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Abstract Robustness of numerical methods for multiphase flow problems in
porous media is important for development of methods to be used in a wide
range of applications. Here, we discuss monotonicity for a simplified problem
of single-phase flow, but where the simulation grids and media are allowed to
be general, posing challenges to control-volume methods. We discuss discrete
formulations of the maximum principle and derive sufficient criteria for dis-
crete monotonicity for arbitrary nine-point control-volume discretizations for
conforming quadrilateral grids in 2D. These criteria are less restrictive than
the M-matrix property. It is shown that it is impossible to construct nine-point
methods which unconditionally satisfy the monotonicity criteria when the dis-
cretization satisfies local conservation and exact reproduction of linear potential
fields. Numerical examples are presented which show the validity of the criteria
for monotonicity. Further, the impact of nonmonotonicity is studied. Different
behavior for different discretization methods is illuminated, and simple ideas
are presented for improvement in terms of monotonicity.
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1 Introduction

Control-volume discretizations on two-dimensional quadrilateral grids are dis-
cussed for linear second-order elliptic equations on heterogeneous media. Con-
vergence of such methods are investigated and proved in e.g. [4–6,15–18,24,25,
33,34]. This paper is concerned with undesirable oscillations in the discrete
solution, and how they can be avoided.

The monotonicity of discrete solutions has a history of research starting
with the observation that most spatial finite difference discretizations yield
M-matrices [9,11,21]. This guarantees the monotonicity of the solution. For
discretizations not leading to M-matrices, far less is known. An early analysis
in one dimension was conducted by Bramble and Hubbard [10], and Varga [32]
analyzed a weaker form of the maximum principle for more general problems.

Our applications are solution of multiphase flow equations in subsurface flow
[19,30]. These equations contain an elliptic operator similar to the one occurring
in our simple model equation. The equations have properties which constrain
the choice of grid and discretization technique used for the elliptic opera-
tor. For multiphase flow, some variables (saturations) behave like solutions of
hyperbolic equations, while the pressure behaves like a solution of an elliptic
equation. Phase transitions which are strongly pressure dependent may occur.

Due to the hyperbolicity and the strongly nonlinear saturation-dependent
terms, the discretization scheme should be locally conservative. In a fully implicit
formulation, an explicit expression for the flux is required. This motivates the
application of control-volume formulations with flux expressions honoring the
heterogeneities of the medium.

Unphysical oscillations in the discrete solution are undesirable in any applica-
tion, but for multiphase flow, such oscillations may have serious consequences.
If the computed pressure lies below the bubble-point curve of the mixture,
while the actual pressure lies above it, artificial gas may be liberated, yielding a
strongly diverging solution. Therefore, an oscillation-free solution of the elliptic
model equation is desired.

Our treatment begins with the relationship between the maximum principle
and monotonicity. Then monotone matrices are discussed, and local criteria for
the monotonicity are derived. The discussion is general, with application to any
conservative nine-point scheme for the second-order elliptic operator in two
dimensions. This includes the discretizations discussed in [1–6,13–15,18,24,25,
34].

In the case of homogeneous medium and uniform parallelogram grid, we
use the derived local criteria to determine sufficient conditions for monotone
control-volume schemes. Finally, the local criteria are tested numerically, both
for homogeneous and heterogeneous media.

2 Maximum principle and monotonicity

We consider an operator L, defined by

Lu = − div(K grad u), (1)
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where the tensor K is a symmetric positive definite matrix. For a source term
q, let

Lu = q (2)

in some (open) domain D. Suppose that in the domain D, the source term is
nonnegative, q ≥ 0, and K is sufficiently smooth. Then u has no minimum in
D. More precisely, if there is a point x0 ∈ D such that u(x0) ≤ u(x) for all
other x ∈ D, then u is constant in D. This version of the maximum principle is
known as Hopf’s lemma [22,31] and proved in [23] under the condition that K is
continuously differentiable. We shall make use of a slightly weaker form of this
principle: If q ≥ 0 in D, there is no point x0 ∈ D such that u(x0) < u(x) for all
other x ∈ D. Obviously, since Hopf’s lemma can be stated for any subdomain
in D, this also means that if q ≥ 0 in D, u can have no local minima in D. We
formulate this property as

Property MC If Lu = q ≥ 0 in D, there is no point x0 ∈ D such that u(x0) <

u(x) for all other points x in a neighborhood of x0.

Suppose that on some domain Ω ⊂ D the potential u satisfies Eq. (2) with
homogeneous Dirichlet boundary conditions

u = 0 on ∂Ω . (3)

If the tensor K and the boundary ∂Ω are sufficiently smooth, the solution is
given by

u(x) =
∫

Ω

GΩ(x, ξ)q(ξ) dτξ , (4)

where GΩ(x, ξ) is Green’s function for the given boundary value problem, i.e.,
GΩ(x, ξ) is the solution of (2), (3) on Ω with q(x) = δ(x − ξ). Applying Green’s
formula with delta functionals as source terms, it follows that Green’s func-
tion is symmetric, GΩ(x, ξ) = GΩ(ξ , x). Below, we assume that K and ∂Ω are
sufficiently smooth to make Green’s function GΩ(x, ξ) continuous at all points
but ξ . Then the following inequality holds:

GΩ(x, ξ) ≥ 0 for x, ξ ∈ Ω . (5)

Inequality (5) and its significance follow from Theorem 1 below. An immediate
consequence of (4) and (5) is that

q ≥ 0 ⇒ u ≥ 0 in Ω . (6)

Utilizing (4), it is straight foreward to prove

Theorem 1 Property MC holds if and only if inequality (5) holds for all Ω ⊂ D,
where GΩ(x, ξ) is Green’s function with homogeneous Dirichlet boundary
conditions on ∂Ω .
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When discretizing the operator (1), one would like the discrete operator to
satisfy a discrete version of the maximum principle. However, it is not obvious
how the discrete version should be formulated. In the formulation below, we
will make use of the monotonicity property (6).

Suppose that the discretization of (2) with homogeneous Dirichlet boundary
conditions on D leads to a system of equations

Au = q, (7)

where each component of u is the value of u at a grid point, and each component
of q is the source term integrated over the associated grid cell. Let O be the
zero matrix. If

A−1 ≥ O, (8)

i.e., if each element of A−1 is nonnegative, then the discrete system satisfies the
same monotonicity property as the continuous system:

q ≥ 0 ⇒ u ≥ 0. (9)

A matrix A−1 with the sign property (8) is called monotone [12]. Note that the
matrix A−1 is a discrete version of the integral operator which uses Green’s
function as kernel.

However, while the sign property (8) excludes negative solutions for nonneg-
ative source terms and homogeneous Dirichlet boundary conditions, it does not
exclude local minima. As Theorem 1 shows, a natural discrete maximum princi-
ple is achieved by requiring that the monotonicity property (8) holds when A is
constructed for any subset of the grid points. Therefore, our discrete maximum
principle will be:

Property MD For a given grid in D, let (7) be a discretization of (2) with
homogeneous Dirichlet boundary conditions on any subgrid. Then the matrix
of coefficients A of the subgrid boundary value problem must satisfy the mono-
tonicity property (8).

Remark 1 The discrete maximum principle Property MD builds on Theorem
1 which was derived under sufficient smoothness conditions on K and ∂Ω .
However, Property MD should be valid for any K which is acceptable for the
discretization (in practice, any piecewise constant K).

Remark 2 Different formulations of the discrete maximum principle are pos-
sible since they can be derived from different formulations of the continuous
maximum principle. One example is the study by Varga [32], where the method
is said to satisfy a maximum principle for problems where the source term q = 0
and

∥∥u
∥∥∞ on D is less than or equal to

∥∥u
∥∥∞ on ∂D. Another discrete maxi-

mum principle follows from requiring A−1 ≥ O for the given grid in D. Both
these discrete maximum principles are weaker than Property MD and allow for
oscillating solutions.
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The definition of the discrete maximum principle leads to our definition of a

Monotone Method A method which defines a discretization satisfying Property
MD is said to be monotone.

