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Abstract Residual-based a posteriori error estimates were derived within one
unifying framework for lowest-order conforming, nonconforming, and mixed
finite element schemes in Carstensen [Numer Math 100:617–637, 2005]. Therein,
the key assumption is that the conforming first-order finite element space Vc

h
annulates the linear and bounded residual � written Vc

h ⊆ ker �. That excludes
particular nonconforming finite element methods (NCFEMs) on parallelo-
grams in that Vc

h �⊂ ker �. The present paper generalises the aforementioned
theory to more general situations to deduce new a posteriori error estimates,
also for mortar and discontinuous Galerkin methods. The key assumption is the
existence of some bounded linear operator� : Vc

h → Vnc
h with some elementary

properties. It is conjectured that the more general hypothesis (H1)–(H3) can be
established for all known NCFEMs. Applications on various nonstandard finite
element schemes for the Laplace, Stokes, and Navier–Lamé equations illustrate
the presented unifying theory of a posteriori error control for NCFEM.
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1 Unified mixed approach to error control

Suppose that the primal variable u ∈ V (e.g., the displacement field) is accom-
panied by a dual variable p ∈ L (e.g., the flux or stress field). Typically L is some
Lebesgue and V is some Sobolev space; suppose throughout this paper that L
and V are Hilbert spaces and X := L × V. Given bounded bilinear forms

a : L × L → R and b : L × V → R (1.1)

and well established conditions on a and b [13,17], the linear and bounded
operator A : X → X∗, defined by

(A(p, u))(q, v) := a(p, q)+ b(p, v)+ b(q, u), (1.2)

is bijective. Then, given right-hand sides f ∈ L∗ and g ∈ V∗, there exists some
unique (p, u) ∈ X with

a(p, q)+ b(q, u) = f (q) for all q ∈ L, (1.3)

b(p, v) = g(v) for all v ∈ V. (1.4)

Suppose (ph, ũh) ∈ L × V is some approximation to (p, u) and define

ResL(q) := f (q)− a(ph, q)− b(q, ũh) for all q ∈ L, (1.5)

ResV(v) := g(v)− b(ph, v) for all v ∈ V. (1.6)

Here and throughout, ũh is some continuous and not necessarily discrete func-
tion established as the key ingredient in [20]; however, the subindex in ũh
refers to the fact that ũh might be closely related (or designed with some
post-processing) to some discrete function uh and hence that ũh is on our dis-
posal. Since A : X → X∗ is an isomorphism, there holds

‖p − ph‖L + ‖u − ũh‖V ≈ ‖ResL‖L∗ + ‖ResV‖V∗ . (1.7)

Here and throughout, an inequality a � b replaces a ≤ C b with some multipli-
cative mesh-size independent constant C > 0 that depends only on the domain
� and the shape (e.g., through the aspect ratio) of elements (C > 0 is also
independent of crucial parameters as the Lamè parameter λ below). Finally,
a ≈ b abbreviates a � b � a.

Remark 1.1 Note that (1.3) and (1.4) are a primal mixed formulation with
L := L2(�)m×n for the Laplace, Stokes, and Navier–Lamé equations under
consideration. Throughout this paper, the discrete component ph is derived
from uh, e.g, ph = ∇T uh in case p = ∇u for the Laplace equation; while uh
is solved from the discrete problem in the displacement-oriented formulation
(Sects. 4–6 below).
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The examples in [20] include conforming, nonconforming and mixed finite
element schemes for the Laplace, Stokes, and Navier–Lamé equations. This
paper will consider such applications in Sects. 4, 5, and 6 below for with focus
on nonconforming finite element methods (NCFEMs) displayed in Tables 1, 2,
3, and 4. For conforming finite element schemes and the setting of a posteriori
error control we refer to [1,55]. The applications of the present theory to mortar
and discontinuous Galerkin methods are also condidered in Sect. 4 for the Pois-
son problem. Therein, the norms of ResL and ResV are estimated under the
general hypothesis that each of those has the form

Res(v) :=
∫

�

g · v dx +
∫

∪E

gE · v ds for v ∈ V . (1.8)

Here and below, V belongs to some Sobolev space V = H1
0(�)

m and g ∈
L2(�)m, while gE ∈ L2(∪E)m with some domain � ⊂ R

n and the union ∪E of
edges (if n = 2) or faces (if n = 3) related to a regular triangulation of�. Some
required key property in [20] on both Res = ResL and Res = ResV reads

Vc
h ⊂ ker Res ⊂ V. (1.9)

In this situation, a typical result of an explicit residual-based error estimation
reads

‖Res‖2
V∗ � ‖hT g‖2

L2(�)
+

∑
E∈E

hE‖gE‖2
L2(E) =: η2. (1.10)

Here and throughout, hT and hE denote local mesh-sizes in the underlying
triangulation, i.e.,

hT |T = diam(T) for any T ∈ T , and hE = diam(E) for any E ∈ E .

Vc
h includes the first-order finite element functions to ensure (1.10). Details

on the notation and the concrete examples will be given below. The terms in
(1.8) often result from some discretisation of the equilibration condition (1.4),
e.g., via an integration by parts, and hence the term ResV is referred to as the
equilibration residual.

The first aim of this paper is the generalisation of (1.10) for Res = ResV
in Theorem 2.1 of Sect. 2 to allow the control of certain nonstandard finite
element schemes without the condition (1.9) in Sects. 4–6. Here, one key theory
is to replace (1.9) by assumptions (H1)–(H3) on some Clément-type operator
J, [8,21,22] and some linear bounded operator � between the conforming and
nonconforming finite element spaces.

For the Laplace, Stokes, and Navier–Lamé equations considered herein, one
can observe from the definitions of a(·, ·) and b(·, ·) in Sects. 4–6 below that
the consistency residuum ResL from (1.5) can also be written in the form (1.8).
With some bounded linear operator A : L := L2(�)m×n → L, the norm of
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ResL allows the form

min
ũh∈V

‖ResL‖L∗ ≈ min
ũh∈V

‖A(ph)− Dũh‖L2(�). (1.11)

Therein Dũh denotes the functional matrix of all first-order partial derivatives
(e.g., the gradient and possibly also the Green strain of linear elasticity) of the
Sobolev function ũh in Sects. 4–6.

Remark 1.2 This observation can also be found in [20, Theorem 2.2] for the
Laplace equation with A = id the identity operator. For the Stokes and Navier–
Lamé equations, the operators A are dev

µ
and C

−1 with the operators dev (and

µ) and C
−1 of Sects. 5 and 6.

Since ‖A(ph)− Dũh‖L2(�) � ‖DT uh − Dũh‖L2(�) (plus some computable term
in the case of the Stokes problem) for the aforementioned problems, the second
aim of this paper reads

min
ũh∈V

‖DT uh − Dũh‖2
L2(�)

�
∑
E∈E

∑
z∈K(E)

hE‖γτE([DT (ψz uh)])‖2
L2(E) =: µ2

for the jumps [DT (uh ψz)] of a discrete nonconforming finite element function
uh times a weight-function ψz across some side E with vertex z; details on the
notation can be found in Sect. 3. The second main result (Theorem 3.1) holds for
all piecewise gradients and employs a localisation argument with the (modified)
hat functions (ψz : z ∈ K) of the free nodes K.

