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Abstract This paper is concerned with numerical integration on the unit sphere
Sr of dimension r ≥ 2 in the Euclidean space R

r+1. We consider the worst-case
cubature error, denoted by E(Qm; Hs(Sr )), of an arbitrary m-point cubature rule
Qm for functions in the unit ball of the Sobolev space Hs(Sr ), where s > r

2 , and

show that E(Qm; Hs(Sr )) ≥ cs,r m− s
r . The positive constant cs,r in the estimate

depends only on the sphere dimension r ≥ 2 and the index s of the Sobolev space
Hs(Sr ). This result was previously only known for r = 2, in which case the esti-
mate is order optimal. The method of proof is constructive: we construct for each
Qm a ‘bad’ function fm , that is, a function which vanishes in all nodes of the cuba-
ture rule and for which ‖ fm‖−1

s,r | ∫Sr fm(x) dωr (x)| ≥ cs,r m− s
r . Our proof uses

a packing of the sphere Sr with spherical caps, as well as an interpolation result
between Sobolev spaces of different indices.

Mathematics Subject Classification (1991): Primary 41A55 · Secondary 46B70 ·
46E22 · 46E35 · 52C17 · 65D30 · 65D32

1 Introduction

Cubature (or numerical integration) rules on the sphere are needed in applications
in geophysics and partial differential equations, where integrals over spherical
geometries need to be computed from discrete (measured) data. For example, in
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the modelling of the earth’s gravitational potential or magnetic field from satellite
data on (nearly) spherical orbits, cubature rules on the sphere are an important tool
(see for instance [3]). In this paper we consider cubature on general spheres Sr ,
r ≥ 2, in a Sobolev space setting and derive a lower bound for the worst-case cuba-
ture error in terms of the number of nodes of the cubature rule. Such a lower bound
tells us how fast the worst-case cubature error of any sequence (Qm(n))n∈N0 , with
limn→∞ m(n) = ∞, of cubature rules Qm(n) with m = m(n) nodes could at best
decline as n → ∞, and hence gives important information about the ‘limitations’
of cubature on Sr in a Sobolev space setting.

Let Sr ⊂ R
r+1, where r ≥ 2, denote the unit sphere in the Euclidean space

R
r+1. The integral of a continuous function f : Sr → R, denoted by

I f :=
∫

Sr
f (x) dωr (x),

where dωr (x) is the surface element of Sr , can be approximated by an m-point
cubature rule (or m-point numerical integration rule)

Qm f :=
m∑

j=1

w j f (x j ),

with nodes x1, . . . , xm ∈ Sr and corresponding weights w1, . . . , wm ∈ R.
The worst-case (cubature) error of the cubature rule Qm in a space H of con-

tinuous functions on Sr , with norm ‖ · ‖H , is defined by

E(Qm; H) := sup
f ∈H, ‖ f ‖H ≤1

|Qm f − I f |.

An important question in relation to the worst-case cubature error in H is how
good any m-point cubature rule Qm in H can at best be. Mathematically speaking,
we are interested in a lower bound for inf{E(Qm; H) | Qm} in terms of orders of
m, where the infimum is taken over all m-point cubature rules Qm on Sr . Such a
lower bound is sharp or (order) optimal if we can identify sequences (Qm(n))n∈N0
of m(n)-point cubature rules Qm(n), with limn→∞ m(n) = ∞, for which the worst-
case error E(Qm(n); H) has an upper bound in terms of orders of m = m(n) that
matches the lower bound for inf{E(Qm; H) | Qm} (in terms of orders of m).

In this work we consider the Sobolev (Hilbert) space Hs(Sr ), with norm ‖·‖s,r ,
where r ≥ 2 and s > r

2 . Intuitively, the space Hs(Sr ), with s > r
2 , is the space

of those continuous functions on the sphere Sr whose generalized (distributional)
derivatives up to (and including) the order s are square-integrable. We show that
the worst-case (cubature) error E(Qm; Hs(Sr )) of an arbitrary m-point cubature
rule Qm in Hs(Sr ) has the lower bound

E(Qm; Hs(Sr )) ≥ cs,r m− s
r , (1)

where the positive constant cs,r depends only on s and r , but is independent of the
cubature rule Qm and the number of nodes m. Hence for s > r

2

inf

{

E(Qm; Hs(Sr ))

∣
∣
∣
∣

Qm is an m-point
cubature rule

}

≥ cs,r m− s
r , m → ∞.
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(Throughout this paper the positive constants c1, c2, c3, . . . have fixed values (pos-
sibly depending on r ), whereas cs,r and cr are generic positive constants that depend
on the sphere dimension r and the Sobolev space index s, and on the sphere dimen-
sion r , respectively (as indicated by the indices), and that may take different values
at different places.)

The result (1) is an extension of [6, page 794, Theorem 1], where (1) was shown
for the special case of the sphere S2, that is, r = 2. For the sphere S2 we know
from [5,7] also a matching upper bound of the same order for infinite sequences
of cubature rules with certain properties. Therefore the result (1) is optimal with
respect to order for the case r = 2 and so are the corresponding upper bounds in
[5,7]. We conjecture that the estimate (1) is also order optimal for r > 2.

The proof of the estimate (1) is constructive: for a fixed arbitrary
m-point cubature rule Qm we construct a ‘bad’ function fm , that is, a function
which vanishes in all nodes of the cubature rule (hence Qm fm = 0) and for which
the cubature error satisfies

|Qm fm − I fm |
‖ fm‖s,r

=
∣
∣∫

Sr fm(x) dωr (x)
∣
∣

‖ fm‖s,r
≥ cs,r m− s

r , (2)

where the positive constant cs,r depends only on the space index s and the sphere
dimension r , but not on fm , Qm , and the number of nodes m. In particular, the
constant cs,r is independent of the placement of the nodes x1, . . . , xm and the cor-
responding weights w1, . . . , wm . The left-hand side of (2) is clearly a lower bound
for the worst-case error E(Qm; Hs(Sr )) which implies (1).

