (in two-dimensional
problems) in [43,44] do not require the contour to be analytic but only sufficiently
smooth. There are also extensions to arbitrary dimension, but these require analytic
scattering surfaces and (as stated) are only valid in the “deep shadow” (i.e., a bounded
distance away from the shadow boundary)—see, e.g., [39, Theorem 3] which uses the
ideas of [33].

We can now prove our final result which provides an estimate for the error in the
Galerkin method.

Theorem 6.7 Let ṽ be the Galerkin solution as described in Sect. 3, with Λ j as
defined in (6.2)–(6.4) and with oscillatory functions e j as given in (6.1). Choose the
parameters ε = 1/9 and 0 < δ ≤ ε and suppose that polynomials of degree dI are
used in the illuminated zone and dT in the transition zones. Then for all n ≥ 6 with
n ≤ dI + 1 and n ≤ dT + 1, there exists a constant Cn so that

‖v − ṽ‖ ≤ Cn

(

Bk

αk

)

k

{

k−2/3
(

k1/9

dI

)n

+ k−4/9
(

k1/9

dT

)n

+ exp
(− c0kδ

)

}

.

Proof The proof is a consequence of Corollary 3.2, combined with Theorems 6.3, 6.4
and 6.5. 
�

From this we have the following simple consequence, which shows that at worst
the number of degrees of freedom should increase with k1/9 in order to maintain the
accuracy of the method as k → ∞.

Corollary 6.8 Under the conditions of Theorem 6.7, suppose that dI = dT = d.
Suppose also that (as has been proven for circular domains in Sect. 4) Bk/αk =
O(k1/3) as k → ∞. Then, for n ≥ 6, with n ≤ d + 1,

‖v − ṽ‖ ≤ Cnk

{

k−1/9
(

k1/9

d

)n

+ k1/3 exp
(− c0kδ

)

}

.
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7 Numerical experiments

In this section we present some numerical experiments which illustrate the theoretical
results given above. With the notation of Sect. 3, let t1, t2 denote the tangency points,
and introduce the transition zones:

Λ1 :=
[

t1−β1k−1/3+δ, t1+α1k−1/3+ε
]

, Λ2 :=
[

t2 − α2k−1/3+ε, t2+β2k−1/3+δ
]

,

and the illuminated and shadow parts as follows

Λ3 :=
[

t1 + α3k−1/3+ε, t2 − α4k−1/3+ε
]

Λ4 :=
[

t2 + β2k−1/3+δ, 2π
]

∪
[

0, t1 − β1k−1/3+δ
]

where the parameters ε, δ, α1, β1, α2, β2, α3, α4 have to be specified. For all of our
experiments, we choose ε = 1/9 and δ = 0 (even though the proof of Theorem 6.5 is
for positive δ). Below we shall in fact choose α1 > α3 and α2 > α4, which means that
the transition zones overlap with the illuminated zones. For the non-standard Galerkin
method, we employ a smooth partition of unity (cf. 3.1), constructed in terms of
translations, reflections and dilations of the basic function

χ(x) := 1

2

[

ϕ(x) + 1 − ϕ(1 − x)

]

where

ϕ(x) =

⎧

⎪

⎨

⎪

⎩

1 x ≤ 0,

exp
(

2 exp(−1/x)
x−1

)

0 < x < 1,

0, x ≥ 1.

which gives a smooth transition between the constant functions 1 and 0 (see [11]).
The method is then specified by the triple d = (d1, d2, d3), i.e., the degrees of

the polynomials utilized in, respectively, the transition zones Λ1 and Λ2 and in the
illuminated region Λ3.

The accuracy of the method relies heavily on the choice of the parameters αi , βi ,
and especially on the length of the shadow zone, where the solution is approximated
by zero. We have sought a good choice of these constants experimentally by working
with a relatively low-frequency (mainly to measure the size of shadow zone). That is,
we have solved numerically our problem for k not very large in order to measure the
size of the shadow zone. We have then chosen constants β1 and β2 in such a way that
the shadow zone Λ4 was large enough to consider the solution negligible in this zone,
and used such values in the experiments for higher values of k.