Then, a summary of these two aims (See, Theorems 2.1 and 3.1) and (1.7)
concludes the main result of this paper

‖p − ph‖L � η + µ+ osc(g) (1.12)

for the unified a posterior error estimate of the nonconforming finite element
methods with (H1)–(H3) of Sect. 2 and for all aforemented problems. This con-
clusion will be exhibited for each problem in Sects. 4–6, what is left is to check
the well-posdeness of (1.3)-(1.4) [or (1.2)] for each problem and (H1)–(H3) for
each nonconforming finite element scheme; see Sects. 4–6 for further details.

The rest of this paper is organized as follows. While Sects. 2-3 treat general
assertions on (1.10) and (1.11) where condition (1.9) is substituted by (H1)–
(H3), Sects. 4–6 conclude this paper with particular model examples in 2D (and
some in 3D) with first reliability proofs for many nonstandard finite element
error estimates.

Throughout this paper, Vc
h and Vnc

h denote conforming and nonconform-
ing finite element spaces based on a regular triangulation T of �; ν denotes
the normal unit vector along the boundary ∂�; τ denotes the tangent vector
along the boundary for 2D. Colon “:” denotes the scalar product in R

m×n, i.e.,
A : B := ∑m

j=1
∑n

k=1 AjkBjk.
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2 Reliability control of the equilibrium residual

This section establishes an explicit residual-based error estimate (1.10) for a
class of nonstandard finite element schemes.

Let V = H1
0(�)

m and L = L2(�; Rm×n) denote standard Sobolev and
Lebesgue spaces on some bounded Lipschitz domain � in R

n with a piece-
wise flat boundary �. Suppose that the closure� is covered exactly by a regular
triangulation T of � into (closed) triangles or parallelograms in 2D, tetrahe-
drons or parallelepipeds in 3D (or other unions of simplices). It is assumed, that

� = ∪T and |T1 ∩ T2| = 0 for T1, T2 ∈ T with T1 �= T2, (2.1)

where | · | denotes the volume (as well as the modulus of a vector etc. where
there is no real risk of confusion). The remaining assumptions on the shape
regularity of T are hidden in the following abstract conditions.

(H1) There exists a Clément-type operator J : V → Vc
h into some (conform-

ing) subspace Vc
h ⊆ V of T -piecewise smooth functions such that, for all v ∈ V

and T ∈ T

h−1
T ‖v − Jv‖L2(T) + h−1/2

T ‖v − Jv‖L2(∂T) + ‖D(v − Jv)‖L2(T) � ‖Dv‖L2(ωT )
,

(2.2)

with some neighbourhood ωT of T such that (ωT : T ∈ T ) has finite overlap

max
x∈�

card{T ∈ T : x ∈ ωT} � 1. (2.3)

(H2) There exists a nonconforming space Vnc
h ⊆ L2(�)m of T -piecewise

smooth and, in general, discontinuous functions Vnc
h ⊆ H1(T )m �⊂ V. Given

distinct T1, T2 ∈ T , their intersection T1 ∩ T2 has zero volume measure by (2.1)
but possibly a positive surface measure hE. The set of all interior (edges or faces
etc.) T1 ∩ T2 = E is denoted by E . For any vh ∈ Vnc

h , the jump

[vh]E(x) := (vh|T2)(x)− (vh|T1)(x) for x ∈ E. (2.4)

across E ∈ E with E = T1 ∩ T2 is fixed up to the sign which results from the
orientation of the unit vector νE on E (e.g. νE points outward of T2). The shape
regularity of T and E is described by the assumption

hE ≈ hT ≈ diam(ωT) for all E ∈ E , T ∈ T with E ∩ T �= ∅. (2.5)

Remark 2.1 The trace inequality yields, for v ∈ V and T ∈ T [15,35],

‖v‖L2(∂T) � h−1/2
T ‖v‖L2(T) + h1/2

T ‖Dv‖L2(T). (2.6)
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Hence the trace term with L2(∂T) in (2.2) is estimated by the other two L2(T)
norms. More over, if E(T) denotes the set of all E with E ⊆ ∂T, the shape
regularity (2.5) shows that

∑
E∈E(T)

h−1
E ‖v − Jv‖2

L2(E) � ‖Dv‖2
L2(ωT )

. (2.7)

Remark 2.2 The conforming functions are given as those with vanishing jumps,
i.e., vh ∈ Vc

h implies [vh]E = 0 for all E ∈ E .

The aforementioned standard assumptions are typical in finite element sim-
ulations. The innovative condition on the nonstandard finite element space Vnc

h
and the conforming counterpart Vc

h of (H1) and (H2) is the following.
(H3) There exists some operator � : Vc

h → Vnc
h such that, for all vh ∈ Vc

h
and all T ∈ T , there holds

‖∇(�vh)‖L2(T) � ‖∇vh‖L2(ωT )
and

∫

T

vh dx =
∫

T

�vh dx. (2.8)

Moreover, for some given discrete approximation ph ∈ L2(�; Rm×n) and the
T -piecewise gradient DT , there holds

∫

�

ph : DT vh dx =
∫

�

ph : DT (�vh)dx. (2.9)

A direct consequence of (2.8) is

h−1
T ‖vh −�vh‖L2(T) � ‖Dvh‖L2(ωT )

for all T ∈ T . (2.10)

Given g ∈ L2(�)m and ph as above, the residual ResV ∈ V∗ is, for v ∈ V+Vnc
h ⊂

L2(�, Rm×n) defined by

ResV(v) :=
∫

�

g · v dx −
∫

�

ph : DT v dx. (2.11)

The residual is supposed to stem from a nonstandard finite element scheme
with Vnc

h and hence

ResV(vh) = 0 for all vh ∈ Vnc
h . (2.12)

With the abbreviation gT := |T|−1 ∫
T g(x)dx ∈ R

m, the data oscillation reads

osc(g) :=
(∑

T∈T
h2

T‖g − gT‖2
L2(T)

)1/2

. (2.13)
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Under the assumptions of (H1)–(H3), the residual-based error estimator

η :=
(∑

T∈T
h2

T‖g + div ph‖2
L2(T)

)1/2

+
(∑

E∈E
hE‖[ph]E · νE‖2

L2(E)

)1/2

(2.14)

is reliable in the following sense.

Theorem 2.1 There holds ‖ResV‖V∗ � η + osc(g).

Proof Given any v ∈ V with �Jv ∈ Vnc
h , (2.12) leads to

ResV(v) =
∫

�

g · (v −�Jv)dx −
∫

�

ph : DT (v −�Jv)dx.