3 Monotone matrices

An M-matrix is defined as a nonsingular matrix A = {ai,j} whose off-diagonal
elements are nonpositive (ai,j ≤ 0 for i �= j) and whose inverse is monotone
(A−1 ≥ O) [11,21]. The matrices we consider do in general have some posi-
tive off-diagonal elements, and therefore we need to consider a wider class of
matrices.

In this section, we generalize the theory of M-matrices to a class suitable for
our purposes. More precisely, we show that a matrix has a monotone inverse,
subject to the properties of a splitting of the matrix. This will be valuable, since
we can analyze a particular splitting in the next section and see that such a
splitting leads to local monotonicity criteria.

A splitting A = B − C is called weakly regular if B is nonsingular, B−1 ≥ O,
and B−1C ≥ O [21,29]. A matrix A with a weakly regular splitting A = B − C
has a monotone inverse, A−1 ≥ O, if and only if the spectral radius ρ of B−1C
satisfies the inequality

ρ(B−1C) < 1. (10)

When A stems from a discretization which yields nonpositive off-diagonal ele-
ments, the matrix A is often irreducibly diagonally dominant. This property
can be utilized to demonstrate the inequality (10). Matrices whose off-diagonal
elements have different signs, cannot be expected to be diagonally dominant.
However, for matrices with a weakly regular splitting, the inequality

∀i :
∑

j

ai,j ≥ 0 (11)

can be utilized to prove (10).

Theorem 2 Suppose that the matrix A has a weakly regular splitting A = B − C,
and suppose that inequality (11) holds. Then

∥∥B−1C
∥∥∞ ≤ 1. Assume, in addi-

tion, that either the inequality (11) is strict for all i or B−1C is irreducible and the
inequality (11) is strict for at least one i. Then the inequality (10) holds.

Proof Let e = [1, . . . , 1]T. Then inequality (11) can be written Ae ≥ 0. Thus,

Ce = Be − Ae ≤ Be. (12)

Hence, utilizing B−1 ≥ O,

0 ≤ B−1Ce ≤ B−1Be = e. (13)

Hence, it follows that
∥∥B−1C

∥∥∞ ≤ 1.
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If inequality (11) is strict for all i, then
∥∥B−1C

∥∥∞ < 1 and the theorem
is proved. To prove the rest of the second part of the theorem, assume that∑

j ai,j > 0 for i = k, i.e., [Ae]k > 0. Then

[Ce]k = [Be]k − [Ae]k < [Be]k. (14)

Since B−1 is nonsingular, the k-th column in B−1 must have at least one positive
element. Let us assume that [B−1]l,k > 0. Then

[B−1Ce]l < [B−1Be]l = 1. (15)

The case when
∥∥B−1C

∥∥∞ < 1 for all i has already been considered, so assume
that maxi[B−1Ce]i = 1. With the assumption that B−1C is irreducible, we can
apply the Perron-Frobenius theorem [8,11] on the matrix B−1C. It follows that
the spectral radius ρ(B−1C) satisfies (10). This proves the theorem. 	


Remark 3 Choosing B as the diagonal part of A, Theorem 2 gives sufficient
conditions for A to be an M-matrix.

If the transpose of a matrix A has a weakly regular splitting AT = BT − CT,
then B−T ≥ O and B−TCT ≥ O. Hence, B−1 ≥ O and CB−1 ≥ O. With the
inequality

∀j :
∑

i

ai,j ≥ 0, (16)

the theory of weakly regular splittings now yields the

Corollary 1 Suppose that the matrix A has a splitting A = B − C, such that B is
nonsingular, B−1 ≥ O, and CB−1 ≥ O, and suppose that inequality (16) holds.
Assume further that either the inequality (16) is strict for all j or CB−1 is irreduc-
ible and the inequality (16) is strict for at least one j. Then A is nonsingular with
a monotone inverse, i.e., A−1 ≥ O.

4 Monotonicity criteria for general quadrilateral grids

In this section, we apply the theory of Sect. 3 to determine conditions under
which a control-volume discretization of the operator (1) fulfills Property
MD. The discretizations which we consider are nine-point stencils on a two-
dimensional quadrilateral grid.

The global numbering of the cells is given by the indices (i, j), where i is the
column number and j the row number in the grid. The local cell numbering in a
stencil is shown in Fig. 1. The elements in the stencil of cell (i, j) are denoted by
mi,j

k , k = 1, . . . , 9, where k is the local index of Fig. 1. The cell stencil approxi-
mates the integral of the elliptic expression (1) over the cell (i, j), i.e., the outflux
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Fig. 1 Local cell numbering
in a nine-point stencil

1
2

3
4

5

6

7
8

9

out of cell (i, j),

−
∫

Ω(i,j)

div(K grad u) dΩ ≈
9∑

k=1

mi,j
k uk. (17)

Applying homogeneous Dirichlet boundary conditions for the domain Ω =⋃
i,j Ω(i, j), we obtain a linear system of equations of the form (7), where the

matrix of coefficients A is irreducible. Each equation of the system (7) has the
form

9∑
k=1

mi,j
k uk =

∫

Ω(i,j)

q dΩ . (18)

If the potential values uk are constant, there should be no flow. Therefore, for
each cell (i, j) not at the boundary, the coefficients mi,j

k must satisfy

9∑
k=1

mi,j
k = 0. (19)

Hence, the elements of the matrix A satisfy (11) as an equality for all inner cells.
If we assume that the inequality (11) is fulfilled for the boundary cells, we may
use the theory of weakly regular splittings to establish conditions which ensure
monotonicity of A−1.

In a control-volume method, the coefficients mi,j
k are constructed such that

the flux across an interface is the same for both two cells sharing this inter-
face, and the outflux out of a cell equals exactly the source term of this cell.
Therefore, control-volume methods are locally conservative. For conservative
methods, the sum of the source terms is zero whenever the outflux out of the
domain is zero. In the following, we only consider control-volume methods
where the flux across an interface is zero if all the cells sharing a corner with
this interface have the same potential values. For example, in Fig. 1, the flux
across the interface between cell 1 and cell 2 is zero if the cells 1, 2, 3, 4, 8, and
9 have the same potential values.
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Now consider the system of Eq. (7). Let u = ej, where ej is the unit vector
with the jth component equal to 1 and all other components equal to 0. Then
Aej is the jth column of A. If the index j corresponds to an inner cell in the grid,
then the potential is zero in the boundary cells as well as on the boundary, due to
the homogenous Dirichlet conditions. Therefore, the flux across the boundary
is zero, and hence, the sum of the source terms must vanish. It follows that the
sum of the elements of the jth column of A is zero. Hence, in a conservative
method the elements of the matrix A satisfy (16) as an equality for all inner cells.
Assuming that (16) is fulfilled for the boundary cells, we may use Corollary 1
to establish conditions which ensure monotonicity of A−1.

For any splitting A = B−C, we may now establish monotonicity of A−1 in two
ways: either by determining the conditions under which B−1 ≥ O and B−1C ≥
O, or by determining the conditions under which B−1 ≥ O and CB−1 ≥ O. In
the following, we will apply the latter approach. The question of irreducibility
of CB−1 is discussed in Remark 4.

Different splittings may lead to different sets of monotonicity conditions.
However, since the set of conditions derived for each splitting is only sufficient,
we may pick the weakest set of conditions.

Since the elements mi,j
k , k ≥ 2, in general have different signs, we cannot

apply a splitting where B consists of the diagonal part of A. This would in fact
be equivalent to requiring that A is an M-matrix, which is too restrictive [1].

In [26,28] a splitting was chosen which yields remarkably good monotonicity
conditions. This splitting will be discussed in the section below.

4.1 Local conditions for monotonicity of A−1

We choose the natural ordering of the unknowns, first counting the unknowns
in column i of row 1, and then proceeding by counting the unknowns of each
subsequent row j. In a grid with m columns and n rows, the matrix A then has a
block-tridiagonal structure (see Fig. 2), each block being an m × m tridiagonal
matrix. A has n diagonal blocks and n − 1 blocks in the upper and lower block
diagonal.