With regard to the assembly of the Galerkin matrix, here we use only standard
quadrature methods which are not in themselves k-robust. However the application
and analysis of oscillatory integration procedures is the subject of ongoing work.
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Table 1 k−1‖v − ṽ‖ for unit circle. #d denotes the dimension of the finite dimensional approximating
space

k = 50 k = 100 k = 200 k = 400 k = 800

d = (4,4,4), #d = 15 1.65E–02 1.48E–02 1.42E–02 1.43E–02 1.49E–02
d = (8,8,8), #d = 27 2.82E–03 2.15E–03 1.65E–03 1.28E–03 9.79E–04
d = (12,12,12), #d = 39 6.83E–04 4.33E–04 3.52E–04 2.83E–04 2.29E–04
d = (16,16,16), #d = 51 6.49E–04 1.14E–04 7.28E–05 7.03E–05 4.97E–05
d = (20,20,20), #d = 63 7.30E–04 1.27E–04 8.76E–05 4.82E–05 3.30E–05
d = (24,24,24), #d = 75 1.04E–03 1.50E–04 1.13E–04 4.89E–05 3.60E–05
d = (28,28,28), #d = 87 1.58E–03 2.32E–04 1.36E–04 5.03E–05 5.12E–05
d = (32,32,32), #d = 99 1.48E–03 2.93E–04 1.59E–04 5.48E–05 6.34E–05

By analysing here the Galerkin method itself we answer the fundamental questions
regarding k-robust stability and consistency which are prerequisites for the formulation
and analysis of fully practical algorithms.

We have first tested our method for the circle, where the exact solution can be
computed (by Fourier analysis), with k = 50, 100, 200, 400 and 800. In this case
we have taken

Λ1 = [π2 − 7π
5 k−1/3, π

2 + 7π
15 k−1/3+ε

]

, Λ2 = [ 3π
2 − 7π

15 k−1/3+ε, 3π
2 + 7π

5 k−1/3
]

and

Λ3 = [π2 + π
5 k−1/3+ε, 3π

2 − π
5 k−1/3+ε

]

.

That is, in the notation given in the beginning of this section,

α1 = α2 = 7π/15, β1 = β2 = 7π/5, α3 = α4 = π/5.

Notice that Λ3 overlaps Λ1 in a subinterval of width 4π/15k−1/3+ε and in this region
both cut-off functions χ3 and χ1 are non-zero. Similarly Λ3 overlaps Λ2.

To test the correctness of Corollary 6.8 we computed the norm of the error ‖v−ṽ‖ by
using Simpson rule with a sufficiently high number of nodes. Since the exact solution
grows as k when k → ∞, we give in Table 1 values of the quantity k−1‖v − ṽ‖ for
different choices of the degree of the polynomials and the wave number k. We observe
that for fixed k the error decreases quickly until it stagnates, when the (exponentially
small with respect to k) error in the shadow zone (where the zero approximation has
been used) is not converging to zero.We see also that the convergence not only does
not depend on k as k grows but in fact the error often decreases with k.

In Fig. 3 we plot the scaled error k−1‖v − ṽ‖ versus the degrees of freedom for
this series of experiments. Since the vertical axis is logartihmic, this clearly shows
exponential convergence with respect to the degrees of freedom, up to the point where
the small error in the shadow region dominates. There is then some small but apparently
bounded oscillation as the number of degrees of freedom increases. (Note that the small
error in the shadow region could be reduced by introducing a sufficiently accurate
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k=100
k=200
k=400
k=800

Fig. 3 Scaled error k−1‖v − ṽ‖ versus degrees of freedom for different values of k

Fig. 4 Computed approximations, real and imaginary part, of v and V (s, 400) for the unit circle with
k = 400.

approximation to the field there, rather than approximating by zero as we have done
here.)

The numerical solution for this experiment is depicted in Fig. 4. The top panel in this
figure illustrates the computed approximation to the function v, while the bottom panel
illustrates the computed “slowly varying” function V (·, k), in this case for k = 400.
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Table 2 Approximate relative errors in v for the ellipse. #d denotes the dimension of the finite dimensional
approximating space.

k = 50 k = 100 k = 200 k = 400

d = (4,4,4), #d = 15 3.52E–03 3.37E–03 3.47E–03 3.62E–03
d = (8,8,8), #d = 27 1.65E–03 9.29E–04 8.22E–04 1.02E–03
d = (12,12,12), #d = 39 1.60E–03 7.22E–04 2.88E–04 4.44E–04
d = (16,16,16), #d = 51 1.61E–03 7.03E–04 9.35E–05 2.96E–04
d = (20,20,20), #d = 63 1.76E–03 7.22E–04 4.04E–05 2.85E–04

Fig. 5 Computed approximations of v and V (s, 200) for the ellipse with k = 200.

We observe that the error stabilises as k → ∞, which is actually better than the theory
predicts.