The construction of fm involves a packing of the sphere with (at least) 2m

spherical caps of radius αm = c1 (2m)− 1
r , with a suitable constant c1 independent

of m. As the caps of a packing are by definition not allowed to overlap but may only
touch at their boundaries and as there are only m nodes of the cubature rule, we can
find at least m caps that contain no nodes in the interior. Then we construct fm such
that the support of fm is contained in the union of m such caps and such that fm ,
restricted to any of these caps, is rotationally symmetric with respect to the center
of the cap and looks exactly the same for each cap. In fact we use for all cubature
rules Qm (and for all m) the same suitably chosen infinitely often differentiable
function on R with compact support in the construction of fm . The ‘bad’ func-
tion fm vanishes at all nodes of the cubature rule Qm and satisfies fm ∈ Hs(Sr )
for any s ≥ 0, and we use the same function fm in the proof of the estimate (2) for
all s > r

2 . The difficult part in the proof of (2) is then to find an upper bound for
‖ fm‖s,r without giving away any orders of m. This is handled by first deriving an
upper bound of ‖ fm‖s,r for non-negative even integer values of s. After that we
use Hölder’s inequality to interpolate between these estimates (for the even integer
values of s) to obtain a suitable upper bound for ‖ fm‖s,r with arbitrary s > r

2 .
The method of proof is analogous to the one in the special case of S2 in [6]

which was inspired by the ideas with which lower bounds for the worst-case cuba-
ture error in certain spaces of continuous functions on the unit cube [0, 1]r are
derived (see [1,8]). While the function with compact support used in the construc-
tion of fm is essentially the same as in [6], the technical details of the estimate of
‖ fm‖s,r are quite different from the proof in [6].
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2 Notation and formulation of the results

2.1 Background and notation

We denote the Euclidean inner product of x and y in R
r+1 by x · y and the induced

Euclidean norm by |x| := √
x · x, where x ∈ R

r+1.
In this paper we use the Pochhammer symbol (a)n , where n ∈ N0 and a ∈ R,

defined by

(a)0 := 1, (a)n := a(a + 1) · · · (a + n − 1) for n ∈ N.

The surface area of the unit sphere Sr in R
r+1,

Sr := {x ∈ R
r+1 | |x| = 1

}
,

is given by

ωr := |Sr | = 2 π
r+1

2

�
( r+1

2

) .

The (Lebesgue) surface measure of Sr is denoted by dωr (x).
Let L2(Sr ) denote the Hilbert space of square-integrable functions on the sphere

Sr endowed with the inner product

( f, g)L2(Sr ) :=
∫

Sr
f (x) g(x) dωr (x)

and the corresponding norm

‖ f ‖L2(Sr ) :=
(∫

Sr
| f (x)|2 dωr (x)

) 1
2

.

With C(Sr ) we denote the space of all continuous functions on Sr , endowed with
the supremum norm ‖ f ‖C(Sr ) := supx∈Sr | f (x)|. The space C∞(Sr ) is the space of
infinitely often differentiable functions on Sr , and C∞(R) is the space of infinitely
often differentiable functions on R.

The restriction of a harmonic homogeneous polynomial in r + 1 real variables
of exact degree � to the sphere Sr is called a spherical harmonic of degree �. We
denote the space of all spherical harmonics on Sr of degree � ∈ N0 by H�(Sr ). The
dimension of H�(Sr ) is (see [2, Section 11.2, page 237, formula (2)])

dim(H�(Sr )) = N (r − 1, �),

where

N (r − 1, 0) := 1, N (r − 1, �) := (2� + r − 1) (� + r − 2)!
(r − 1)! �! , � ∈ N.

We observe that

N (r − 1, �) = (2� + r − 1) (� + 1)r−2

(r − 1)! ≤ cr

(

� + r − 1

2

)r−1

(3)
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with a positive constant cr that depends only on the sphere dimension r . Any
two spherical harmonics of different degree are orthogonal to each other, and
the (real-valued) spherical harmonics of degree � satisfy the addition theorem
in H�(Sr ) (see [2, Section 11.4, pages 242–243, Theorem 4] and [10, Section
4.1, page 69–71, Lemma 4.5 and Theorem 4.7]): for any L2(Sr )-orthonormal set
{Y (r)

�k | k = 1, . . . , N (r − 1, �)} of real-valued spherical harmonics of degree �

N (r−1,�)∑

k=1

Y (r)
�k (x) Y (r)

�k (y) = N (r − 1, �)

ωr

C
r−1

2
� (x · y)

C
r−1

2
� (1)

, x, y ∈ Sr , (4)

where C
r−1

2
� is the Gegenbauer polynomial (or ultraspherical polynomial) of index

λ = r−1
2 and degree �, defined by

Cλ
� (t) := (2λ)�

(
λ + 1

2

)
�

P
(λ− 1

2 ,λ− 1
2 )

� (t).

Here P
(λ− 1

2 ,λ− 1
2 )

� is the Jacobi polynomial with indices α = β = λ− 1
2 and degree �

(see [11, Section 4.7, page 80, formula (4.7.1)]). Note that Cλ
� (1) = (2λ)�

�! (see [2,
Subsection 11.1.2, page 236, formula (28)] and [11, Section 4.7, page 80, formula
(4.7.3)]) and that maxt∈[−1,1] |Cλ

� (t)| = Cλ
� (1) (from [11, Section 4.7, page 80,

formula (4.7.3) and Section 7.32, page 168, Theorem 7.32.1]).
The space of all spherical polynomials on Sr of degree ≤ n, that is, the restric-

tion to Sr of all polynomials in r + 1 real variables of degree at most n, is denoted
by Pn(Sr ). It can be shown (see [10, Section 4.1, page 77, Theorem 4.11]) that

Pn(Sr ) =
n⊕

�=0

H�(Sr ).

The dimension of Pn(Sr ) is therefore

dim(Pn(Sr )) =
n∑

�=0

N (r − 1, �) = N (r, n) = (2n + r)(n + r − 1)!
r ! n! .

From now on
{

Y (r)
�k

∣
∣
∣ k = 1, . . . , N (r − 1, �)

}
(5)

always denotes an L2(Sr )-orthonormal basis for H�(Sr ) of real-valued spherical
harmonics of degree �. Then the union of the orthonormal sets (5) for all � ∈ N0 is
a complete orthonormal system in L2(Sr ). Thus every function f ∈ L2(Sr ) can be
expanded into a Fourier series (or Laplace series) with respect to this orthonormal
system: in the L2(Sr ) sense

f =
∞∑

�=0

N (r−1,�)∑

k=1

f̂ (r)
�k Y (r)

�k , (6)
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where the Fourier coefficients f̂ (r)
�k are given by

f̂ (r)
�k :=

(
f, Y (r)

�k

)

L2(Sr )
=
∫

Sr
f (x) Y (r)

�k (x) dωr (x).