Fig. 2 Block-tridiagonal
structure
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Let B consist of the diagonal blocks of A, and let C = B − A. The diagonal
blocks of B will be denoted Bj, j = 1, . . . , n. The blocks of the first lower block
diagonal of C will be denoted CL

j , j = 2, . . . , n, while the blocks of the first upper

block diagonal of C will be denoted CU
j , j = 1, . . . , n − 1. The matrices Bj, CL

j

and CU
j are tridiagonal. These matrices are shown by displaying the nonzero

elements around the ith diagonal element:

Bj =

⎡
⎢⎢⎢⎢⎣

. . . mi−1,j
2

mi,j
6 mi,j

1 mi,j
2

mi+1,j
6

. . .

⎤
⎥⎥⎥⎥⎦ , (20)

CL
j = −

⎡
⎢⎢⎢⎢⎣

. . . mi−1,j
9

mi,j
7 mi,j

8 mi,j
9

mi+1,j
7

. . .

⎤
⎥⎥⎥⎥⎦ , (21)

CU
j = −

⎡
⎢⎢⎢⎢⎣

. . . mi−1,j
3

mi,j
5 mi,j

4 mi,j
3

mi+1,j
5

. . .

⎤
⎥⎥⎥⎥⎦ .

We now derive conditions which ensure that B−1 ≥ O and CB−1 ≥ O.
Consider the matrix Bj given by (20). Using the diagonal to split this matrix,

Remark 3 shows that B−1
j ≥ O if

(A0): mi,j
1 > 0,

(A1a): mi,j
2 < 0,

(A1c): mi,j
6 < 0,

(A2): mi,j
1 + mi,j

2 + mi,j
6 > 0.

In fact, these conditions ensure that Bj, and thereby B, are M-matrices. Also,
these conditions imply that Bj is irreducible, and hence, B−1

j > O [20,21].

To derive the conditions which also guarantee that CB−1 ≥ O, we introduce
the matrices

Dj = B−1
j , EL

j+1 = CL
j+1Dj, EU

j−1 = CU
j−1Dj. (22)

The matrices EL
j and EU

j are the nonzero blocks of CB−1. Thus, we have to

derive conditions which ensure that EL
j ≥ O and EU

j ≥ O. Let Dj = {d j
i,k},
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EL
j = {e j,L

i,k }, and EU
j = {e j,U

i,k }. From the equation BjDj = I, i.e., from

mi,j
6 d j

i−1,k + mi,j
1 d j

i,k + mi,j
2 d j

i+1,k = δi,k, (23)

it follows that

d j
i,k = δi,k

mi,j
1

− mi,j
6

mi,j
1

d j
i−1,k − mi,j

2

mi,j
1

d j
i+1,k. (24)

The definition of EL
j+1 and Eq. (24) yield

e j+1,L
i,k = −mi,j+1

7 d j
i−1,k − mi,j+1

8 d j
i,k − mi,j+1

9 d j
i+1,k

= −mi,j+1
8

mi,j
1

δi,k +
(

mi,j
6

mi,j
1

mi,j+1
8 − mi,j+1

7

)
d j

i−1,k

+
(

mi,j
2

mi,j
1

mi,j+1
8 − mi,j+1

9

)
d j

i+1,k. (25)

Likewise, the definition of EU
j−1 and Eq. (24) yield

e j−1,U
i,k = −mi,j−1

5 d j
i−1,k − mi,j−1

4 d j
i,k − mi,j−1

3 d j
i+1,k

= −mi,j−1
4

mi,j
1

δi,k +
(

mi,j
6

mi,j
1

mi,j−1
4 − mi,j−1

5

)
d j

i−1,k

+
(

mi,j
2

mi,j
1

mi,j−1
4 − mi,j−1

3

)
d j

i+1,k. (26)

Since d j
i,k ≥ 0, it follows that e j,L

i,k ≥ 0 and e j,U
i,k ≥ 0 if all the terms in the

expressions (25) and (26) are nonnegative. Hence, CB−1 ≥ O if

(A1b): mi,j
4 < 0,

(A1d): mi,j
8 < 0,

(A3a): mi,j
2 mi,j−1

4 − mi,j−1
3 mi,j

1 > 0,

(A3b): mi,j
6 mi,j−1

4 − mi,j−1
5 mi,j

1 > 0,

(A3c): mi,j
2 mi,j+1

8 − mi,j+1
9 mi,j

1 > 0,

(A3d): mi,j
6 mi,j+1

8 − mi,j+1
7 mi,j

1 > 0,

where the inequalities in the conditions A3 are omitted whenever j ± 1 lies
outside the index domain. The above arguments imply
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Lemma 1 The inverse of the matrix A arising from a locally conservative nine-
point discretization in 2D is monotone if conditions A0 through A3 defined above
hold for all pairs (i, j).

Remark 4 To achieve monotonicity for A−1, Corollary 1 requires that CB−1

is irreducible. In general, A is irreducible, but this does not necessarily imply
that CB−1 is irreducible. However, the strict inequality in the conditions A1
and A3 yields irreducibility for the matrix CB−1. Therefore, the demand for
irreducibility does not lead to new inequalities.

Remark 5 Conditions A0–A3 guarantee the monotonicity of the matrix A−1

through local conditions. For control-volume discretizations with local flux
approximations, the local discretization is independent of the domain. Thus,
it follows that conditions A are sufficient for Property MD to hold.

4.2 Reordering the system matrix

Conditions A2 and A3 above are not symmetric, in the sense that they place
more restrictions on mi,j

2 and mi,j
6 than on mi,j

4 and mi,j
8 . This is not a property of

the discretization method. Rather, it appears as a consequence of the choice of
cell numbering or, equivalently, the choice of splitting A = B − C.

In this section, we state conditions similar to A0 through A3 for a case where
the cells have been reordered. For the case considered, the unknowns in each
column i are counted first, and then the columns are counted. The matrix A
then has the same block-tridiagonal structure as before, but now the blocks are
n × n matrices, and there are m diagonal blocks.

Similar to the previous section, we denote the nonzero block matrices of
A by Bi, −CL

i and −CU
i . These matrices are shown by displaying the nonzero

elements around the jth diagonal element:

Bi =

⎡
⎢⎢⎢⎣

. . . mi,j−1
4

mi,j
8 mi,j

1 mi,j
4

mi,j+1
8

. . .

⎤
⎥⎥⎥⎦ ,

CL
i = −

⎡
⎢⎢⎢⎣

. . . mi,j−1
5

mi,j
7 mi,j

6 mi,j
5

mi,j+1
7

. . .

⎤
⎥⎥⎥⎦ , (27)

CU
i = −

⎡
⎢⎢⎢⎣

. . . mi,j−1
3

mi,j
9 mi,j

2 mi,j
3

mi,j+1
9

. . .

⎤
⎥⎥⎥⎦ .
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We also introduce the matrices Di = B−1
i , EL

i+1 = CL
i+1Di and EU

i−1 = CU
i−1Di.

Instead of the Eqs. (24), (25) and (26), we now get

di
j,k = δj,k

mi,j
1

− mi,j
8

mi,j
1

di
j−1,k − mi,j

4

mi,j
1

di
j+1,k, (28)

ei+1,L
j,k = −mi+1,j

7 di
j−1,k − mi+1,j

6 di
j,k − mi+1,j

5 di
j+1,k

= −mi+1,j
6

mi,j
1

δj,k +
(

mi,j
8

mi,j
1

mi+1,j
6 − mi+1,j

7

)
di

j−1,k

+
(

mi,j
4

mi,j
1

mi+1,j
6 − mi+1,j

5

)
di

j+1,k, (29)

ei−1,U
j,k = −mi−1,j

9 di
j−1,k − mi−1,j

2 di
j,k − mi−1,j

3 di
j+1,k

= −mi−1,j
2

mi,j
1

δj,k +
(

mi,j
8

mi,j
1

mi−1,j
2 − mi−1,j

9

)
di

j−1,k

+
(

mi,j
4

mi,j
1

mi−1,j
2 − mi−1,j

3

)
di

j+1,k. (30)

Hence, the local criteria similar to A0 through A3 for the case when the un-
knowns are ordered along the columns, are

(B0): mi,j
1 > 0,

(B1a): mi,j
2 < 0,

(B1b): mi,j
4 < 0,

(B1c): mi,j
6 < 0,

(B1d): mi,j
8 < 0,

(B2): mi,j
1 + mi,j

4 + mi,j
8 > 0,

(B3a): mi,j
4 mi−1,j

2 − mi−1,j
3 mi,j

1 > 0,

(B3b): mi,j
4 mi+1,j

6 − mi+1,j
5 mi,j

1 > 0,

(B3c): mi,j
8 mi−1,j

2 − mi−1,j
9 mi,j

1 > 0,

(B3d): mi,j
8 mi+1,j

6 − mi+1,j
7 mi,j

1 > 0,

where, as above, the inequalities in the conditions B3 are omitted whenever
i ± 1 lies outside the index domain.