Finally, to illustrate that our method is applicable to general convex objects, we
have tested it when Γ is the ellipse {(2 cos t, sin t) | t ∈ [0, 2π ]} and with the incident
wave is travelling in the direction â = (3, 1). In this case we have taken

α1 = α2 = 13L/20, β1 = β2 = L/2, α3 = α4 = 7L/20,

L being the length of the curve, and t1, t2 the tangency points.
Although we do not have the exact solution to this problem in analytic form, we can

compare our solution with results obtained by applying the Nyström method of Kress
(see [19, Sect. 3.4]), which is exponentially convergent for fixed k, but not robust as k
increases. For each k an “exact solution” ṽ is computed by Kress’s method with 6000
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degrees of freedom and the relative error ‖v − ṽ‖/‖̃v‖ is computed. The results are
presented in Table 2 below.

Note that, in contrast to the circle case, there is always a small loss of accuracy here
for very large k. It is not clear yet if this is an indication of the actual sharpness of our
convergence theory or simply an indication that the “exact” solution ṽ computed by
the Nyström method is inaccurate for these values of k.

We also illustrate the results for the ellipse in Fig. 5 simply by showing the numerical
approximation of v (top panel) and the computed V (bottom panel). Note the symmetry
has been lost here.

Acknowledgments Víctor Domínguez was supported by the Bath Institute for Complex Systems,
FEDER/MCYT MTM2004-01905 and Gobierno de Navarra, resolución 18/2005. We would like to thank
Simon Chandler-Wilde, Ralf Hiptmair, Vladimir Kamotski and Steve Langdon for useful discussions.

References

1. Abboud, T., Nédélec, J.-C., Zhou B.: Méthode des équations intégrales pour les hautes fréquencies.
C.R. Acad. Sci. Paris 318 Série I, 165–170 (1994)

2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)
3. Amini, S.: On the choice of the coupling parameter in boundary integral formulations of the exterior

acoustics problem. Appl. Anal. 35, 75–92 (1990)
4. Arden, S., Chandler-Wilde, S.N., Langdon, S.: A collocation method for high frequency scattering by

convex polygons. Reading University Numerical Analysis Report 7/05, Reading, UK. J. Comp. Appl.
Math. (to appear)

5. Babich, V.M., Buldyrev, V.S.: Short-wavelength Diffraction Theory. Springer, Berlin (1991)
6. Babich, V.M., Dement’ev, D.B., Samokish, B.A., Smyshlyaev, V.P.: On evaluation of the diffrac-

tion coefficients for arbitrary “nonsingular” directions of a smooth convex cone. SIAM J. Appl.
Math. 60, 536–573 (2000)

7. Babich, V.M., Kirpichnikova, N.Y.: The Boundary-Layer Method in Diffraction Problems. Springer,
Berlin (1979)

8. Bonner, B.D., Graham, I.G., Smyshlyaev, V.P.: The computation of conical diffraction coefficients in
high-frequency acoustic wave scattering. SIAM J. Numer. Anal. 43, 1202–1230 (2005)

9. Bonner, B.D.: Calculating conical diffraction coefficients. PhD thesis, University of Bath, UK (2003)
10. Brakhage, H. Werner P.: Über das Dirichletsche Aussenraumproblem für die Helmholtzsche

Schwingungsgleichung. Arch. der Math. 16, 325–329 (1965)
11. Bruno, O.P., Geuzaine, C.A., Monro, J.A. Reitich F.: Prescribed error tolerances within fixed compu-

tational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362, 629–645 (2004)

12. Bruno, O.P., Geuzaine, C.A., Reitich, F.: On the O(1) solution of multiple-scattering problems. IEEE
Trans. Magn. 41, 1488–1491 (2005)

13. Buffa, A., Sauter, S.A.: Stabilisation of the acoustic single layer potential on non-smooth domains.
SIAM J. Sci. Comput. 28, 1974–1999 (2006)

14. Burton, A.J., Miller, G.F.: The application of integral methods for the numerical solution of boundary
value problems. Proc. R. Soc. Lond. Ser. A 232, 201–210 (1971)

15. Buslaev, V.S.: Short-wave asymptotic behaviour in the problem of diffraction by smooth convex
contours(in Russian). Trudy Mat. Inst. Steklov. 73 14–117 (1964). Abbreviated English translation:
On the shortwave asymptotic limit in the problem of diffraction by convex bodies. Sov. Phys. Dokl.
7, 685–687 (1963)

16. Buslaev, V.S.: Formulas for the short-wave asymptotic behavior in the diffraction problem by convex
bodies. (in Russian) Vestnik Leningrad. University 17(13), 5–21 (1962)

17. Buslaev, V.S.: The asymptotic behavior of the spectral characteristics of exterior problems for the
Schrödinger operator (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 39, 149–235 (1975); English
translation: Math. USSR–Izv. 9 139–223 (1975)

123



510 V. Domínguez et al.

18. Chazarain, J.: Construction de la paramétrix du problème mixte hyperbolique pour l’equation des
ondes. C. R. Acad. Sci. Paris 276, 1213–1215 (1973)

19. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering. Springer, New York (1998)
20. Ecevit, F.: Integral equation formulations of electromagnetic and acoustic scattering problems: con-

vergence of multiple scattering iterations and high-frequency asymptotic expansions. PhD thesis,
University of Minnesota, (2005)

21. Filippov, V.B.: Rigorous justification of the shortwave asymptotic theory of diffraction in the shadow
zone. J. Sov. Math. 6, 577–626 (1976)

22. Fock, V.A.: Electromagnetic Diffraction and Propagation Problems. Pergamon Press, New York (1965)
23. Ganesh, M., Graham, I.G.: A high-order algorithm for obstacle scattering in three dimensions.