The Beltrami operator �∗ on Sr is the angular part of the Laplacian � on R
r+1

(see [10, Section 4.2, pages 80–81], and also [2, Subsection 11.1.1, page 234–235]
for the Laplace operator). The spherical harmonics on Sr are eigenfunctions of the
Beltrami operator �∗ on Sr (see [10, Section 4.2, page 81, Theorem 4.13]): for
any spherical harmonic Y (r)

� ∈ H�(Sr )

�∗Y (r)
� = −�(� + r − 1) Y (r)

� . (7)

The Beltrami operator �∗ is a self-adjoint operator, that is, for sufficiently often
differentiable functions f and g on Sr ,

∫

Sr

(
�∗ f (x)

)
g(x) dωr (x) =

∫

Sr
f (x)

(
�∗g(x)

)
dωr (x).

In this work we will eventually need local coordinates which are a slight mod-
ification of the usual spherical coordinates:

x1 = √
1 − t2 sin θr−2 · · · sin θ2 sin θ1 sin φ

x2 = √
1 − t2 sin θr−2 · · · sin θ2 sin θ1 cos φ

x3 = √
1 − t2 sin θr−2 · · · sin θ2 cos θ1

...
...

...

xr−1 = √
1 − t2 sin θr−2 cos θr−3,

xr = √
1 − t2 cos θr−2,

xr+1 = t,

(8)

where θ1, . . . , θr−2 ∈ [0, π], t ∈ [−1, 1], and φ ∈ [0, 2π). With the substitution
t = cos θr−1, where θr−1 ∈ [0, π], we obtain the usual spherical coordinates (see
[2, Subsection 11.1.1, page 233, formulas (7) and (8)]). In the local coordinates
(8) the surface element dωr has the representation (see [2, Subsection 11.1.1, page
233, formula (10)])

dωr (x)

= sin θ1 (sin θ2)
2 · · · (sin θr−2)

r−2 (1 − t2)
r−2

2 dφ dθ1 dθ2 · · · dθr−2 dt.

For an integrable function f : [−1, 1] → R this implies that for any fixed y ∈ Sr

∫

Sr
f (z · y) dωr (z) = ωr−1

∫ 1

−1
f (t) (1 − t2)

r−2
2 dt, (9)

where we have used the local coordinates (8) with xr+1 = t := z · y, that is, y is
considered as the north pole.

The Beltrami operator �∗ on Sr has in the local coordinates (8) the follow-
ing representation (see [2, Subsection 11.1.1, page 235, formula (15)] for the
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Laplacian in the usual polar coordinates): for a function g on Sr with g(x) =
G(θ1, . . . , θr−2, t, φ)

�∗g =
[

(−r) t
∂G

∂t
+ (1 − t2)

∂2G

∂t2

]

+ (1 − t2)−1 (sin θr−2)
2−r ∂

∂θr−2

[

(sin θr−2)
r−2 ∂G

∂θr−2

]

+ (1 − t2)−1 (sin θr−2)
−2 (sin θr−3)

3−r ∂

∂θr−3

[

(sin θr−3)
r−3 ∂G

∂θr−3

]

+ . . . + (1 − t2)−1(sin θr−2 · · · sin θ2)
−2 (sin θ1)

−1 ∂

∂θ1

[

(sin θ1)
1 ∂G

∂θ1

]

+ (1 − t2)−1 (sin θr−2 · · · sin θ1)
−2 ∂2G

∂φ2 . (10)

We observe that the first term on the right-hand side of (10) can also be written as

(−r) t
∂G

∂t
+ (1 − t2)

∂2G

∂t2 = (1 − t2)−
r−2

2
∂

∂t

[

(1 − t2)
r
2

∂G

∂t

]

.

However, the representation on the left-hand side is more useful to us. This first
term is the only term in the Beltrami operator (10) in the local coordinates (8) that
contains derivatives with respect to the coordinate t .

Now we can introduce the Sobolev spaces Hs(Sr ) and derive some of their
properties (see [10, Section 6.1, pages 181–182, Definition 6.2 and Theorem 6.3]
for Sr and [4, Sections 5.1 and 5.2, pages 81–92] for S2).

The Sobolev space Hs(Sr ), for s ≥ 0, is the completion of
⊕∞

�=0 H�(Sr ) with
respect to the norm

‖ f ‖s,r :=



∞∑

�=0

(

� + r − 1

2

)2s N (r−1,�)∑

k=1

| f̂ (r)
�k |2




1
2

. (11)

The space Hs(Sr ) is a Hilbert space with the inner product

( f, g)s,r :=
∞∑

�=0

(

� + r − 1

2

)2s N (r−1,�)∑

k=1

f̂ (r)
�k ĝ(r)

�k , f, g ∈ Hs(Sr ). (12)

This is relatively easily seen because (12) is exactly the inner product which induces
the norm (11). (A detailed discussion of the spaces Hs(Sr ) is given in [4, Sections
5.1 and 5.2, pages 81–92] for the case r = 2, and the proofs in [4] transfer directly
to the case of r > 2 with the appropriate modifications.) It is often useful to think
of functions in Hs(Sr ) in terms of their Fourier series expansion (6). Note that
H0(Sr ) = L2(Sr ), and that the spaces Hs(Sr ) are nested, that is, if t ≥ s then
Ht (Sr ) ⊂ Hs(Sr ).
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For s > r
2 the space Hs(Sr ) is embedded into the space C(Sr ). This can be

seen as follows: for f ∈ Hs(Sr ) and any M ∈ N0, the Cauchy-Schwarz inequality
and the addition theorem (4) imply
∣
∣
∣
∣
∣
∣

∞∑

�=M

N (r−1,�)∑

k=1

f̂ (r)
�k Y (r)

�k (x)

∣
∣
∣
∣
∣
∣

≤
∞∑

�=M

N (r−1,�)∑

k=1

[(

� + r − 1

2

)s

| f̂ (r)
�k |
] [(

� + r − 1

2

)−s

|Y (r)
�k (x)|

]

≤



∞∑

�=M

N (r−1,�)∑

k=1

(

� + r − 1

2

)2s

| f̂ (r)
�k |2




1
2

×



∞∑

�=M

N (r−1,�)∑

k=1

(

� + r − 1

2

)−2s

|Y (r)
�k (x)|2





1
2

≤



∞∑

�=0

N (r−1,�)∑

k=1

(

� + r − 1

2

)2s

| f̂ (r)
�k |2




1
2

×
( ∞∑

�=M

(

� + r − 1

2

)−2s N (r − 1, �)

ωr

) 1
2

= Cs,r,M ‖ f ‖s,r , (13)

with the positive constant

Cs,r,M := 1√
ωr

( ∞∑

�=M

N (r − 1, �)
(
� + r−1

2

)2s

) 1
2

.