Since each of the conditions A and B is sufficient for the monotonicity of A−1,
only the weakest set of conditions has to be satisfied to achieve monotonicity.
Hence, we have proved the following
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Theorem 3 The inverse of the matrix A arising from a locally conservative nine-
point discretization in 2D is monotone if conditions A or B defined above hold
for all pairs (i, j).

Note that the conditions A and B are defined locally at each cell. This implies
that these conditions may be used in a grid generation to, if possible, achieve a
monotone scheme for a given discretization.

Remark 6 As mentioned at the beginning of Sect. 4, we may for any splitting
A = B − C, either determine conditions which guarantee that CB−1 ≥ O or
determine conditions which guarantee that B−1C ≥ O. Applying the same pro-
cedure as above, we find that the rowwise ordering of Sect. 4.1 with the demand
B−1C ≥ O results in the conditions B, whereas the columnwise ordering of
Sect. 4.2 with the demand B−1C ≥ O results in the conditions A. Therefore,
these derivations do not yield any new, and hence, no weaker sufficient mono-
tonicity conditions.

Remark 7 Other orderings of the cells may also be considered, e.g. the chess-
board ordering. However, our numerical tests indicate that the conditions
derived from the chosen orderings are good.

4.3 Nonlocal criteria

The conditions A3 and B3 are used to ensure that CB−1 ≥ O. To check if these
criteria are sharp, one could test numerically whether all the elements of the
nonzero block matrices of CB−1 are nonnegative. Below, we show that this sign
test can be reduced to only a limited number of these elements. We show this
for the matrices of Section 4.1 only. The reduction of the number of sign tests
is then from O(

nm2) to O(nm).
When Bj is an irreducible M-matrix, its inverse satisfies Dj > O. The tridiag-

onal structure of Bj then implies that the elements of Dj satisfy

d j
i,k =

{
µ

j
k,1d j

i,1 ∀i ≥ k,

µ
j
k,md j

i,m ∀i ≤ k,
(31)

where µ
j
k,1 and µ

j
k,m are independent of i. Further, µ

j
k,1 > 0 and µ

j
k,m > 0. The

property (31) is easily seen from the LU decomposition of Bj [7].
When Bj is a rowwise diagonally dominant, tridiagonal M-matrix, the ele-

ments of the columns of the inverse Dj are nonincreasing as one moves away
from the diagonal. This is easily seen by examining the equation BjDj = I.
The diagonal dominance of Bj implies that the columns of Dj cannot have any
local inner extrema except at the diagonal and must have a minimum at the
boundary. Hence,

d j
i,1 ≤ d j

i−1,1,

d j
i−1,m ≤ d j

i,m,

⎫⎬
⎭ i = 2, . . . , m. (32)
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We will apply the properties (31) and (32) to reduce the necessary number of
sign tests in CB−1. Let S be one of the superscripts L and U in Sect. 4.1. From
the first line in the Eqs. (25) and (26) it follows that

e j,S
i,k = µ

j
k,1e j,S

i,1 for i > k,

e j,S
i,k = µ

j
k,me j,S

i,m for i < k.
(33)

Hence, to check if ES
j ≥ O, we do not have to check the sign of all the elements

e j,S
i,k . It is sufficient to check if e j,S

i,1 ≥ 0, e j,S
i,m ≥ 0 and e j,S

i,i ≥ 0 for all i. However,
also the sign test of the diagonal elements with indices i = 2, . . . , m − 1 are
superfluous. We show this for the elements e j+1,L

i,i . From Eqs. (25) and (31) it
follows that

e j+1,L
i,i

d j
i,i

= −
⎛
⎝mi,j+1

7

d j
i−1,i

d j
i,i

+ mi,j+1
8 + mi,j+1

9

d j
i+1,i

d j
i,i

⎞
⎠

= −
⎛
⎝mi,j+1

7

d j
i−1,m

d j
i,m

+ mi,j+1
8 + mi,j+1

9

d j
i+1,1

d j
i,1

⎞
⎠ . (34)

Introducing the quantities ν
j
i,1 and ν

j
i,m, i = 2, . . . , m − 1, defined by the pair of

equations

ν
j
i,1d j

i−1,1 + ν
j
i,md j

i−1,m = d j
i−1,m/d j

i,m,

ν
j
i,1d j

i+1,1 + ν
j
i,md j

i+1,m = d j
i+1,1/d j

i,1, (35)

the expression (34) may be rewritten as

e j+1,L
i,i

d j
i,i

= ν
j
i,1e j+1,L

i,1 + ν
j
i,me j+1,L

i,m − (
1 − ν

j
i,1d j

i,1 − ν
j
i,md j

i,m
)
mi,j+1

8 . (36)

Clearly, the first two terms in the right-hand side of (36) are nonnegative if
e j+1,L

i,1 ≥ 0 and e j+1,L
i,m ≥ 0 and both ν

j
i,1 ≥ 0 and ν

j
i,m ≥ 0. The last term of (36)

is nonnegative if mi,j+1
8 ≤ 0 and

1 − ν
j
i,1d j

i,1 − ν
j
i,md j

i,m ≥ 0. (37)
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To check these sign properties, we investigate the solution of (35),

ν
j
i,1 = d j

i−1,m

d j
i+1,m/d j

i,m − d j
i+1,1/d j

i,1

d j
i−1,1d j

i+1,m − d j
i+1,1d j

i−1,m

,

ν
j
i,m = d j

i+1,1

d j
i−1,1/d j

i,1 − d j
i−1,m/d j

i,m

d j
i−1,1d j

i+1,m − d j
i+1,1d j

i−1,m

. (38)

If follows that due to the property (32), both ν
j
i,1 ≥ 0 and ν

j
i,m ≥ 0 as required

above.
It remains to show that inequality (37) holds. From (23) it follows that for

i �= 1 and i �= m,

1 = mi,j
6 d j

i−1,i + mi,j
1 d j

i,i + mi,j
2 d j

i+1,i

− d j
i,iν

j
i,1

(
mi,j

6 d j
i−1,1 + mi,j

1 d j
i,1 + mi,j

2 d j
i+1,1

)
− d j

i,iν
j
i,m

(
mi,j

6 d j
i−1,m + mi,j

1 d j
i,m + mi,j

2 d j
i+1,m

)
= mi,j

1 d j
i,i
(
1 − ν

j
i,1d j

i,1 − ν
j
i,md j

i,m
)

+ mi,j
6

[
d j

i−1,i − d j
i,i
(
ν

j
i,1d j

i−1,1 + ν
j
i,md j

i−1,m

)]
+ mi,j

2

[
d j

i+1,i − d j
i,i
(
ν

j
i,1d j

i+1,1 + ν
j
i,md j

i+1,m

)]
. (39)

The last two terms vanish by (35), and since mi,j
1 ≥ 0, inequality (37) is valid.

Using the property (32), we have now shown that the inequalities e j,L
i,1 ≥ 0,

e j,L
i,m ≥ 0 and mi,j

8 ≤ 0 imply that e j,L
i,i ≥ 0. An analogous derivation holds for

the diagonal elements of EU
j , but here with the condition mi,j

4 ≤ 0. Thus, apply-
ing the properties of Bj (irreducible, rowwise diagonally dominant, tridiagonal
M-matrix), the following theorem appears.

Theorem 4 The inverse of the matrix A arising from a locally conservative nine-
point discretization in 2D is monotone if conditions A0, A1 and A2 hold, and the
first and last column of the matrices EL

j and EU
j have only nonnegative elements.