An elementwise integration by parts and a careful re-arrangement of boundary
pieces leads to

∫

�

ph : D(v − Jv)dx = −
∫

�

(divT ph) · (v − Jv)dx

+
∑
E∈E

∫

E

[ph] · νE(v − Jv)ds.

The combination of the two identities with (2.9), i.e.,
∫
�

ph : DT (Jv−�Jv)dx =
0, where vh is replaced by Jv ∈ Vc

h, reads

ResV(v) =
∫

�

(g + divT ph) · (v − Jv)dx +
∫

�

g · (Jv −�Jv)dx

−
∑
E∈E

∫

E

[ph] · νE(v − Jv)ds

=: I1 + I2 + I3.

The first integral I1 on the right-hand side is controlled with (2.2) and (2.3),
Hölder and Cauchy inequalities. This leads to

I1 �
(∑

T∈T
h2

T‖g + div ph‖2
L2(T)

)1/2

‖Dv‖L2(�).
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The second term I2 requires (2.8), (2.10) and (2.13). This yields

I2 =
∑
T∈T

∫

T

g · (Jv −�Jv)dx

=
∑
T∈T

∫

T

(g − gT) · (Jv −�Jv)dx

≤
∑
T∈T

hT‖g − gT‖L2(T)h
−1
T ‖Jv −�Jv‖L2(T)

� osc(g)

(∑
T∈T

‖Dvh‖2
L2(ωT )

)1/2

� osc(g)‖Dv‖L2(�).

Standard arguments with (2.1)—(2.3) and (2.7) control the last term

I3 ≤
∑
E∈E

h1/2
E ‖[ph]E · νE‖L2(E)h

−1/2
E ‖v − Jv‖L2(E)

�
(∑

E∈E
hE‖[ph]E · νE‖2

L2(E)

)1/2

‖Dv‖L2(�).

Altogether, there follows the assertion

ResV(v) = I1 + I2 + I3 � (η + osc(g))‖Dv‖L2(�).

��

3 Reliability control of the consistency residual

This section establishes a general control of the consistency residual (1.11).
Given uh ∈ Vnc

h with DT uh ∈ L2(�; Rm×n) and the conforming finite element
space Vc

h from (H1)–(H3), let (ψz : z ∈ K) denote a Lipschitz continuous
partition of unity, ∑

z∈K
ψz = 1 in �. (3.1)

Moreover, for any z ∈ K, suppose that, ψz vanishes outside an open and con-
nected set �z ⊆ �

suppψz ⊆ �z and max
x∈�

card{z ∈ K : x ∈ �z} � 1. (3.2)

Given z ∈ K, let E(z) := {E ∈ E : ψz|E �≡ 0} denote the set of edges, where
ψz is nonvanishing. For any edge E let K(E) denote the set of all z ∈ K with
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E ∈ E(z). The tangential component of a vector v ∈ R
n is defined as

γτE(v) :=
{

v · τE if n = 2,
v × νE if n = 3.

(3.3)

The general estimator

µ :=
⎛
⎝∑

E∈E

∑
z∈K(E)

hE‖γτE([DT (ψz uh)])‖2
L2(E)

⎞
⎠

1/2

(3.4)

is reliable in the following sense.

Theorem 3.1 For n = 2, 3, there holds min
ũh∈V

‖DT uh − Dũh‖L2(�) � µ.

Remark 3.1 In the examples below, 0 ≤ ψz ≤ 1 is a finite sum of hat functions
and continuous such that γτE([DT (ψzuh)]) = γτE(Dψz)[uh] + ψzγτE([DT uh]).
Moreover, the polynomial [uh] has some zero on E and allows an estimate

‖[uh]‖L2(E) � hE‖γτE([DT uh])‖L2(E). (3.5)

With ‖Dψz‖L∞ ≈ h−1
E , one deduces

µ �
(∑

E∈E
hE‖γτE([DT uh])‖2

L2(E)

)1/2

. (3.6)

This estimator is the frequently found version of the consistency error control
[23,25,28,29].

Remark 3.2 Theorem 3.1 generalizes [25]. To control the nonconformity, it was
assumed therein that

∫

E

[vh] ds = 0 for E ∈ E and
∫

E

vh ds = 0 for E on ∂� for all vh ∈ Vnc
h .

(3.7)
The condition (3.7) is removed in Theorem 3.1 of the present paper.

Proof of Theorem 3.1. Given z ∈ K let az and bz denote the functions of the
Helmholtz decomposition of DT (ψzuh), i.e.,

DT (ψzuh) = Daz + curl bz ∈ L,
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Here az ∈ H1
0(�z), bz ∈ H1(�z)

k with
∫
�z

bz(x)dx = 0, and k = 1 for n = 2

while k = 3 for n = 3. Since
∫
�z

curl bz : Da dx = 0 for any a ∈ H1
0(�z),

‖ curl bz‖2
L2(�z)

= min
a∈H1

0 (�z)

‖Da − DT (ψzuh)‖2
L2(�z)

=
∫

�z

(curl bz) : DT (ψzuh)dx.

An elementwise integration by parts followed by curlT DT ≡ 0 yields

∫

�z

(curl bz) : DT (ψzuh)dx = ±
∫

⋃E(z)

bz · γτE([DT (ψzuh)])ds

≤ ‖γτE([DT (ψzuh)])‖L2(
⋃E(z))‖bz‖L2(

⋃E(z)),

where E(z) := {E ∈ E : ψz|E �≡ 0}. The well-known trace theorem on each
element domain K, namely

‖bz‖L2(∂K) ≤ h−1/2
K ‖bz‖L2(K) + h1/2

K ‖Dbz‖L2(K),

leads to the estimate

‖bz‖L2(
⋃E(z)) � h−1/2

z ‖bz‖L2(�z)
+ h1/2

z ‖Dbz‖L2(�z)
.

A Poincaré inequality gives

‖bz‖L2(�z)
� hz‖Dbz‖L2(�z)

� hz‖ curl bz‖L2(�z)
.

The latter inequality results from the stability of the Helmholtz decomposition
[23,35] with an hz-independent constant; it reads ‖Dbz‖L2(�z)

= ‖ curl bz‖L2(�z)

in 2D. The combination of the proceeding three inequalities leads to

‖bz‖L2(
⋃E(z)) � h1/2

z ‖ curl bz‖L2(�z)
.

Since hT |�z ≈ hz := diam(�z), z ∈ K, the aforementioned arguments imply

‖Daz − DT (ψzuh)‖L2(�z)
� ‖h1/2

E γτE([DT (ψzuh)])‖L2(
⋃E(z)).



Unifying theory of a posteriori error control 483

Since
∑

z∈K ψz ≡ 1 and ũh := ∑
z∈K az ∈ H1

0(�), this estimate plus the finite
overlap of all �z and E(z) prove the assertion. In fact,

‖DT uh − Dũh‖2
L = ‖

∑
z∈K

(DT (ψzuh)− Daz)‖2
L

�
∑
z∈K

‖Daz − DT (ψzuh)‖2
L2(�z)

�
∑
z∈K

‖h1/2
E γτE([DT (ψzuh)])‖2

L2(
⋃E(z))

≈
∑
E∈E

∑
z∈K(E)

hE‖γτE([DT (ψzuh)])‖2
L2(E).