As we have N (r − 1, �) ≤ cr (� + r−1
2 )r−1 from (3), the sum in the definition

of Cs,r,M converges if r − 1 − 2s < −1, that is, if s > r
2 . Also for s > r

2 we

have limM→∞ Cs,r,M = 0. Thus, (13) implies that for s > r
2 the Fourier series of

f ∈ Hs(Sr ) converges uniformly toward a continuous function. This uniform limit
coincides almost everywhere with the L2(Sr ) limit of the Fourier series (because
they have the same Fourier coefficients), and we can choose f to be the uniform
limit. Hence, Hs(Sr ) ⊂ C(Sr ) for all s > r

2 , and from (13) with M = 0

‖ f ‖C(Sr ) = sup
x∈Sr

| f (x)| ≤ Cs,r,0 ‖ f ‖s,r , f ∈ Hs(Sr ), (14)

that is, Hs(Sr ) with s > r
2 is embedded into C(Sr ). In particular, (14) also implies

that point evaluation in Hs(Sr ), with s > r
2 , is bounded, and consequently that

Hs(Sr ), with s > r
2 , is a reproducing kernel Hilbert space.
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The following alternative representation of the norm ‖ f ‖s,r plays an important
role in the proof of our result.

For f ∈ Hs(Sr ), where s ≥ 0, we can formally define the self-adjoint operator
(( r−1

2 )2 − �∗) s
2 by

((
r − 1

2

)2

− �∗
) s

2

f :=
∞∑

�=0

N (r−1,�)∑

k=1

(

� + r − 1

2

)s

f̂ (r)
�k Y (r)

�k . (15)

This definition is motivated by the fact that for any spherical harmonic Y (r)
� of

degree � (from (7))
((

r − 1

2

)2

− �∗
)

Y (r)
� =

(

� + r − 1

2

)2

Y (r)
� .

Note that for f ∈ Hs(Sr ), the function (( r−1
2 )2 − �∗) s

2 f is in L2(Sr ), because
the series on the right-hand side of (15) converges in the L2(Sr ) sense. With (15)
we can represent the norm of f ∈ Hs(Sr ) as (see [4, Section 5.1, page 83, formula
(5.1.9)] for the case of S2)

‖ f ‖s,r =
∥
∥
∥
∥
∥
∥

((
r − 1

2

)2

− �∗
) s

2

f

∥
∥
∥
∥
∥
∥

L2(Sr )

=





∫

Sr

∣
∣
∣
∣
∣
∣

((
r − 1

2

)2

− �∗
) s

2

f (x)

∣
∣
∣
∣
∣
∣

2

dωr (x)






1
2

. (16)

For even s and f ∈ C∞(Sr ) (or sufficiently smooth) the left-hand side in (15) can
also be considered as a differential operator in the classical sense, and we find that
we are allowed to interchange in the Fourier series of f the order of differentiation
and summation and obtain from this also the right-hand side. This shows that the
definition (15) for even s is consistent with the classical definition of the differential

operator
(
( r−1

2 )2 − �∗) s
2 , and that for f ∈ C∞(Sr ) and even s,

(
( r−1

2 )2 − �∗) s
2 f

in (15) is a differentiation in the classical sense.
For more detailed background information about the unit sphere Sr in R

r+1,
spherical harmonics, and the Beltrami operator see for example [2, Chapter XI],
[9], and [10, Chapters 4 and 6] for Sr , r ≥ 2, and [4] for S2. More information
about orthogonal polynomials can for example be found in [11] (see also [10,
Chapter 2] for Gegenbauer polynomials). We are not aware of a reference where
the Sobolev spaces Hs(Sr ) for general r ≥ 2 (defined the same way as here) are
discussed in great detail. Reimer [10, Section 6.1, pages 181–182] briefly discusses
the spaces Hs(Sr ) for r ≥ 2 and s which is an even integer, and Freeden, Gervens
and Schreiner [4, Sections 5.1 and 5.2, pages 81–92] discuss the spaces Hs(Sr )
in detail for r = 2. However, all of the proofs of the properties of Hs(Sr ), r ≥ 2,
are completely analogous to the case r = 2. Since we do not know of a detailed
reference for the case of Hs(Sr ) with r > 2, some of the proofs have been included
in this section.
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2.2 The results

Now we can formulate the main result in the following theorem.

Theorem 1 Let r ≥ 2. For each s > r
2 there exists a positive constant cs,r such that

the worst-case cubature error E(Qm; Hs(Sr )) in Hs(Sr ) of an arbitrary m-point
cubature rule Qm for Sr has the lower bound

E(Qm; Hs(Sr )) ≥ cs,r m− s
r . (17)

The constant cs,r depends only on s and r, but is independent of the rule Qm and
the number of nodes m ∈ N of the rule. For the case r = 2 the order m− s

2 in (17)
cannot be improved.

We stress that the positive constant cs,r in (17) depends only on the sphere dimen-
sion r and the Sobolev space index s. In particular, cs,r is independent of the
placement and the number of the nodes and of the corresponding weights.

Since the lower bound in (17) is true (with a universal positive constant cs,r )
for every cubature rule Qm on Sr which has m nodes, we can also formulate the
statement of the theorem as

inf

{

E(Qm; Hs(Sr ))

∣
∣
∣
∣

Qm is an m-point
cubature rule

}

≥ cs,r m− s
r , m → ∞.

For the special case of the sphere S2 Theorem 1 was proved in [6, page 794,
Theorem 1]. In this case results from [5,7] (see also [6, page 794, Theorem 2])
imply the order optimality of (17). We conjecture that (17) is also optimal with
respect to orders of m for r ≥ 3.

3 Preparations

Before we actually give the proof of Theorem 1, we state three lemmas that will
be needed for the proof. The first (Lemma 1 below) provides information about
the packing of Sr with Mm spherical caps of a spherical angle αm , where αm =
c1 (2m)− 1

r and 2m ≤ Mm ≤ c2 2m with suitable positive constants c1 > 0 and
c2 ≥ 1 independent of m. The second lemma (Lemma 2 below) gives an interpo-
lation result between the norms ‖ · ‖s,r of Sobolev spaces with different indices,
which can easily be verified with the help of Hölder’s inequality. We include the
short proof for completeness. The last lemma (Lemma 3 below) gives an expansion
of integer powers of a differential operator, which is essentially a constant minus
the t-derivative component of �∗ in the local coordinates (8). The proof of this last
lemma follows by induction.