This shows that we can verify monotonicity in O(mn) operations, equivalent to
the number of grid cells, which is optimal complexity.

Remark 8 Theorem 4 is established by using the condition CB−1 ≥ O in the
derivation of Sect. 4.1. The rowwise diagonal dominance of Bj yields the col-
umnwise property (32), and this is used to reduce the sign test to the first and
last columns. If instead the condition B−1C ≥ O had been used, the theorem
would have had to be formulated with a reduction to the first and last row. This
would require that Bj is columnwise diagonally dominant.
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Remark 9 As demonstrated in Sect. 4.2, complementary versions of Theorem
4 can trivially be obtained using different cell orderings.

Remark 10 Note that Theorem 4 only gives monotonicity criteria for a given
grid. Remark 5 does not apply to Theorem 4 due to the nonlocal terms in the
matrices EL

j and EU
j . Thus, Theorem 4 is not sufficient for Property MD.

5 Case with homogeneous medium and uniform grid

In this section, we consider the case where the medium is homogeneous and
the grid is uniform. In this special case, the conditions simplify considerably.

If the medium is homogeneous and the grid is uniform, then mi,j
k = mk, inde-

pendent of i and j. Also, mk = mk+4 for k = 2, . . . , 5. In this case, the conditions
A and B can be combined and stated as

(C0): m1 > 0,

(C1): max{m2, m4} < 0,

(C2): m1 + 2 max{m2, m4} > 0,

(C3): m2m4 − max{m3, m5} · m1 > 0.

Remark 11 The conditions C are identical to the monotonicity conditions pre-
viously developed in [27], except for the inequality C1 which in [27] only is
required for m2. However, in the derivation of the conditions of [27], also
m4 < 0 was demanded, but this was unfortunately omitted in the final summary
of the conditions.

5.1 A class of control-volume methods

For the case of a uniform parallelogram grid in a homogeneous medium, we
will develop a class of control-volume methods constrained by three desirable
properties: it is locally conservative, it has a local flux representation, and it is
exact for linear potential fields.

We study methods with a local flux expression. Consider the fluxes across
the interfaces in Fig. 1 which separate cell 1 from cell 2 and cell 1 from cell 4,
respectively. These fluxes can be written as the weighted sum of potentials:

f1 =
∑

k=1,2,3,4,8,9

t1,kuk, f2 =
6∑

k=1

t2,kuk. (40)

When we look at the special case of uniform parallelogram grids on homoge-
neous media, the local grid symmetry implies that

t1,1 = −t1,2, t1,3 = −t1,8, t1,4 = −t1,9,

t2,1 = −t2,4, t2,2 = −t2,5, t2,3 = −t2,6.
(41)
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Fig. 3 The vectors a1 and a2

K
a1

a2

Equations (40) can now be written as

f1 = t1,1(u1 − u2) + t1,3(u3 − u8) + t1,4(u4 − u9), (42)

f2 = t2,1(u1 − u4) + t2,2(u2 − u5) + t2,3(u3 − u6). (43)

For any grid cell, let ai, i = 1, 2, be the normal vector of edge i, having length
equal to the length of the edge, see Fig. 3. Further, let V be the area of the
parallelogram cell, and define the quantities a, b and c by [1,27]

[
a c
c b

]
= 1

V

[
a1 a2

]T K
[
a1 a2

]
. (44)

These quantities cannot attain arbitrary values since the positive definiteness
of K implies that a > 0, b > 0, and

|c| <
√

ab. (45)

In the case of a linear potential field, the fluxes can be expressed by [1]

[
f1
f2

]
=

[
a c
c b

] [
u1 − u2
u1 − u4

]
=

[
a(u1 − u2) + c(u1 − u4)

c(u1 − u2) + b(u1 − u4)

]
. (46)

To determine the transmissibility coefficients of the Eqs. (42) and (43), we may
apply linear potential fields in two independent directions. Let us first deter-
mine the coefficients of (42). In this case, we choose the potential field such that
either f1 = 0 or grad u ‖ a1. When f1 = 0, Eq. (46) yields

u1 − u2 = − c
a
(u1 − u4). (47)
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From Fig. 1 it follows that for linear potential fields,

u3 − u8 = −2(u1 − u4) − (u1 − u2) = −
(

2 − c
a

)
(u1 − u4), (48)

u4 − u9 = −2(u1 − u4) + (u1 − u2) = −
(

2 + c
a

)
(u1 − u4). (49)

Applying the expressions (47), (48) and (49) in Eq. (42), it follows that

f1 = −
[ c

a
t1,1 +

(
2 − c

a

)
t1,3 +

(
2 + c

a

)
t1,4

]
(u1 − u4) = 0. (50)

In the case when grad u ‖ a1,

u1 − u2 = −(u3 − u8) = u4 − u9, (51)

and thus, from (42),

f1 = [t1,1 − t1,3 + t1,4](u1 − u2) = a(u1 − u2). (52)

The Eqs. (50) and (52) yield the pair of equations

ct1,1 + (2a − c)t1,3 + (2a + c)t1,4 = 0,

t1,1 − t1,3 + t1,4 = a. (53)

Similarly, we may determine the transmissibility coefficients of (43) by choosing
the potential field such that either f2 = 0 or grad u ‖ a2. These cases yield the
following pair of equations,

ct2,1 + (2b + c)t2,2 + (2b − c)t2,3 = 0,

t2,1 + t2,2 − t2,3 = b. (54)

The pair of Eqs. (53) determines the coefficients t1,1, t1,3 and t1,4 up to one
undetermined parameter α. Likewise, the pair of Eqs. (54) determines the
coefficients t2,1, t2,2 and t2,3 up to one undetermined parameter β. The solutions
read

t1,1 = a − α, t2,1 = b − β,

t1,3 = − c
4

− α

2
, t2,2 = − c

4
+ β

2
, (55)

t1,4 = − c
4

+ α

2
, t2,3 = − c

4
− β

2
.

These transmissibilities can be combined into a nine-point stencil given by

9∑
k=1

mkuk = f1 + f2 − f3 − f4, (56)
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Fig. 4 Fluxes through the
edges of a cell

f1

f2

f3

f4

where the fluxes f1, f2, f3, and f4 are shown in Fig. 4. Introducing the parameter
γ = α + β, the elements of the nine-point stencil read

m2 = m6 = −t1,1 + t2,2 − t2,3 = −a + γ ,

m3 = m7 = t1,3 + t2,3 = − c
2

− γ

2
,

m4 = m8 = −t1,3 + t1,4 − t2,1 = −b + γ ,

m5 = m9 = −t1,4 − t2,2 = c
2

− γ

2
,

m1 = −
9∑

k=2

mk = 2(t1,1 + t2,1) = 2(a + b − γ ).

(57)

Observe that these expressions imply that there is only one degree of freedom
in choosing a control-volume discretization which reproduces linear potential
fields for the elliptic problem (2). However, we see that although the system
matrix only depends on the parameter γ , the local flux approximations them-
selves are functions of the parameters α and β.

5.2 Monotone regions

In this section, we investigate the implications of the conditions C on the class
of nine-point schemes defined by (57). We will show that there is a range of
parallelogram grids for which it is impossible to satisfy the conditions C over
the full range of these control-volume methods. This is not due to the strict-
ness of the criteria, but it appears to be a fundamental property of the discrete
representation.

The parameter γ , appearing in the coefficients mk in (57), defines all pos-
sible conservative nine-point discretizations on uniform parallelogram grids in
homogeneous media, where the discretization method has an explicit flux rep-
resentation which is exact for linear potential fields. Several discretization meth-
ods have this property, including the multi-point flux approximation (MPFA)
class of methods [1,2,14]. In this section, we will discuss this parameter further,
and obtain an explicit value for γ for some common discretization methods.
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Following Remark 3, the coefficients (57) yield an M-matrix if and only if

|c| ≤ γ ≤ min{a, b}. (58)

These inequalities are derived from the sign property mk ≤ 0 for k = 2, . . . , 9.
The inequalities (58) imply that

|c| ≤ min{a, b}. (59)

Hence, the following lemma applies.