��

4 Application to Laplace equation

This section is devoted to the Poisson problem and its residual-based a poste-
riori finite element error control. Subsection 4.1 introduces the model problem
and Subsection 4.2 some required notations. Subsection 4.3 presents a list of
examples. Subsections 4.4 and 4.5 present the applications of the theory to the
mortar and dG finite element methods. Subsection 4.6 concerns the extension
of the present theory to the high-order NCFEM.

4.1 Model problem

The Lebesgue and Sobolev spaces L2(�) and H1(�) are defined as usual and

L := L2(�)n and V := H1
0(�) := {w ∈ H1(�) : w = 0 on ∂�}. (4.1)

The gradient operator ∇ maps V into L. Given g ∈ L2(�) let u ∈ V denote the
solution to the Poisson Problem


u + g = 0 in � and u = 0 on ∂�. (4.2)

Then, the flux p := ∇u ∈ L and u ∈ V satisfy

(A(p, u))(q, v) := a(p, q)+ b(p, v)+ b(q, u)
!= −

∫

�

gv dx for all (q, v) ∈ X := L × V. (4.3)
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Throughout this section, (1.1)–(1.7) hold for

a(p, q) :=
∫

�

p · q dx and b(p, v) := −
∫

�

p · ∇v dx. (4.4)

The operator A : X → X∗ is bounded, linear, and bijective [20].

4.2 Nonconforming finite element methods and unified a posteriori error
estimators

Let Pk(T) and Qk(T) denote the space of algebraic polynomials of total and
partial degree ≤ k, respectively, and set Pk(T) = Pk(T) and Pk(T) = Qk(T) for
a triangle (or tetrahedron) and parallelogram (or parallelepiped), respectively.
Define

Pk(T ) := {v ∈ L2(�) : ∀T ∈ T , v|T ∈ Pk(T)} for k = 0, 1;

S1(T ) := P1(T ) ∩ C(�) and Vc
h := S1

0 (T ) := S1(T ) ∩ V.
(4.5)

Let N denote the set of nodes (i.e., vertices of elements in T ). hT and hE
denote T - and E-piecewise constant functions on� and ∪E = ∪E∈EE defined by
hT |T := hT := diam(T) and hE |E := hE := diam(E) for T ∈ T and E ∈ E . For
a given quadrilateral or parallelepiped element T ∈ T , FT : T̂ = [−1, 1]n → T
denotes the canonical bilinear (for n = 2) or trilinear (for n = 3) transforma-
tion.

Let Vnc
h denote some nonconforming finite element space specified in Table 1.

For the moment solely suppose that ∇T vh ∈ L for any vh ∈ Vnc
h , where ∇T

denote the T -piecewise action of the gradient operator. The finite element
solution uh ∈ Vnc

h is the unique solution to

∫

�

∇T uh · ∇T vh dx =
∫

�

gvh dx for all vh ∈ Vnc
h . (4.6)

The aim is to estimate the flux error p − ph for the discrete flux ph := ∇T uh ∈
L = L2(�)n.

For any ũh ∈ V there holds (1.7) for ResL ∈ L∗ and ResV ∈ V∗ defined, for
all q ∈ L and v ∈ V, by

ResL(q) :=
∫

�

q · (∇ũh − ph)dx and

ResV(v) := −
∫

�

gv dx +
∫

�

ph · ∇v dx.
(4.7)
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Table 1 Nonconforming elements for the Laplace equation (4.2) with (H1)–(H3) and the error
estimate (4.8)

Picture Name Reference Space

�� ���
� �

Crouzeix and Raviart [27] VCR
h

� �

��

�

�

Wilson [59,54] VWil
h

�

�

�

� �

Han [36] VHan
h

� �
�

� NR (midpoint) [50] VRT,P
h

�

�

�

�

NR (average) [50] VRT, A
h

� �

��

CNR [41] VCRT
h

�

�

�

�

DSSY [31] VDSSY
h

4.3 Examples

This subsection presents a list of 2D and 3D nonconforming finite element
spaces Vnc

h of Table 1 with (H1)–(H3), so that

‖p − ph‖L2(�) � η + µ+ osc(g) (4.8)

with η from (2.14), µ from (3.4), and osc(g) from (2.13). This list below is not
comprehensive. In fact, we conjecture that all known NCFEMs could be ana-
lyzed in the present framework. Only the triangular Crouzeix–Raviart element
has already been analyzed in [20]. The present unifying theory leads to new error
control (4.8) for all nonconforming finite elements of Subsubsects. 4.3.2–4.3.6.

4.3.1 The triangular Crouzeix–Raviart element

Based on the regular triangulation T into simplices, the set of midpoints M
of edges (or faces), the non-conforming Crouzeix–Raviart finite element space
reads (in 2D and 3D)

VCR
h := {v ∈ P1(T ) : v continuous at M ∩� and v = 0 at M ∩ ∂�}. (4.9)

Since VC
h ⊂ VCR

h , then there holds (H1)–(H3) with� = id; cf. Sect. 4 of [25] for
proofs. Similar arguments verify (H1)–(H3) in 3D as well; we therefore omit
the details.
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4.3.2 The quadrilateral Wilson element

Let B denote one of the nonconforming quadratic bubble function spaces on
the reference element T̂ = [−1, 1]n, i.e.,

B :=
{

span{1 − (ξ2 + η2)/2} or span{1 − ξ2, 1 − η2} for n = 2,
span{1 − ξ2, 1 − η2, 1 − ζ 2} for n = 3.

The nonconforming quadrilateral Wilson finite element space VWil
h [54,59] reads

VWil
h = Sh ⊕ Bh with the factors

Sh := {v ∈ H1
0(�) : ∀T ∈ T , v̂ = v ◦ FT ∈ Q1(T̂)},

Bh := {v ∈ L2(�) : ∀T ∈ T , v̂ = v ◦ FT ∈ B}. (4.10)

This element is excluded from the analysis of [20,25] since (3.7) is violated.
However, there holds (H1)–(H3) with � = id, the proof is immediate since
Vc

h ⊂ VWil
h .

4.3.3 The parallelogram nonconforming Han element

Consider the functional

FE(v) = |E|−1
∫

E

v ds for all E ∈ E(T) and T ∈ T . (4.11)

The parametric formulation of rectangular and parallelogram elements of Han
[36] is introduced by

Qnc
H := span

{
1, ξ , η, ξ2 − 5

3
ξ4, η2 − 5

3
η4

}
. (4.12)

The nonconforming Han finite element space then reads (with [·] := · along
∂�)

VHan
h := {

v ∈ L2(�) : ∀T ∈ T , v|T ◦ FT ∈ Qnc
H and ∀E ∈ E , FE([v]) = 0

}
.