Definition 1 Let r ≥ 2. The (closed) spherical cap S(y;α) ⊂ Sr with center
y ∈ Sr and angular radius α ∈ [0, π] is defined by

S(y; α) = {x ∈ Sr
∣
∣ x · y ≥ cos α

}
.
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We note that, from (9), for any y ∈ Sr the surface area of S(y;α) is given by

|S(y;α)| =
∫

S(y;α)

dωr (x)

= ωr−1

∫ 1

cos α

(1 − t2)
r−2

2 dt

= ωr−1

∫ α

0
(sin θ)r−1 dθ. (18)

The elementary estimates sin θ ≤ θ for all θ ∈ [0, π], and sin θ ≥ 2
π

θ for all
θ ∈ [0, π

2 ], and (18) imply the following upper and lower bound for the surface
area of a spherical cap S(y; α) with α ∈ [0, π

2 ].
(

2

π

)r−1
ωr−1

r
αr ≤ |S(y;α)| ≤ ωr−1

r
αr . (19)

Now we can formulate the packing result.

Lemma 1 Let r ≥ 2. For any m ∈ N, there exist Mm points y1, . . . , yMm on Sr

and an angle αm, with

αm = c1 (2m)− 1
r ,

2m ≤ Mm ≤ c2 2m,

such that the caps S(yi ;αm), i = 1 . . . , Mm, form a packing of Sr (that is, S(yi ; αm)
and S(y j ;αm) with i 
= j touch at most at their boundaries). The positive constants
c1 > 0 and c2 ≥ 1 depend only on r, but not on m.

Remark 1 This lemma is essentially well-known, but an explicit proof is not easy
to find. Our proof follows from a lower bound due to Wyner [12, Subsection
5.1, pages 1089–1091] and an elementary volume argument. Since Wyner’s lower
bound follows from a rather short and elegant argument and also for making this
paper more self-contained, we will briefly explain Wyner’s argument in the proof
below instead of just quoting his lower bound.

Proof If the caps S(yi ;αm), i = 1, . . . , Mm , form a packing their combined sur-
face area is bounded from above by the the surface area ωr of the sphere Sr . Thus

Mm |S(y1;αm)| =
Mm∑

i=1

|S(yi ; αm)| ≤ |Sr | = ωr ,

and with (19) and αm = c1 (2m)− 1
r

Mm ≤ ωr

|S(y1; αm)| ≤ ωr

ωr−1
( 2

π

)r−1 1
r αr

m

= r
ωr

ωr−1

(π

2

)r−1
c−r

1 2m.
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Thus

Mm ≤ c2 2m with c2 := r
ωr

ωr−1

(π

2

)r−1
c−r

1 . (20)

Now we show Wyner’s argument [12, Subsection 5.1, pages 1089–1091] that
leads to a lower bound for Mm .

Since the spherical caps S(yi ;αm), i = 1, . . . , Mm , form a packing of Sr their
centers y1, . . . , yMm satisfy arccos (yi · y j ) ≥ 2αm for i 
= j . Now let us consider
a maximal set {y1, . . . , yMm } of points on Sr such that arccos (yi · y j ) ≥ 2αm
for i 
= j . (Maximal means here that, if we add any other point y to the set
{y1, . . . , yMm }, then the property that the angle between two distinct point is ≥ 2αm
would be violated.) Then the spherical caps S(yi ; 2αm), i = 1, . . . , Mm , form a
covering of Sr .

This can be seen in the following way: If they were not a covering there would
exist z ∈ Sr which is in none of the spherical caps S(yi ; 2αm), i = 1, . . . , Mm ,
that is, with arccos (z · yi )> 2αm for all i = 1, . . . , Mm . But then we could add
this point to {y1, . . . , yMm }, and the enlarged set {y1, . . . , yMm , z} would have the
property that the angle between two distinct points is ≥ 2αm , in contradiction to
the maximality of the set {y1, . . . , yMm }.

Because S(yi ; 2αm), i = 1, . . . , Mm , form a covering of Sr we have

ωr = |Sr | ≤
Mm∑

i=1

|S(yi ; 2αm)| = Mm |S(y1; 2αm)|,

which is [12, Subsection 5.1, page 1091, formula above formula (98)]. With the
help of (19) we obtain an upper bound for |S(y1; 2αm)| leading to

Mm ≥ ωr

|S(y1; 2αm)| ≥ r
ωr

ωr−1
(2αm)−r = 2−r r

ωr

ωr−1
c−r

1 2m,

where we have used αm = c1 (2m)− 1
r . Thus we finally get

Mm ≥ c3 2m with c3 := 2−r r
ωr

ωr−1
c−r

1 . (21)

Combination of (20) and (21) yields

c3 2m ≤ Mm ≤ c2 2m for all m ∈ N,

with constants c2 and c3 that depend only on c1 and r , but not on m. The constant
c1 is now chosen such that c3 = 1. ��
Remark 2 As we consider a packing with 2m≥ 2 caps in Lemma 1 the angle αm can
be at most π

2 (which is achieved for a packing with 2 caps with opposite centers).

Lemma 2 Consider r ≥ 2. Let s ≥ 0 and choose n ∈ N0 such that 2n ≤ s ≤
2(n + 1). Then for f ∈ H2(n+1)(Sr ),

‖ f ‖s,r ≤ ‖ f ‖
2n+2−s

2
2n,r ‖ f ‖

s−2n
2

2(n+1),r . (22)
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The proof of this lemma is analogous to the proof given in [6, pages 801–802]
for the special case of S2 with the appropriate changes. We include the proof for
completeness.

Proof First we note that f ∈ H2(n+1)(Sr ) implies that f ∈ Ht (Sr ) for all t ≤
2(n+1), in particular, f ∈ H2n(Sr ) and f ∈ Hs(Sr ). For s = 2n and s = 2(n+1)
we obtain equality in (22) and nothing needs to be shown. For 2n < s < 2(n+1) we
use Hölder’s inequality: for f ∈ H2(n+1)(Sr ) and 1 < p, q < ∞, with 1

p + 1
q = 1,

‖ f ‖2
s,r =

∞∑

�=0

N (r−1,�)∑

k=1

(

� + r − 1

2

)2s

| f̂ (r)
�k |2

=
∞∑

�=0

N (r−1,�)∑

k=1

[(

� + r − 1

2

)2s−λ

| f̂ (r)
�k |2−η

][(

� + r − 1

2

)λ

| f̂ (r)
�k |η

]

≤



∞∑

�=0

N (r−1,�)∑

k=1

(

� + r − 1

2

)(2s−λ)p

| f̂ (r)
�k |(2−η)p





1
p

×



∞∑

�=0

N (r−1,�)∑

k=1

(

� + r − 1

2

)λq

| f̂ (r)
�k |ηq





1
q

. (23)

Now we choose in (23)

p := 2

2n + 2 − s
, q := 2

s − 2n
, λ := 2(n + 1)(s − 2n), η := s − 2n.