Lemma 2 For control-volume methods with local flux approximations which
yield exact solutions of linear potential fields, it is impossible to define a nine-
point scheme resulting in an M-matrix, on grids violating inequality (59).

The conditions C yield a wider class of methods than those resulting in an M-
matrix. Inserting the coefficients (57) into conditions C0 through C3, one gets a
class of monotone control-volume methods for uniform grids on homogeneous
media. The conditions C1 and C3 read

γ < min{a, b}, (60)

(γ − a)(γ − b) − (γ − |c|)(γ − (a + b)
)

> 0. (61)

Condition C2 is trivial, while condition C0 follows from inequality (60). Hence,
for any given combination of a, b and c, the conditions C restrict the parameter
γ to

a + b − ab
|c| < γ < min{a, b}. (62)

The inequalities (62) imply inequality (59). This makes it tempting to extend
Lemma 2 from M-matrix nine-point schemes to monotone nine-point schemes.
However, since the conditions C are only sufficient, such an extension cannot be
claimed. It is, however, our experience that inequality (59) is a practical bound
for monotone nine-point schemes.

The parameter domain defined by (59) is smaller than the domain defined
by (45), see Fig. 5. A method possesses good monotonicity properties if it is
monotone in large areas of the domain defined by (59).

The expressions (57) show that the choice γ = |c| yields a seven-point
method, in which either m3 = m7 = 0 or m5 = m9 = 0. This choice satisfies
the inequalities (62), provided (59) is satisfied with strict inequality. Hence,
the method defined by γ = |c| has optimal monotonicity properties with
respect to the conditions C in the sense that no other nine-point method satisfies
the monotonicity conditions over a larger range of parameters. The inequali-
ties (58) show that this choice of the parameter γ also leads to an M-matrix
discretization, provided (59) is satisfied.

In the MPFA methods, we denote the choice of continuity point of the
potential by η. The parameter η is defined as the fraction of the cell half-edge
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Fig. 5 Monotonicity regions
defined by (62) for some
O(η)- and U(η)-methods as
well as the seven-point stencil
for the case a ≤ b. The
monotone regions are above
the curves in question. The
elliptic bound is |c| = √

ab
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Table 1 The parameter γ calculated for some well-known discretization schemes

Method Expression for γ Optimal

O(η) γ = (abη + c2)/(d(1 + η)) For e.g. η = |c| / max{a, b}
O(0) γ = c2/d No
O(0.5) γ = (ab + 2c2)/3d No
U(η) γ = (a + b)η/2 For e.g. η = 2 |c| /(a + b)

U(0) γ = 0 No
7-point γ = |c| Yes

Here, d = 2ab/(a+b). Optimal is here in the sense of the monotonicity conditions C being satisfied
for all grids with |c| < min{a, b}

from the boundary of the interaction region. The MPFA O-method with a spe-
cific choice of η is denoted by O(η). The O(0)-method is discussed in [1,2],
while the O(η)-method with special emphasis on the O(0.5)-method has been
investigated in [14]. The expression for γ of the O(η)-method is derived in
Appendix 7.

Similarly, we denote the MPFA U-method with a specific choice of η by
U(η). For a general η, the transmissibility coefficients (55) with α = ηa/2 and
β = ηb/2 are easily derived. The common choice here is the U(0)-method, and
in fact, this is the only choice previously studied [2].

For purpose of illustration, we give the γ expressions for some common
MPFA discretization methods in Table 1. For each method, the conditions C
are satisfied when a, b and c satisfy inequality (62). This defines the monotonic-
ity region in terms of these parameters. For the O(0)-method, the monotonicity
region is

|c|
(

2 − c2

ab

)
<

2ab
a + b

. (63)
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For the O(0.5)-method, the monotonicity region is

|c|
(

5 − 2c2

ab

)
<

6ab
a + b

and c2 <
1
2

ab
a + b

(5a − b). (64)

Finally, for the U(0)-method, the monotonicity region is

|c| <
ab

a + b
. (65)

The monotonicity regions of these methods as well as the seven-point stencil
which has the monotonicity bound (59) are shown in Fig. 5. Each method is
monotone in the region above the curve in question. Note that these monoto-
nicity regions are the regions where the sufficient conditions C are satisfied.

We see from Table 1 that neither the O(0)-method nor the O(0.5)-method
is optimal, where optimal refers to the conditions C being satisfied in the full
range where inequality (59) is satisfied. Indeed, for any choice of η equal to a
constant, the resulting O(η)-method will never be optimal. However, by choos-
ing a case-dependent continuity point, optimal methods can be obtained, and
one example of such a choice is given in the table.

Similarly, the U(η)-method will never be optimal for any single choice of η,
but optimal methods can be obtained by choosing a case-dependent continuity
point. An example of such a choice is given in the table, yielding γ = |c|. This
choice does not only satisfy the conditions C, but it also leads to an M-matrix
discretization, provided inequality (59) is satisfied.

6 Numerical examples

6.1 Cases with homogeneous medium and uniform grid

In this section, we demonstrate by numerical examples the validity of the curves
of Fig. 5. We have calculated the same curves numerically, by testing Property
MD on a 19 × 19 grid. All tests are performed on homogeneous media with
uniform parallelogram grids. Figure 6 shows the numerically computed mono-
tonicity regions for different methods. These are to be compared with analytical
regions of Fig. 5. As seen in the figures, for small values of |c| /b, the sufficient
conditions C are approximately necessary to guarantee monotonicity. For larger
|c| /b, the conditions C are still good, but no longer sharp, and monotonicity is
ensured in a somewhat larger domain.

Figures 7 and 8 show cases outside the monotonicity regions for a 19 × 3
grid. The boundary value problem (2), (3) is solved with a delta functional as
a source term in block (10, 3). As can be seen from the figures, the solution is
negative in some areas of the domain, i.e., monotonicity is lost.

Within the monotonicity regions of Fig. 6, the inverse of the coefficient matrix,
A−1, has only nonnegative elements for all subgrids of a 19 × 19 grid. Figure 9
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Fig. 6 Numerically computed
monotonicity regions for some
O(η)- and U(η)-methods as
well as the seven-point stencil
for homogeneous media and
uniform parallelogram grids.
The elliptic bound is
|c| = √

ab
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Fig. 7 Solution u with a delta
functional as source term at
the boundary. O(0.5)-method.
a/b = 0.05, c/b = 0

u

Fig. 8 Solution u with a delta
functional as source term at
the boundary. O(0)-method.
a/b = 0.05, c/b = 0.15

u

shows the monotonicity regions of the inverse of the coefficient matrix, A−1,
for a 19 × 19 grid without considering the subgrid cases. Obviously, the regions
of Fig. 9 are larger than the regions of Fig. 6. To avoid oscillations, the boundary
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Fig. 9 Numerically computed
monotonicity regions of A−1

for some O(η)- and
U(η)-methods for
homogeneous media and a
uniform parallelogram
19 × 19 grid. The elliptic
bound is |c| = √

ab

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a/b

|c|/b

U(0
)

O(0
)

O(0
.5)

7-p

|c| =
√

ab

value problem (2), (3) for all subgrids must yield matrices of coefficients A with
A−1 ≥ O.

To show the impact of the loss of monotonicity for a sequence of O(η)-
methods, we consider a case with c = 0. As seen from Table 1, for c = 0 the
parameter γ of the O(η)-methods is γ = 1

2 (a + b)η/(1 + η). Inequality (61) is
now always fulfilled, and from inequality (60) it follows that monotonicity is
ensured if

η <
2 min{a, b}

|b − a| . (66)

As in the examples of Figs. 7 and 8, we choose a/b = 0.05. The monotonicity
limit (66) then yields η < 0.105. We apply a 19 × 1 grid, and for j = 10 we
compute

ε = mini[A−1]i,j

maxi[A−1]i,j
. (67)

The quantity ε is nonnegative for monotone methods and negative for non-
monotone cases. It is computed for a sequence of the parameter η ∈ [0, 1), i.e.,
for a sequence of O(η)-methods. The function ε(η) is shown in Fig. 10. As seen
from the figure, ε = 0 in the monotonicity region η < 0.105. As η increases
beyond this limit, the significance of the loss of monotonicity gets more and
more severe, with increasing negative values of ε. For K-orthogonal grids, i.e.,
for c = 0, unconditional monotonicity is lost for all O(η)-methods with η �= 0.