(4.13)
Then there holds (H1)–(H3) with the associated interpolation operator � for
VHan

h [36], the proof follows from �Vc
h = VCRT

h ⊂ VHan
h [41] with VCRT

h from
Subsubsect. 4.3.5 below. Further details for the properties of� can be found in
Sect. 4 of [25], Remark 2.5 and Lemma 3.1 of [41].
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4.3.4 The parallelogram nonconforming rotated Q1 elements

Rannacher and Turek [50] introduce two types of parallelogram nonconform-
ing elements, called the NR elements. The first element RTA uses the average
of the function over the edge (or face) as the local degree of freedom, and the
second one RTP uses the value at the midside point (or midpoint) of the edge
(or face) instead. Define

Qnc
R :=

{
span{ 1, ξ , η, ξ2 − η2 } for n = 2,
span{ 1, ξ , η, ζ , ξ2 − η2, ξ2 − ζ 2 } for n = 3

(4.14)

then nonconforming space VRT, A
h is defined in (4.13) with Qnc

H replaced by Qnc
R ,

and VRT,P
h is defined in (4.9) with P1(T ) replaced by Qnc

R .
For 2D, following a similar argument for the Han element, one proves that

the average version element satisfies (H1)–(H3) with the canonical interpola-
tion operator � for VRT, A

h ; [25] contains further details.
The midside point version element is not included in [25] since the condition

(3.7) is violated by this element. However, there holds equally (H1)–(H3) for
it with the canonical interpolation operator � of VRT,P

h . In fact, we have

�Vc
h = VCRT

h ⊂ VRT,P
h , (4.15)

and VCRT
h contains the linear part of Vc

h, and only the nonlinear part is excluded
[41]. With this fact, (H3) follows from straight forward investigations.

For 3D, define the local interpolation operator �T : H1(T) → Qnc
R ◦ F−1

T by

FE(�Tv) = FE(v) for E ∈ E(T) for all v ∈ H1(T). (4.16)

Since FÊ(v) = 0 for v = ξη, ξζ , ηζ , ξηζ with Ê ∈ E(T̂), we conclude for any
v = a0 + a1ξ + a2η + a3ζ + a4ξη + a4ξζ + a6ηζ + a7ξηζ that

�Tv = a0 + a1ξ + a2η + a3ζ , (4.17)

with some interpolation constants a0, . . . , a7. The global interpolation operator
� is defined by �|T = �T for any T ∈ T . Then (H1)–(H3) eventually follows
from (4.17).

Remark 4.1 The analysis does not cover the non-parametric variant of this
element except on parallelogram meshes.

Remark 4.2 Notice the remarks in [25] on earlier references [2,42] and correc-
tions in progress on [2].
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4.3.5 The parallelogram constrained nonconforming rotated Q1 elements

The constrained rotated nonconforming finite element (referred to as CNR
element) introduced in [41] is obtained by enforcing a constraint on the NR
element on each element for 2D. The space of the CNR element reads

VCRT
h :=

⎧⎪⎨
⎪⎩v ∈ VRT, A

h : ∀T ∈ T ,
∫

E1

v ds +
∫

E3

v ds =
∫

E2

v ds +
∫

E4

v ds

with {E1, · · · , E4} = E(T) numbered counterclockwise

⎫⎪⎬
⎪⎭ . (4.18)

For rectangular and parallelogram meshes, the element is equivalent to the P1-
quadrilateral element of [33,49]. Then there holds (H1)–(H3) with the interpo-
lation operator � of VCRT

h . The proof follows from the argument for the NR
element with the midside point version. We refer to Sect. 4 of [25] for more
details. The goal-oriented error control of this element is given in [34].

4.3.6 The parallelogram DSSY elements

The DSSY element is obtained by introducing on the reference element [31]
with θ1(t) = t2 − 5

3 t4 and θ2(t) = t2 − 25
6 t4 + 7

2 t6 and

Qnc
D :=

{
span{1, ξ , η, θ�(ξ)− θ�(η)} for � = 1, 2 for n = 2,

span{1, ξ , η, ζ , (ξ2 − 5
3 ξ

4)− (η2 − 5
3η

4), (ξ2 − 5
3 ξ

4)− (ζ 2 − 5
3 ζ

4)} for n = 3.
(4.19)

The nonconforming finite element spaces VDSSY
h are defined as in (4.13) with

Qnc
H replaced by Qnc

D . There holds (H1)–(H3) with the interpolation operator�
of VDSSY

h , cf. the proof in Sect. 4 of [25] for 2D. Arguments similar to those of
Subsection 4.3.4 verify (H1)–(H3) for 3D.

Remark 4.3 The parallelogram nonconforming element of [47] can also be ana-
lyzed by this unifying theory.

4.4 Comments on mortar finite element methods

Another class of nonconforming FEM is known as mortar FEM [10,11] where
the continuity of uh over the common side of two subdomains K− and K+
in some locally quasi-uniform regular decomposition TH of � into triangles
is enforced by Lagrange multipliers. The a posteriori error estimates with the
saturation assumptions are presented in [12,60]. A more general one is ana-
lyzed in [9]. For the ease of the discussion, suppose that n = 2 and that the
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partition Th is obtained from TH by refining some of the triangles in TH by some
finite number ≤ k of successive red-refinements (i.e., cutting a triangle into 4
congruent subtriangles by connecting its edges’ midpoints) so that the ratio of
the diameters of two neighbouring triangles with adjoined edges is bounded by
2−k. Notice that (2.5) holds for all edges E of T while the equivalence with ωT
depends on k.

Let Vnc
h be the mortar finite element space with respect to Th as in [9]. With

Vc
h := V ∩P1(TH) one can prove (H1) by along the lines of [21]. Since Vc

h ⊆ Vnc
h ,

(H3) holds for � = id. Then, Theorem 2.1 reads

‖Res‖2
V∗ �

∑
T∈Th

H2
T‖g + div ph‖2

L2(T) +
∑
E∈E

HE‖[ph] · νE‖2
L2(E)

for HT := max{diam(K) : T ⊆ K ∈ TH} and HE := max{diam(K) : E ⊂ ∂K,
K ∈ TH}. Moreover, Theorem 3.1 yields ( with T = Th etc.)

min
ũh∈V

‖ResL‖2
L∗ �

∑
E∈E

∑
z∈K(E)

HE‖γτE([DT ((ψzuh)])‖2
L2(E).

Therein, ψz is the partition of unity with respect to TH and
‖HEDψz‖L∞ ≈ 1.

This reliability error estimate is essential Theorem 3.4 in [9]. In fact, since (in
2D)

∂

∂s
[ψzuh] =

( ∂
∂s
ψz

)
[uh] + ψz[∂uh/∂s],

there holds (with an inverse estimate ‖∂[uh]/∂s‖L2(E) � H−1
E ‖[uh]‖L2(E)) that

HE‖ ∂
∂s

[ψzuh]‖2
L2(E) � HEH−2

T ‖[uh]‖2
L2(E) + HE · ‖[∂uh/∂s]‖2

L2(E)

� (HEH−2
T + H−1

E )‖[uh]‖2
L2(E) � H−1

E ‖[uh]‖2
L2(E) .