Substitution of the constants p, q , λ, and η into (23) yields (22). ��
The following lemma gives an expansion of integer powers of the constant and

t-derivative component of the differential operator ( r−1
2 )2 − �∗.

Lemma 3 Let r ∈ N with r ≥ 2. For k ∈ N,

((
r − 1

2

)2

+ r t
d

dt
− (1 − t2)

d2

dt2

)k

=
k∑

j=0

q j,k(t)

(
d

dt

) j

+
k∑

j=1

p j,k(t) (1 − t2) j
(

d

dt

)k+ j

, (24)

where q j,k is a real polynomial of degree j and p j,k is a real polynomial of degree
k − j .

The special case of (24) for r = 2 was not used in [6], and in fact the part of the
proof of Theorem 1, where Lemma 3 comes into play, is rather different from the
proof in [6].

Proof The proof of this lemma is straight-forward by induction on k. Since it is
rather lengthy we do not include it here. ��
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4 Proof of the lower bound of the worst-case cubature error

After these preparations we can prove Theorem 1.

Proof The idea behind the proof is to construct for an arbitrarily given m-point
cubature rule Qm ,

Qm f :=
m∑

j=1

w j f (x j ),

a ‘bad’ function fm ∈ Hs(Sr ) for which
∣
∣
∣
∣Qm

(
fm

‖ fm‖s,r

)

− I

(
fm

‖ fm‖s,r

)∣∣
∣
∣ ≥ cs,r m− s

r , (25)

where the constant cs,r depends only on s and r , but not on the function fm , the
cubature rule Qm (that is, the placement of the nodes xi and the corresponding
weights wi , i = 1, . . . , m), and the number of nodes m. Since the worst-case cuba-
ture error E(Qm; Hs(Sr )) is the supremum over the cubature errors of all functions
in the unit ball of Hs(Sr ), the left-hand side in (25) is clearly a lower bound for
E(Qm; Hs(Sr )). Thus (25) implies (17) in Theorem 1.

Lemma 1 guarantees that there exist Mm points y1, . . . , yMm on Sr , where
2m ≤ Mm ≤ c2 2m, and a spherical angle

αm := c1 (2m)−
1
r

such that the spherical caps S(yi ;αm), i = 1, . . . , Mm , touch at most at their
boundaries. The positive constants c1 and c2 do not depend on m.

As there are Mm ≥ 2m spherical caps and only m nodes xi , we know that at
most m of the spherical caps S(yi ;αm), i = 1, . . . , Mm , contain a node of the
cubature rule in the interior. Consequently, there exist at least m spherical caps
that contain no node of the cubature rule in their interior. After relabelling we may
assume that S(yi ;αm), i = 1, . . . , m, contain no node of the cubature rule in their
interior. We know that αm ≤ π

2 as we consider a packing with 2m ≥ 2 caps (see
Remark 2).

Now we will construct the ‘bad’ function fm ∈ Hs(Sr ) such that the support
of fm is a subset of

⋃m
i=1 S(yi ;αm). Restricted to each cap S(yi ; αm), the function

fm will look the same, and fm |S(yi ; αm) will be a rotationally symmetric function
with respect to the center yi of the cap. Therefore fm |S(yi ;αm) can in fact be
considered as a one-dimensional function.

We start the construction with a function 
 ∈ C∞(R) with the following
properties:

(i) 
(t) ≥ 0 for all t ∈ R,
(ii) maxt∈R 
(t) = 
(0) = 1, and

(iii) 
 has the compact support supp(
) = [−1, 1].
For example we could choose 
 ∈ C∞(R) to be


(t) :=
{

e
1− 1

1−t2 if t ∈ (−1, 1),
0 if |t | ≥ 1.



A lower bound for the worst-case cubature error on Sr 427

The concrete definition of 
 with the above properties is unimportant, but it is
essential that we use the same function 
 in the construction of fm for all cubature
rules Qm .

In a first step we scale the argument of the function 
 in such a way that the
support of the function with the scaled argument is [cos αm, cos αm

2 ]. The linear
map that maps [cos αm, cos αm

2 ] onto [−1, 1] is given by

gm(t) := 2t − (cos αm
2 + cos αm

)

cos αm
2 − cos αm

= 2t − (cos αm
2 + cos αm

)

2 sin 3αm
4 sin αm

4

, (26)

where we have used the trigonometric identity

cos α − cos β = 2 sin
α + β

2
sin

β − α

2
.

The scaled version of 
 is then given by


m(t) := 
(gm(t)) = 


(
2t − (cos αm

2 + cos αm
)

2 sin 3αm
4 sin αm

4

)

, t ∈ R.

The function 
m is in C∞(R), and

(i) 
m(t) ≥ 0 for all t ∈ R,
(ii) maxt∈R 
m(t) = 
m

( 1
2 (cos αm

2 + cos αm)
) = 
(0) = 1, and

(iii) 
m has the support supp(
m) = [cos αm, cos αm
2 ].

Now we lift 
m onto the caps S(yi ;αm), i = 1, . . . , m. We define our ‘bad’
function fm ∈ C∞(Sr ) by

fm(x) :=
m∑

i=1


m(x · yi ), x ∈ Sr . (27)

The properties of 
m imply the following properties of fm :

(i) fm(x) ≥ 0 for all x ∈ Sr ,
(ii) maxx∈Sr fm(x) = maxx∈S(yi ,αm) 
m(x · yi ) = 1 for i = 1, 2, . . . , m,

(iii) fm has the support supp( fm) =⋃m
i=1

(
S(yi ;αm) \ S(yi ; αm

2 )
)
, and

(iv) fm(x)|x∈S(yi ,αm) = 
m(x · yi ) for i = 1, 2, . . . , m.

Furthermore, fm is in Hs(Sr ) for any s ≥ 0. We will prove this later by verifying
the estimate

‖ fm‖s,r ≤ cs,r m
s
r , (28)

with a constant cs,r that depends only on s ≥ 0 and r , but not on Qm , fm , and the
number of points m. The proof of (28) is rather delicate. Instead of interrupting the
flow of the proof to derive (28) now, we will defer the proof of (28) for the moment
and continue with our argument.

Due to the construction, fm vanishes in all nodes of the cubature rule, that is,
Qm fm = 0. Hence

∣
∣
∣
∣Qm

(
fm

‖ fm‖s,r

)

− I

(
fm

‖ fm‖s,r

)∣∣
∣
∣ =

I fm

‖ fm‖s,r
. (29)
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Now we compute I fm .