The test runs above are for small values of a/b and |c| /b, i.e., parameters
in the bottom left part of the diagram of Fig. 5. For large values of a/b and
|c| /b, i.e., in the top right part of the diagram of Fig. 5, the impact of a violation
of monotonicity is less severe. Typically, the ratio (67) for the column index j
which gives the largest negative ratio is two orders of magnitude smaller in the
top right part of the diagram than in the bottom left part.
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Fig. 10 Function (67) for a
sequence of O(η)-methods on
a 19 × 1 grid. a/b = 0.05, c = 0
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6.2 Heterogeneous cases on uniform grids

In this section we investigate the monotonicity regions for heterogeneous cases.
The local criteria of Theorem 3 still hold, and we now apply them to layered
media and uniform parallelogram grids using the O(0)-method. The conduc-
tivity of the medium is isotropic, and every second layer of the medium has
the same conductivity given by k1I and k2I, respectively. Two cases are investi-
gated, one case with k1/k2 = 2 and one case with k1/k2 = 100. In the first case,
clearly different curves occur, depending on whether the layers are parallel to
the i-lines or the j-lines of the grid.

The quantities a, b and c, defined in (44), now vary from layer to layer, but
the ratios a/b and c/b are constant throughout the grid. Figure 11 shows the

Fig. 11 Monotonicity regions
for a layered medium with the
O(0)-method, defined by the
criteria of Theorem 3. H =
homogeneous; L2 = layered
with conductivity ratio 2,
layers aligned with the j-lines
and i-lines, respectively;
L100 = layered with
conductivity ratio 100
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Fig. 12 Numerically
computed monotonicity
regions for a layered medium
with the O(0)-method.
H = homogeneous;
L2 = layered with conductivity
ratio 2, layers aligned with the
j-lines and i-lines, respectively;
L100 = layered with
conductivity ratio 100
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sufficient monotonicity regions determined by the local criteria of Theorem 3.
As before, the monotone regions are above the curves in question. The regions
of Fig. 11 may be compared to the monotonicity regions of Fig. 12. Here, the
curves are determined by verifying Property MD on a 19 × 19 grid.

As seen from Fig. 11, the local criteria reveal a significant difference in the
monotonicity regions for the O(0)-method when the difference in conductivities
in the layers is increased. A similar, but weaker difference in the monotonicity
regions is seen in Fig. 12.

The increasing difference in conductivity in the layers makes the solution
of the potential differ from the homogeneous case. Due to the preferred flow
pattern which high-conductive layers create, the flow within a high-conductive
layer will be less affected by the low-conductive cells. The cell stencil will for
cells in these layers be dominated by the elements of the three cells which have
the largest conductivity. Cells in low-conductive layers will still be affected by
the high-conductive cells, and the monotonicity will be lost for combinations
of grid skewness and grid aspect ratio. The curves for the two cases of lay-
ered media show the combined monotonicity behavior of the high- and low-
conductive layers.

The monotonicity regions are somewhat larger for layers aligned with the
i-lines compared to layers aligned with the j-lines. This is explained by the fact
that a/b < 1 such that the aspect ratios imply thinner cell cross sections in the
i-direction. The application of the criteria and the numerical tests then suggest
that the discretization is somewhat more robust when the layers are aligned
with the longest edges of the grid cells.

6.3 Heterogeneous cases on nonuniform grids

One strength of the monotonicity criteria of Theorem 3 lies in their determina-
tion of problem areas in the grid/medium, for which violation of monotonicity
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Fig. 13 Localization of
regions of nonmonotonicity;
O(0)-method

Fig. 14 Quadrilateral with
associated parallelogram.
Center evaluation

may be detected. This is illustrated in Fig. 13, where the criteria of Theorem 3
have been applied to a case where the grid is forced to adapt to an inner edge,
and where the medium is homogeneous. The grid is specified as a 14 × 14 grid
on a domain [0, 1] × [0, 0.8] for which the angle between the inner edge and the
x-axis is arctan(4

√
3/5).

Cells for which the a-priori monotonicity criteria are not satisfied are iden-
tified as the darker cells. Note the way the grid is generated here: due to the
structure of the grid, there will exist regions where neighboring cells have a
jump in grid aspect ratio. The combination of skewness and different aspect
ratios then make the criteria fail for grid cells close to the inner edge, and
monotonicity is possibly violated.

We further use the ideas that lead to optimal continuity points for the gener-
alized O(η)-method in Table 1. A general nine-point stencil is obtained for all
grid cells when we a-priori use alternative continuity points based on the opti-
mized points found for homogeneous cases on uniform grids. The continuity
points may be chosen as averages of cellwise calculated optimized continuity
points η. One possible way is to define an associated parallelogram grid cell for
each physical grid cell, which corresponds to a transformation to computational
space [5]. Such a cell is depicted in Fig. 14. These parallelograms and associated
conductivities provide local parameters a, b and c for each grid cell, as defined
by Eq. (44), and will in general be different from cell to cell. The application
of the local criteria for this discretization gave no violation of the monoto-
nicity criteria. Note, however, that there in general is no guarantee that the
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Fig. 15 Quadrilateral with
associated parallelogram.
Corner evaluation

Fig. 16 Local oscillation due
to violation of monotonicity
criteria. Source located in cell
where criteria are violated and
medium heterogeneity occurs

u

monotonicity will be improved by this simple choice of continuity point. When
applied to more general cases of skewness and heterogeneity, a more detailed
analysis must be done to choose improved points in terms of monotonicity.

An alternative construction of an associated parallelogram is shown in Fig. 15.
Here, the parallelogram is determined by the edges of the corner at the center
of the interaction region, yielding one set of parameters a, b and c for each
subcell [4,13].

The above case may be generalized to include discontinuous conductivity. A
case where corner discontinuities arise is created by letting the 7×7 subdomain
in the top right corner of the medium depicted in Fig. 13 have conductivity
K = diag(10−4, 10−2), whereas the remaining cells have conductivity K = I.
The cells in the subdomain with anisotropic conductivity will no longer have
the a-priori monotonicity criteria satisfied. When sources are located in cells
in this region, we may observe large oscillations in the potential, applying the
O(0)-method. This is depicted in Fig. 16, where a source is located in cell (12, 8),
and the numerical potential is clearly nonphysical.

In Fig. 17, a source has been inserted in cell (8, 2) which is away from the
subdomain where the monotonicity criteria are violated. No oscillations in the
potential solution are observed here. These two different source locations illus-
trate the effect which the nonlinearity of the potential can have on oscillations.
In regions where the potential is almost linear, oscillations may not arise due to
the fact that the methods are exact for linear potential fields.

It should be noted that the observed oscillations are largest in cells for which
the monotonicity criteria are violated, and where in addition the local medium
heterogeneities occur.
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Fig. 17 Source away from
cells where criteria are
violated. Oscillations are not
observed

u

7 Discussion

This paper discusses a-priori criteria for monotonicity of discretization meth-
ods where the discretizations do not yield M-matrices, but general nine-point
cell stencils. The criteria may be used locally in the grid, and allow for general
geometry, heterogeneity and anisotropy.

The a-priori monotonicity criteria are not satisfied unconditionally for dis-
cretization methods which reproduce linear potential fields exactly and have
local conservation.

The local monotonicity criteria have good potential as an aid for grid
generation.

The fact that the seven-point stencil yields the optimal monotonicity region
in the case of homogeneous medium and uniform grid, indicates that fewer grid
cells in the cell stencil may give better monotonicity properties. For general
cases, modified transmissibility calculations can possibly be performed, based
on interaction of fewer grid cells. This is a topic for future research.

Appendix: Flux expressions for the general O-method

In this appendix, we derive the flux expressions of the general O(η)-method in
the case of homogeneous medium and uniform parallelogram grid. The deri-
vation is done for a general location of the continuity points of the potential.
As before, the parameter η, defined as the fraction of the cell half-edge from
the boundary of the interaction region, is used to describe the location of the
continuity points. The case η = 0 has been derived before [1], and the case
below with a general η ∈ [0, 1) follows that derivation closely.