Altogether, the upper bounds for (1.7) with ph := DT uh and p = ∇u reads

‖p − ph‖L2(�) �
∑

T∈Th

H2
T‖g + div ph‖2

L2(T) +
∑
E∈E

HE‖[ph] · νE‖2
L2(E)

+
∑

E∈E∪E∂�
H−1

E ‖[uh]‖2
L2(E) .

Therein, E∂� denote the set of edges on the boundary ∂�. Notice [uh] = 0 on
edges interior to T ∈ TH .

In comparison to [9, Theorem 3.4], the factor 2−k therein is hidden herein
the mesh-sizes HT , HE.
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4.5 Comments on discontinuous Galerkin methods

The feature for the discontinous Galerkin(abbreviated dG hereafter) meth-
ods [3–6,30,43,57] lies in that the trial and test spaces consist of piecewise
discontinuous polynomials. A posteriori error estimates for dG type methods
are considered in [7,18,39,44,51,52] for second order elliptic problems, in [37]
for the Stokes problem, and in [38,58] for plane elasticity. This subsection com-
ments on the extension of the unifying theory to dG FEM. For any vh ∈ Pk(T ),
the average across E = T1 ∩ T2 reads

〈v〉E(x) := 1/2((vh|T1)(x)+ (vh|T2)(x)) for x ∈ E.

With some appropriately chosen constant γ , the modified bilinear form is
defined as

aγh (uh, vh) :=
∑
T∈T

∫

T

∇uh · ∇vh dx + γ
∑
E∈E

h−1
E

∫

E

[uh]E[vh]E ds

−
∑
E∈E

∫

E

(〈∇huh〉E · νE [vh]E + 〈∇hvh〉E · νE [uh]E) ds

−
∑

E⊂∂�

∫

E

(∇huh · νEvh + ∇hvh · νE uh) ds + γ
∑

E⊂∂�
h−1

E

∫

E

uhvh ds

for any uh, vh ∈ Pk(T ) + H1
0(�). This is the symmetric dG method from [5,6,

43,44]. The discontinuous Galerkin solution uh ∈ Pk(T ) is characterized by

aγh (uh, vh) = (g, vh)L2(�) for any vh ∈ Pk(T ). (4.20)

From Vc
h ⊂ Pk(T ), there holds (H3) with � = id. Theorem 3.1 yields

min
ũh∈V

‖ResL‖2
L∗ �

∑
E∈E

∑
z∈K(E)

hE‖γτE([DT ((ψzuh)])‖2
L2(E).

To bound ‖ResV‖V∗ , let v ∈ V and deduce

ResV(v) = −
∫

�

gv dx +
∫

�

∇T uv · ∇v dx

= −
∫

�

gv dx +
∫

�

∇T uv · ∇v dx



Unifying theory of a posteriori error control 491

−
∑
E∈E

∫

E

〈∇huh〉E · νE [v]E ds + γ
∑
E∈E

h−1
E

∫

E

[uh]E[v]E dx

−
∑

E⊂∂�

∫

E

〈∇huh〉E · νE [v]E ds + γ
∑

E⊂∂�
h−1

E

∫

E

uhv ds.

It follows from Jv ∈ V ∩ Pk(T ) that

‖ResV‖V∗ � η + osc(g)+
(∑

E∈E
h−1

E ‖[uh]E‖2
L2(E) +

∑
E⊂∂�

h−1
E ‖uh‖2

L2(E)

)1/2

.

Remark 4.4 A combination of the above estimates for ‖ResV‖V∗ and min
ũh∈V

‖
ResL‖L∗ with (1.7) recovers the estimate

‖p − ph‖L2(�) � ‖ResV‖V∗ + min
ũh∈V

‖ResL‖L∗ ,

which appeared in Theorem 3.1 of [7] and Theorem 3.1 from [44] without the
assumption u ∈ H2(�). Where p = ∇u and ph = ∇T uh.

Remark 4.5 For brevity, we only consider the a posteriori error estimate of the
symmetric dG methods for the Poisson equation, the analysis with correspond-
ing modifications can equally apply to the Stokes problem in Sect. 5, and the
elasticity in Sect. 6. In particular, this yields the a posteriori error control from
Theorem 4.1 of [58] for the plane elasticity, and Theorem 3.1 of [37] for the
Stokes problem. Moreover, the unifying theory can be generalized to other dG
methods reviewed in [4].

4.6 Comments on high-order nonconforming schemes

In this paper, we focus on the first-order nonconforming finite element method.
The present unifying theory can be extended to high-order NCFEMs with the
corresponding modifications in (H1)–(H3). In fact, Theorem 3.1 holds equally
for all nonstandard finite element methods. We only need to modify the the con-
forming space Vc

h in (H1) and (H3) and its associated Clemént interpolation
operator. For instance, (H3) reads

∫

T

�vhqdx =
∫

T

vhqdx for any q ∈ Pk−1(T) and for any vh ∈ Vc
h.
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5 Applications to the Stokes problem

5.1 The Stokes problem

The unsymmetric formulation of the Stokes problem reads: given g ∈ L2(�)n

seek (u, p) ∈ H1
0(�)

n × L2
0(�), such that for all (v, q) ∈ H1

0(�)
n × L2

0(�),

µ

∫

�

Du : Dv dx −
∫

�

p div v dx −
∫

�

q div u dx =
∫

�

g · v dx. (5.1)

Here, L2
0(�) := {q ∈ L2(�) :

∫
�

q dx = 0} ≡ L2(�)/R fixes a global additive
constant in the pressure p (note that p is not the flux from the previous section).
The unique existence of solution to (5.1) is well known. Set

a(σ , τ) :=
∫

�

1
µ

dev σ : dev τ dx

for all σ , τ ∈ L :=
⎧⎨
⎩τ ∈ L2(�, Rn×n),

∫

�

tr τ dx = 0

⎫⎬
⎭ . (5.2)

The deviatoric-part operator dev is defined as

dev F = F − (tr(F)/n) id for any F ∈ R
n×n. (5.3)

with tr(F) = F11 +· · ·+Fnn. It is known that the operator A : X = L×V → X∗,
defined for (σ , u) ∈ X by

(A(σ , u))(τ , v) := a(σ , τ)− (σ , Dv)L2(�) − (τ , Du)L2(�) (5.4)

is a linear, bounded and bijective, cf. e.g., [20].