I fm =
∫

Sr
fm(x) dωr (x)

=
m∑

i=1

∫

S(yi ;αm)


m(x · yi ) dωr (x)

= m ωr−1

∫ cos αm
2

cos αm


m(t) (1 − t2)
r−2

2 dt

= m ωr−1

∫ cos αm
2

cos αm


(gm(t)) (1 − t2)
r−2

2 dt, (30)

where we have used (9) for each integral in the second line. Since αm ≤ π
2 (see

Remark 2), 0 ≤ cos αm < cos αm
2 < 1, and for t ∈ [cos αm, cos αm

2 ] we obtain that

(
sin

αm

2

)2 ≤ 1 − t2 ≤ (sin αm)2. (31)

Thus from (30) and (31)

I fm ≥ m ωr−1

(
sin

αm

2

)r−2
∫ cos αm

2

cos αm


(gm(t)) dt.

The substitution u := gm(t), with the linear function gm defined in (26), yields

I fm ≥ m ωr−1

(
sin

αm

2

)r−2
sin

3αm

4
sin

αm

4

∫ 1

−1

(u) du. (32)

The elementary estimate sin θ ≥ 2
π

θ , θ ∈ [0, π
2 ], and αm = c1 (2m)− 1

r imply now
that

(
sin

αm

2

)r−2
sin

3αm

4
sin

αm

4
≥
(αm

π

)r−2 3αm

2π

αm

2π

= 3

4πr
αr

m

= 3cr
1

8πr
m−1.

Thus from (32),

I fm ≥ ωr−1
3cr

1

8πr

∫ 1

−1

(u) du = cr , (33)

with a constant cr that depends only on r .
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From (28) and (33) we obtain

I fm

‖ fm‖s,r
≥ cs,r m− s

r

which (from (29)) implies (25) and hence (17) in Theorem 1.
It remains to prove (28). We do this by showing (28) first for nonnegative even

integer s, and then use Lemma 2 to interpolate between the even integer cases.
For s = 0 and from the definition (27) of fm

‖ fm‖2
0,r =

∫

Sr
| fm(x)|2 dωr (x)

=
m∑

i=1

m∑

j=1

∫

Sr

m(x · yi )
m(x · y j ) dωr (x)

=
m∑

i=1

∫

S(yi ;αm)

|
m(x · yi )|2 dωr (x)

= m ωr−1

∫ cos αm
2

cos αm

|
(gm(t))|2 (1 − t2)
r−2

2 dt, (34)

where we have used in the second last step the fact that for i 
= j the supports
supp(
m(x · yi )) and supp(
m(x · y j )) at most touch at the boundaries and that

m(x · yi ) and 
m(x · y j ) vanish at these points. In the last step we have used (9).
Applying (31) in (34) yields with the substitution u = gm(t) (see (26)) and with

sin θ ≤ θ , θ ∈ [0, π], and αm = c1 (2m)− 1
r

‖ fm‖2
0,r ≤ m ωr−1 (sin αm)r−2

∫ cos αm
2

cos αm

|
(gm(t))|2 dt

= m ωr−1 (sin αm)r−2 sin
3αm

4
sin

αm

4

∫ 1

−1
|
(u)|2 du

≤ m ωr−1 αr−2
m

3αm

4

αm

4

∫ 1

−1
|
(u)|2 du

= 3

16
ωr−1 m αr

m

∫ 1

−1
|
(u)|2 du

= 3

32
ωr−1 cr

1

∫ 1

−1
|
(u)|2 du.

The obtained bound for ‖ fm‖2
0,r is independent of m. Thus, for s = 0,

‖ fm‖0,r ≤ c0,r = c0,r m
0
r . (35)

Next we show (28) for s being a positive even integer. For a positive even
integer s, (16) and (27) yield
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‖ fm‖2
s,r =

∫

Sr

∣
∣
∣
∣
∣
∣

((
r − 1

2

)2

− �∗
) s

2

fm(x)

∣
∣
∣
∣
∣
∣

2

dωr (x)

=
m∑

i=1

m∑

j=1

∫

Sr





((
r − 1

2

)2

− �∗
) s

2


m(x · yi )





×




((
r − 1

2

)2

− �∗
) s

2


m(x · y j )



 dωr (x). (36)

Because s is an even integer and 
m(x · yi ) ∈ C∞(Sr ), the function
(
( r−1

2 )2 − �∗) s
2 
m(x · yi ) is a classical derivative of 
m(x · yi ) and its sup-

port is therefore contained in that of 
m(x · yi ). Hence for i 
= j , the supports of
(
( r−1

2 )2 − �∗) s
2 
m(x ·yi ) and

(
( r−1

2 )2 − �∗) s
2 
m(x ·y j ) have at most boundary

points in common, where both functions vanish. Thus, from (36), (9), (10), and
(31)

‖ fm‖2
s,r =

m∑

i=1

∫

S(yi ;αm)

∣
∣
∣
∣
∣
∣

((
r − 1

2

)2

− �∗
) s

2


m(x · yi )

∣
∣
∣
∣
∣
∣

2

dωr (x)

= m ωr−1

∫ cos αm
2

cos αm

∣
∣
∣
∣
∣
∣

((
r − 1

2

)2

+ r t
d

dt
− (1 − t2)

d2

dt2

) s
2


(gm(t))

∣
∣
∣
∣
∣
∣

2

×(1 − t2)
r−2

2 dt

≤ m ωr−1 (sin αm)r−2

×
∫ cos αm

2

cos αm

∣
∣
∣
∣
∣
∣

((
r − 1

2

)2

+ r t
d

dt
− (1 − t2)

d2

dt2

) s
2


(gm(t))

∣
∣
∣
∣
∣
∣

2

dt. (37)

Note that in the second step in (37) we only need to take the component of �∗ which
contains derivatives with respect to t into account (see (10)) because 
(gm(t)) does
not depend on the other coordinates.