As in [1], we construct around each corner of the grid an interaction region
shown by the dashed line in Fig. 18. The fluxes through the half edges in the
interaction region are determined by applying linear potentials in each subcell.
The flux is required to be continuous, and the potential is required to be con-
tinuous at the continuity points x̄k, k = 1, 2, 3, 4. The flux through a half edge
with normal vector ni is [1]

fi = − 1
Tj

∑
k=k1,k2

nT
i Kjνj,k(ūk − uj). (68)
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Fig. 18 Local numbering in
the interaction region

x1 x2

x3 x4

x1

x2x3 x4

Fig. 19 Vectors of cell 1

Here, uj is the potential at the cell center xj, and ūk is the potential at continuity
point x̄k. Further, νj,k are the inner normal vectors of the triangle spanned by the
cell center and the continuity points, see Fig. 19, and Tj is twice the area of this
triangle. For cell 1, shown in Fig. 19, where k1 = 1 and k2 = 3, these vectors are

ν1,1 = 1
2 (a1 − ηa2), ν1,3 = 1

2 (a2 − ηa1), (69)

where, as before, ai are the normal vectors of the parallelogram cell, having
length equal to the length of the edges, see Fig. 3. The area Tj is for uniform
grids independent of the cell index j. Introducing the “cross-product” matrix

R =
[

0 1
−1 0

]
, (70)

this area is
T = νT

1,1Rν1,3 = 1
4 aT

1 Ra2(1 − η2) = 1
4 V(1 − η2), (71)

where V is the area of the parallelogram cell. Hence, the flux through the edge
at x̄1 in Fig. 19 is

f1 = − 4
V(1 − η2)

[
aT

1

2
K

a1 − ηa2

2
(ū1 − u1)

+ aT
1

2
K

a2 − ηa1

2
(ū3 − u1)

]

= − 1
1 − η2 [(a − ηc)(ū1 − u1) + (c − ηa)(ū3 − u1)], (72)
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where the quantities a, b and c are defined in (44). By the same procedure, we
may construct all the fluxes through the half edges of the interaction region
of Fig. 18. Equating the fluxes of each edge, the following system of equations
appears,

(1 − η2)f1 = −(a − ηc)(ū1 − u1) − (c − ηa)(ū3 − u1)

= (a + ηc)(ū1 − u2) − (c + ηa)(ū4 − u2),

(1 − η2)f2 = (a − ηc)(ū2 − u4) + (c − ηa)(ū4 − u4)

= −(a + ηc)(ū2 − u3) + (c + ηa)(ū3 − u3),

(1 − η2)f3 = −(c + ηb)(ū2 − u3) + (b + ηc)(ū3 − u3)

= −(c − ηb)(ū1 − u1) − (b − ηc)(ū3 − u1),

(1 − η2)f4 = (c + ηb)(ū1 − u2) − (b + ηc)(ū4 − u2)

= (c − ηb)(ū2 − u4) + (b − ηc)(ū4 − u4). (73)

The equations to the right in this system may be written Av = Bu, where
v = [ū1, ū2, ū3, ū4]T and u = [u1, u2, u3, u4]T. Introducing the 2 × 2 identity
matrix I and the 2 × 2 matrices

E =
[

1 1
1 1

]
, F =

[
1 −1

−1 1

]
, (74)

the matrix A reads

A =
[

2aI cF − ηaE
cF − ηbE 2bI

]
. (75)

Further,

B = (1 − η)

⎡
⎢⎢⎣

a + c a − c 0 0
0 0 a − c a + c

b + c 0 b − c 0
0 b − c 0 b + c

⎤
⎥⎥⎦ . (76)

The inverse of the matrix A is

A−1 =

⎡
⎢⎢⎢⎣

1
2a

I + c2

4a(ab − c2)
F − c

4(ab − c2)
F

− c
4(ab − c2)

F
1

2b
I + c2

4b(ab − c2)
F

⎤
⎥⎥⎥⎦

+ η

1 − η2

⎡
⎢⎢⎢⎣

η

4a
E

1
4b

E

1
4a

E
η

4b
E

⎤
⎥⎥⎥⎦ . (77)
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Thus, v = A−1Bu, where

A−1B = 1
4

⎡
⎢⎢⎣

2 − η 2 − η η η

η η 2 − η 2 − η

2 − η η 2 − η η

η 2 − η η 2 − η

⎤
⎥⎥⎦

+ c
4a(1 + η)

⎡
⎢⎢⎣

1 −1 −1 1
1 −1 −1 1
η −η −η η

η −η −η η

⎤
⎥⎥⎦ + c

4b(1 + η)

⎡
⎢⎢⎣

η −η −η η

η −η −η η

1 −1 −1 1
1 −1 −1 1

⎤
⎥⎥⎦ . (78)

The equations to the left in the system of Eqs. (73) may be written f = Cv+Du,
where f = [f1, f2, f3, f4]T. Here,

C = 1
1 − η2

⎡
⎢⎢⎣

−(a − ηc) 0 −(c − ηa) 0
0 a − ηc 0 c − ηa
0 −(c + ηb) b + ηc 0

c + ηb 0 0 −(b + ηc)

⎤
⎥⎥⎦ (79)

and

D = 1
1 + η

⎡
⎢⎢⎣

a + c 0 0 0
0 0 0 −(a + c)
0 0 −(b − c) 0
0 b − c 0 0

⎤
⎥⎥⎦ . (80)

Hence, the fluxes through the half edges of the interaction region have the form
f = Tu, where

T = {τi,j} = CA−1B + D

= 1
2(1 + η)

⎡
⎢⎢⎣

a −a 0 0
0 0 a −a
b 0 −b 0
0 b 0 −b

⎤
⎥⎥⎦

+ 1
4(1 + η)

⎡
⎢⎢⎣

c − c2/b c + c2/b −c + c2/b −c − c2/b
c + c2/b c − c2/b −c − c2/b −c + c2/b
c − c2/a −c + c2/a c + c2/a −c − c2/a
c + c2/a −c − c2/a c − c2/a −c + c2/a

⎤
⎥⎥⎦

+ η

4(1 + η)

⎡
⎢⎢⎣

a + c −(a − c) a − c −(a + c)
a + c −(a − c) a − c −(a + c)
b + c b − c −(b − c) −(b + c)
b + c b − c −(b − c) −(b + c)

⎤
⎥⎥⎦ . (81)

Having found the fluxes of the half edges, we may express the fluxes through
the entire edges by adding the half-edge fluxes. Numbering the cells as in Fig. 1,
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the fluxes through the right and the top edges of the central cell in Fig. 1 are

f1 = (τ1,1 + τ2,3)u1 + (τ1,2 + τ2,4)u2 + τ1,4u3 + τ1,3u4 + τ2,1u8 + τ2,2u9

= 1
4(1 + η)

[(
a(4 + 2η) − 2c2

b

)
(u1 − u2) −

(
c(1 + η) + c2

b
+ ηa

)
(u3 − u8)

−
(

c(1 + η) − c2

b
− ηa

)
(u4 − u9)

]
(82)

and

f2 = (τ3,1 + τ4,2)u1 + (τ3,3 + τ4,4)u4 + τ4,3u5 + τ4,1u6 + τ3,2u2 + τ3,4u3

= 1
4(1 + η)

[(
b(4 + 2η) − 2c2

a

)
(u1 − u4) −

(
c(1 + η) − c2

a
− ηb

)
(u2 − u5)

−
(

c(1 + η) + c2

a
+ ηb

)
(u3 − u6)

]
, (83)

respectively. The expressions (82) and (83) may be compared with the expres-
sions (55). Thus, we find for the general O(η)-method,

α = abη + c2

2b(1 + η)
, β = abη + c2

2a(1 + η)
. (84)

Adding these expressions, we get

γ = α + β = abη + c2

d(1 + η)
, (85)

where, as before, d = 2ab/(a + b). The expression (85) is used in Table 1.
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