5.2 Nonconforming finite element methods and unified a posteriori error
estimators

Given some nonconforming finite element space Vnc
h for V := H1

0(�)
n and

Qh ⊂ L2
0(�), the finite element solution (uh, ph) ∈ Vnc

h × Qh to (5.1) satisfies,
for all (vh, qh) ∈ Vnc

h × Qh,

µ

∫

�

DT uh : DT vh dx −
∫

�

ph divT vh dx −
∫

�

divT uh qh dx =
∫

�

g vh dx. (5.5)
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Given the unique discrete solution uh ∈ H1(T )n and ph ∈ L2
0(�), set

σh := µDT uh − ph id ∈ L (5.6)

and define the linear functional ResV : V := H1
0(�)

n → R by

ResV(v) =
∫

�

(g · v − σh : Dv)dx for v ∈ V := H1
0(�)

n. (5.7)

The theory of Sect. 3 shows that the norm of the residual ResL reads

‖ResL‖L∗ ≈ ‖D(ũh)− 1
µ

dev DT (uh)‖L2(�). (5.8)

Given any ũh ∈ V with σ := µDu−p id, the unifying theory in the form of (1.7)
and (5.4) prove

‖σ − σh‖L + ‖u − ũh‖V � ‖D(ũh)− DT (uh)‖L2(�) + ‖ divT uh‖L2(�)

+‖ResV(v)‖V∗ . (5.9)

5.3 Examples

This subsection lists some examples of nonconforming finite element schemes
with (H1)–(H3) from the literature displayed in Table 2. Then, it follows from
(5.9), the definitions of σ and σ h with a straightforward investigation, Theo-
rems 2.1 and 3.1, that

‖Du − DT uh‖L2(�) + ‖p − ph‖L2(�)

� min
ũh∈V

‖D(ũh)− DT (uh)‖L2(�) + ‖ divT uh‖L2(�) + ‖ResV(v)‖V∗

� η + µ+ ‖ divT uh‖L2(�) + osc(g). (5.10)

This recovers the result from [26,28] for the Crouzeix–Raviart element, and is
new for four parallelogram elements of Subsubsect. 5.3.2.

5.3.1 The Crouzeix–Raviart element

This is a triangular element with the velocity space

Vnc
h := VCR

h × VCR
h

for the space VCR
h from Subsection 4.3.1, and the piecewise constant pressure

space Qh ⊂ L2
0(�). Since Vc

h × Vc
h ⊂ VCR

h × VCR
h , there holds (H1)–(H3) with

� = id.
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Table 2 Nonconforming elements for the Stokes problem (5.1) with (H1)–(H3) and the error
estimate (5.10)

Picture Name Reference Space

�� ���
� �

�� ���
� �

Crouzeix and Raviart [27] VCR
h × VCR

h

�

�

�

� �

�

�

�

� �

Han [36] VHan
h × VHan

h

�

�

�

�

�

�

�

�

NR [50] VRT, A
h × VRT, A

h

� �

��

� �

��

Hu et al. [40] VCRT
h × VCRT

h

�

�

�

�

�

�

�

�

CJY [19] VDSSY
h × VDSSY

h

�� �� ��

�

�� ���
� �

Kouhia and Stenberg [45] Vc
h × VCR

h

5.3.2 Four parallelogram elements

There are four parallelogram elements in the literature including the parallel-
ogram Han element, the parallelogram nonconforming rotated (NR) element
of Rannacher and Turek [50], the parallelogram CJY element [19], and the
parallelogram constrained nonconforming rotated element of Hu et al. [40].
These elements employ the piecewise constant pressure space Qh ⊂ L2

0(�).
The velocity spaces for these methods are chosen from the following list.

Vnc
h := VHan

h × VHan
h , VRT, A

h × VRT, A
h ,

VCRT
h × VCRT

h , VDSSY
h × VDSSY

h .

Herein VHan
h , VRT, A

h , VCRT
h and VDSSY

h denote the nonconforming finite ele-
ment spaces from the respective Subsubsects. 4.3.3–4.3.6. Then there holds
(H1)–(H3) with the canonical interpolation operators� for these nonconform-
ing finite element spaces. The proof follows with the results of Sect. 4; further
details are omitted.

Remark 5.1 The parallelogram nonconforming finite elements from [26] can
also be analyzed in the present framework to recover the a posteriori error
estimation on for the isotropic mesh therein.

5.4 The Kouhia–Stenberg element

The Stokes problem in its form (5.1) is equivalent to the symmetric form with
ε(u) := sym(Du) := 1/2(Du + DuT) replacing Du in (5.1). The velocity space
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[45] reads

Vnc
h := Vc

h × VCR
h .

Since Vc
h × Vc

h ⊂ Vc
h × VCR

h , there holds (H1)–(H3) with � = id, cf. [20].

6 Linear elasticity

This section is devoted to the Navier–Lamé equation and its locking-free non-
conforming finite element approximation. The presented unifying theory leads
to a posteriori error estimates which are robust with respect to the Lamé param-
eter λ → ∞. Subsection 6.1 displays the model problem and Subsection 6.2
NCFEMs and their unifying error control. Subsection 6.3 presents some exam-
ples. Subsection 6.4 discusses the unsymmetric formulation for linear elasticity
and the examples for this case are given in Subsection 6.5

6.1 Model problem

Adopt the notation of the previous sections and the following linear stress-strain
relation, for λ, µ > 0,

CF := λ tr(F) id +2µF and

C
−1F := 1

2µ
F − λ

2µ(nλ+ 2µ)
tr(F) id, for F ∈ R

n×n. (6.1)

The weak form of the linear elasticity problem reads: Given g ∈ L2(�)n find
u ∈ V := H1

0(�)
n with

∫

�

ε(v) : σ dx =
∫

�

g · v dx and σ = Cε(u) for all v ∈ V. (6.2)

Define the operator A : X = L × V → X∗ for any (σ , u) ∈ X by

(A(σ , u))(τ , v) := (C−1σ , τ)L2(�) − (σ , ε(v))L2(�) − (τ , ε(u))L2(�). (6.3)

Here, L := {σ ∈ L2(�, Rn×n
sym ),

∫
�

tr σ dx = 0}. The operator A is linear,
bounded, and bijective with λ-independent operator norms of A and A−1

[14,24].
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6.2 Nonconforming finite element methods and unified a posteriori error
estimators

With the nonconforming finite element approximation uh ∈ Vnc
h to u and the

discrete Green strain εT (v) := (DT v + DT vT))/2 ∈ L2(�; Rn×n
sym ), set

σh = 2µεT (uh)+ λ�2 divT uh id . (6.4)

Throughout this section, �2 : L2(�) → L2(�) denotes some reduction oper-
ators in the context of the locking phenomena, and the discrete stress σh is
supposed to satisfy

∫

�

σh : εT (vh)dx =
∫

�

g · vh dx for all vh ∈ Vnc
h . (6.5)

We define the continuous and discrete pressures as

p = λ div u and ph = λ�2 divT uh. (6.6)

Theorem 6.1 For any ũh ∈ V there holds

‖ε(u)− εT (uh)‖L2(�) + ‖p − ph‖L2(�) + ‖ε(u − ũh)‖L2(�)

≈ ‖εT (uh)− ε(ũh)‖L2(�) + ‖ResV‖V∗ + ‖ divT uh −�2 divT uh‖L2(�).