Now we use (24) in Lemma 3 to estimate the integrand in the last line of (37).
We first note that from the chain rule

d

dt

(gm(t)) = 
′(gm(t)) g′

m(t) = 
′(gm(t))

sin 3αm
4 sin αm

4

,

and differentiating j times gives

(
d

dt

) j


(gm(t)) = 
( j)(gm(t))
(

sin 3αm
4 sin αm

4

) j
.
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This and (24) imply that

((
r − 1

2

)2

+ r t
d

dt
− (1 − t2)

d2

dt2

) s
2


(gm(t))

=
s
2∑

j=0

q j, s
2
(t)

(
d

dt

) j


(gm(t))

+
s
2∑

j=1

p j, s
2
(t) (1 − t2) j

(
d

dt

) s
2 + j


(gm(t))

=
s
2∑

j=0

q j, s
2
(t)


( j)(gm(t))
(

sin 3αm
4 sin αm

4

) j

+
s
2∑

j=1

p j, s
2
(t)

(1 − t2) j

(
sin 3αm

4 sin αm
4

) j


( s
2 + j)(gm(t))

(
sin 3αm

4 sin αm
4

) s
2
,

with real polynomials q j, s
2

of degree j , where j = 0, 1, . . . , s
2 , and real polyno-

mials p j, s
2

of degree s
2 − j , where j = 1, . . . , s

2 . Thus

∣
∣
∣
∣
∣
∣

((
r − 1

2

)2

+ r t
d

dt
− (1 − t2)

d2

dt2

) s
2


(gm(t))

∣
∣
∣
∣
∣
∣

≤
(

sin
3αm

4
sin

αm

4

)− s
2

×




s
2∑

j=0

|q j, s
2
(t)|
(

sin
3αm

4
sin

αm

4

) s
2 − j

|
( j)(gm(t))|

+
s
2∑

j=1

|p j, s
2
(t)| (1 − t2) j

(
sin 3αm

4 sin αm
4

) j
|
( s

2 + j)(gm(t))|



 . (38)

The functions |q j, s
2
(t)|, j = 0, 1, . . . , s

2 , and |p j, s
2
(t)|, j = 1, . . . , s

2 , are bounded
uniformly on [−1, 1] with bounds independent of Qm and m (but dependent on
s and r ). The function 
 and its derivatives on [−1, 1] up to (and including) the
order s are all bounded by a constant that depends only on s. Furthermore for
j = 0, 1, . . . , s

2

(

sin
3αm

4
sin

αm

4

) s
2 − j

≤ 1,
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and for j = 1, . . . , s
2 and t ∈ [cos αm, cos αm

2 ], from (31) and sin θ ≤ θ , θ ∈ [0, π],
as well as sin θ ≥ 2

π
θ , θ ∈ [0, π

2 ],

(1 − t2) j

(
sin 3αm

4 sin αm
4

) j
≤
(

(sin αm)2

sin 3αm
4 sin αm

4

) j

≤
(

α2
m

3αm
2π

αm
2π

) j

=
(

4π2

3

) j

≤
(

4π2

3

) s
2

.

Thus (38) implies for t ∈ [cos αm, cos αm
2 ]

∣
∣
∣
∣
∣
∣

((
r − 1

2

)2

+ r t
d

dt
− (1 − t2)

d2

dt2

) s
2


(gm(t))

∣
∣
∣
∣
∣
∣

≤ cs,r

(
sin 3αm

4 sin αm
4

)− s
2
. (39)

Application of (39) and sin θ ≤ θ , θ ∈ [0, π], as well as sin θ ≥ 2
π

θ , θ ∈ [0, π
2 ],

in (37) yield

‖ fm‖2
s,r ≤ ωr−1 c2

s,r m
(sin αm)r−2

(
sin 3αm

4 sin αm
4

)s

∫ cos αm
2

cos αm

dt

= ωr−1 c2
s,r m

(sin αm)r−2

(
sin 3αm

4 sin αm
4

)s

(
cos

αm

2
− cos αm

)

= 2 ωr−1 c2
s,r m (sin αm)r−2

(

sin
3αm

4
sin

αm

4

)1−s

≤ 2 ωr−1 c2
s,r m αr−2

m

(
3αm

2π

αm

2π

)1−s

= 2

(
3

4π2

)1−s

ωr−1 c2
s,r m αr−2s

m

= 2
2s
r

(
3

4π2

)1−s

ωr−1 c2
s,r cr−2s

1 m
2s
r .

Thus for positive even s,

‖ fm‖s,r ≤ cs,r m
s
r . (40)

It remains to show that (28) also holds for s > 0 which is not an even integer. For
s > 0 which is not an even integer there exists n ∈ N0 such that 2n < s < 2(n+1).
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From (22) in Lemma 2 and from (35) and (40) we obtain

‖ fm‖s,r ≤ ‖ fm‖
2n+2−s

2
2n,r ‖ fm‖

s−2n
2

2(n+1),r

≤
(

c2n,r m
2n
r

) 2n+2−s
2
(

c2(n+1),r m
2(n+1)

r

) s−2n
2

= c
2n+2−s

2
2n,r c

s−2n
2

2(n+1),r m
s
r

= cs,r m
s
r . (41)

Thus, (35), (40), and (41) imply (28) for all s ≥ 0. ��

Acknowledgements The support of the Australian Research Council is gratefully acknowl-
edged.

References

1. Bakhvalov, N. S.: On approximate computation of integrals. Vestnik MGV, Ser. Math. Mech.
Astron. Phys. Chem. 4, 3–18 (1959), in Russian

2. Erdélyi, A. (ed.), Magnus, W., Oberhettinger, F., Tricomi, F. G. (research associates): Higher
Transcendental Functions, Volume II. California Institute of Technology, Bateman Manu-
script Project, McGraw-Hill Book Company, Inc., New York, Toronto, London, 1953

3. Freeden, W.: Multicsale Modelling of Spaceborne Geodata. B. G. Teubner, Stuttgart, Leipzig,
1999

4. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with
Applications to Geomathematics. Oxford University Press, Oxford, 1998

5. Hesse, K., Sloan, I. H.: Worst-case errors in a Sobolev space setting for cubature over the
sphere S2. Bull. Austral. Math. Soc. 71, 81–95 (2005)

6. Hesse, K., Sloan, I. H.: Optimal lower bounds for cubature error on the sphere S2. J. Com-
plexity 21, 790–803 (2005)

7. Hesse, K., Sloan, I. H.: Cubature over the sphere S2 in Sobolev spaces of arbitrary order.
J. Approx. Theory, to appear

8. Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis. In Lecture
Notes in Mathematics 1349, Springer–Verlag, Berlin, Heidelberg, 1988

9. Reimer, M.: Constructive Theory of Multivariate Functions. BI Wissenschaftsverlag, Mann-
heim, Wien, Zürich, 1990

10. Reimer, M.: Multivariate Polynimial Approximation. Birkhäuser Verlag, Basel, Bosten, Ber-
lin, 2003

11. Szegö, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publica-
tions 23, American Mathematical Society, Providence, 1975, 4th edn.

12. Wyner, A. D.: Capabilities of bounded discrepancy decoding. The Bell System Technical
Journal 44, 1061–1122 (1965), July–August