J. Comput. Phys. 198, 211–242 (2004)
24. Ganesh, M., Langdon, S., Sloan, I.H.: Efficient evaluation of highly oscillatory acoustic scattering

surface integrals. Reading University Numerical Analysis Report 6/05, Reading, UK (2005)
25. Giebermann, K.: Schnelle Summationsverfahren zur numerischen Lösung von Integralgleichungen

für Streuprobleme im R
3. PhD thesis, University of Karlsruhe (1997)

26. Giladi, E., Keller, J.B.: An asymptotically derived boundary element method for the Helmholtz equa-
tion. In 20th Annual Review of Progress in Applied Computational Electromagnetics, Syracuse,
New York (2004)

27. Hörmander, L.: The Analysis of Linear Differential Operators. I, Distribution Theory and Fourier
Analysis. Springer, Berlin (1983)

28. Kress, R.: Minimizing the condition number of boundary integral operators in acoustic and electro-
magnetic scattering. Q. J. Mech. Appl. Math. 38, 323–341 (1985)

29. Kress, R., Spassov, W.T.: On the condition number of boundary integral operators for the exterior
Dirichlet problem for the Helmholtz equation. Numer. Math. 42, 77–85 (1983)

30. Landau, L.J.: Bessel functions: monotonicity and bounds. J. Lond. Math. Soc. 61, 197–215 (2000)
31. Langdon, S., Chandler-Wilde, S.N.: A wavenumber independent boundary element method for an

acoustic scattering problem. Isaac Newton Institute for Mathematical Sciences Preprint NI03049-
1090 CPD, 2003, SIAM J. Numer. Anal. 43, 2450–2477 (2006)

32. Langdon, S., Chandler-Wilde, S. N.: Implementation of a boundary element method for high frequency
scattering by convex polygons. In: Chen, K. (ed.) Proceedings of 5th UK Conference on Boundary
Integral Methods, Liverpool, pp. 2–11. University of Liverpool (2005)

33. Lebeau, G.: Régularité Gevrey 3 pour la diffraction. Comm. Partial Differ. Equ. 9, 1437–1494 (1984)
34. Hargé, T., Lebeau, G.: Diffraction par un convexe. Invent. Math. 118, 161–196 (1994)
35. Ludwig, D.: Uniform asymptotic expansion of the field scattered by a convex onject at high frequen-

cies. Comm. Pure Appl. Math. 20, 103–138 (1967)
36. Morawetz, C.S., Ludwig, D.: An inequality for the reduced wave equation and the justification of

geometrical optics. Comm. Pure Appl. Math. 21, 187–203 (1968)
37. Melrose, R.B., Taylor, M.E.: Near peak scattering and the corrected Kirchhoff approximation for a

convex obstacle. Adv. Math. 55, 242–315 (1985)
38. Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, New York (2001)
39. Popov, G.: Some estimates of Green’s functions in the shadow. Osaka J. Math. 24, 1–12 (1987)
40. Schwab, C.:p- and hp- Finite Element Methods. Theory and Applications in Solid and Fluid Mechan-

ics. Oxford University Press, Oxford (1998)
41. Ursell, F.: Creeping modes in a shadow. Proc. Camb. Philos. Soc. 68, 171–191 (1968)
42. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge

(1995)
43. Zayaev, A.B., Filippov, V.P.: Rigorous justification of the asymptotic solutions of “sliding-wave”

type. J. Sov. Math. 30, 2395–2406 (1985)
44. Zayaev, A.B., Filippov, V.P.: Rigorous justification of the Friedlander-Keller formulas. J. Sov. Math.

32, 134–143 (1986)
45. Zworski, M.: High frequency scatering by a convex obstacle. Duke Math. J. 61, 545–634 (1990)

123


	A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering 
	Abstract
	Introduction
	The scattering problem
	A Non-standard Galerkin method
	Coercivity and continuity
	Fourier analysis
	General boundaries
	Asymptotics of the normal derivative of the total field
	Error estimates 
	Numerical experiments
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