(6.7)

Proof The unifying theory with (1.7) and (6.3) reads in the present notations

‖σ − σh‖L + ‖ε(u − ũh)‖L2(�) ≈ ‖C
−1σh − ε(ũh)‖L2(�) + ‖ResV‖V∗ . (6.8)

Then the assertion follows from the definitions of σh, C
−1, p, and ph. ��

6.3 Examples

This subsection analyzes finite element methods depicted in Table 3 for the
planar elasticity problem. These schemes satisfy (H1)–(H3). Then, the estimate
(6.7) with Theorems 2.1 and 3.1 leads to

‖ε(u)− εT (uh)‖L2(�) + ‖p − ph‖L2(�)

� min
ũh∈V

‖εT (uh)− ε(ũh)‖L2(�) + ‖ResV‖V∗ + ‖ divT uh −�2 divT uh‖L2(�)

� µ+ η + ‖ divT uh −�2 divT uh‖L2(�) + osc(g). (6.9)
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Table 3 Nonconforming elements for the linear elasticity problem (6.2) with (H1)–(H3) and the
error estimate (6.9)

Picture Name Reference Space

�� �� ��

�

�� ���
� �

Kouhia and Stenberg [45] Vc
h × VCR

h

� �

��

�

�

� �

��

�

�

Zhang [61] VWil
h × VWil

h

�

�

�

�

� �

��

Ming [48] Vc
h × VRT, A

h

The error control for the Kouhia–Stenberg element has already been analyzed
in [20]. The a posteriori error estimator (6.9) for the Falk elements, the Zhang
element, and the Ming element is new.

6.3.1 The Falk elements

Two nonconforming triangular finite element methods are proposed in [32] for
the linear elasticity equation for k = 2, 3 with �2 = id and

Vnc
h := {v ∈ L2(�)2 : ∀T ∈ Th, v|T ∈ Pk(T)

2 and v is continuous (resp. vanishes)

at the k Gauss points on each interior (resp. boundary) edge}. (6.10)

Since Vc
h × Vc

h ⊂ Vnc
h there holds (H1)–(H3) with � = id.

6.3.2 The Kouhia–Stenberg element

This triangular element for the symmetric formulation (6.1) and�2 = id [45] is
defined by the nonconforming finite element space

Vnc
h := Vc

h × VCR
h . (6.11)

Since Vc
h × Vc

h ⊂ Vc
h × VCR

h there holds (H1)–(H3) with � = id, cf. also [20].

6.3.3 The Zhang element

This element is proposed in [61] based on the nonconforming quadrilateral
Wilson element [54,59] with �2 = id. In this element,

Vnc
h := VWil

h × VWil
h . (6.12)

Since Vc
h × Vc

h ⊂ VWil
h × VWil

h there holds (H1)–(H3) with � = id.
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6.3.4 The Ming element

In Ming’s dissertation [48], a parallelogram nonconforming element is proposed
based on the nonconforming rotated Q1 space from [50] for planar elasticity.
The nonconforming finite element space reads

Vnc
h := Vc

h × VRT, A
h (6.13)

where �2 = �0 : L2(�) → Q0 denotes the piecewise constant projection
operator with Q0 the piecewise constant space. Following the arguments in
Subsubsection 4.3.4 and [25], one proves (H1)–(H3) for the associated interpo-
lation operator �.

6.4 The unsymmetric formulation

For the pure Dirichlet boundary condition under consideration, one can use
the equivalent unsymmetric formulation and then define the following formal
stress-strain relation, for F ∈ R

n×n,

CF := (λ+µ) tr(F) id +µF and C
−1F := 1

µ
F − λ+ µ

µ(nλ+ (n + 1)µ)
tr(F) id .

(6.14)
Given some nonconforming finite element space Vnc

h , the finite element solution
uh ∈ Vnc

h satisfies

∫

�

σh : DT vh dx =
∫

�

g · vh dx for all vh ∈ Vnc
h . (6.15)

Given the unique discrete solution uh ∈ Vnc
h , set

σh = µDT uh + (λ+ µ)�2 divT uh id, (6.16)

The continuous and discrete pressures read

p = (λ+ µ) div u and ph = (λ+ µ)�2 divT uh. (6.17)

Define the operator A : X = L × V := {τ ∈ L2(�, Rn×n),
∫
�

tr τ dx = 0} ×
H1

0(�)
n → X∗ for any (σ , u) ∈ X as

(A(σ , u))(τ , v) := (C−1σ , τ)L2(�) − (σ , Dv)L2(�) − (τ , Du)L2(�).

The arguments for the symmetric case in [14] show that the operator A is lin-
ear, bounded, and bijective with λ-independent operator norms of A and A−1.
Following the argument for the symmetric case, one proves
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Table 4 Nonconforming elements for the linear elasticity problem in unsymmetric formulation
with (H1)–(H3) and the error estimate (6.19)

Picture Name Reference Space

�� ���
� �

�� ���
� �

Brenner and Sung [16] VCR
h × VCR

h

�

�

�

�

�

�

�

�

Lee et al. [46] VRT, A
h × VRT, A

h

� �

��

� �

��

Hu-Man-Shi [40] VCRT
h × VCRT

h

Theorem 6.2 For any ũh ∈ V there holds that

‖Du − DT uh‖L2(�) + ‖p − ph‖L2(�) + ‖D(u − ũh)‖L2(�)

≈ ‖DT uh − Dũh‖L2(�) + ‖ResV‖V∗ + ‖ divT uh −�2 divT uh‖L2(�).
(6.18)

6.5 Examples

Three nonconforming finite elements are listed below as examples with the
unsymmetric formulation and are summarized in Table 4. There holds that

‖Du − DT uh‖L2(�) + ‖p − ph‖L2(�)

� µ+ η + ‖ divT uh −�2 divT uh‖L2(�) + osc(g). (6.19)

This a posteriori error estimator is brand new for these elements.

6.5.1 The Brenner–Sung element

This triangular element is proposed in [16] with �2 = id, and

Vnc
h := VCR

h × VCR
h . (6.20)

Since Vc
h × Vc

h ⊂ VCR
h × VCR

h there holds (H1)–(H3) with � = id.

6.5.2 The Lee–Lee–Sheen element

In this parallelogram element [46], both components of the displacement are
approximated by the nonconforming rotated Q1 space from [50], namely

Vnc
h := VRT, A

h × VRT, A
h . (6.21)
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The reduction integration operator is the same as in the Ming elements. (H1)–
(H3) is satisfied by this element with the canonical interpolation operator �
for Vnc

h . It follows the arguments for the nonconforming rotated Q1 element in
Subsubsection 4.3.4.

6.5.3 The Hu–Man–Shi element

This parallelogram element is designed in [40] without reduction integration.
The nonconforming finite element space is the constrained nonconforming
rotated Q1 from [41]. There also holds (H1)–(H3) with the canonical inter-
polation operator �. The proof can be found in Subsubsection 5.3.2.

Remark 6.1 Our conditions and therefore analysis in this paper can be extended
to other nonstandard finite element methods for the elasticity, for instance, the
Wang-Qi element from [56] and the enhanced strain finite element from [14,53].
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