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Abstract In this paper we consider, in dimension d ≥ 2, the standard P1 finite
elements approximation of the second order linear elliptic equation in diver-
gence form with coefficients in L∞(�) which generalizes Laplace’s equation.
We assume that the family of triangulations is regular and that it satisfies an
hypothesis close to the classical hypothesis which implies the discrete maxi-
mum principle. When the right-hand side belongs to L1(�), we prove that the
unique solution of the discrete problem converges in W1,q

0 (�) (for every q with
1 ≤ q < d

d−1 ) to the unique renormalized solution of the problem. We obtain
a weaker result when the right-hand side is a bounded Radon measure. In the
case where the dimension is d = 2 or d = 3 and where the coefficients are
smooth, we give an error estimate in W1,q

0 (�) when the right-hand side belongs
to Lr(�) for some r > 1.
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0 Introduction

In this paper we consider the P1 finite elements approximation of the boundary
value problem {−div A ∇ u = f in �,

u = 0 on ∂�,
(0.1)

where � is an open bounded set of R
d, with d ≥ 2, A is a coercive matrix

with coefficients in L∞(�) and f belongs to L1(�). This type of problem often
arises in applications, as for example in the modelling of heat transfer and of
turbulence. Then in general f is an energy dissipated by the system. The fact
that f belongs to L1(�) is the outstanding feature of the present paper.

For this problem the standard P1 finite elements approximation, namely


uh ∈ Vh ,

∀vh ∈ Vh ,
∫
�

A ∇ uh ∇ vh dx = ∫
�

f vh dx , (0.2)

where

Vh = {vh ∈ C0(�) : ∀T ∈ Th , vh|T ∈ P1, vh|∂� = 0} , (0.3)

has a unique solution, since the right-hand side
∫
�

f vh dx is correctly defined
for f ∈ L1(�).

However one cannot hope that the solution of (0.2) converges in H1
0(�) to

the solution u of (0.1), since the solution of (0.1) does not belong to H1
0(�)

for a general right-hand side in L1(�). Actually, in order to correctly define the
solution of (0.1), one has to consider a specific framework, the concept of renor-
malized solution (or equivalently of entropy solution). The definitions of these
solutions (see Sect. 1 below) have been respectively introduced by Lions and
Murat [19] and by Bénilan et al. [2]. These definitions allow one to prove that
in this new sense problem (0.1) is well posed in the terminology of Hadamard,
namely that the solution of (0.1) exists, is unique, and depends continuously on
the right-hand side f .

Using the ideas which are at the root of the definition of renormalized solu-
tion, we are able to prove in the present paper (Theorem 1.3) that the unique
solution uh of (0.2) converges to the unique renormalized solution u of (0.1) in
the following sense{

uh → u strongly in W1,q
0 (�),

�h (Tk(uh)) → Tk(u) strongly in H1
0(�),

(0.4)

for every q with 1 ≤ q < d
d−1 and for every k > 0, where �h is the usual

Lagrange interpolation operator in Vh and where Tk is the usual truncation at
height k.



Finite elements approximation of equations with right-hand side in L1 339

To prove (0.4), we assume that the family of triangulations is regular in the
sense of Ciarlet [8], and that it satisfies an assumption which is close to the
assumption which is usually made to ensure that the discrete maximum prin-
ciple holds true. More precisely, denoting by ϕi the basis functions of Vh, we
assume that the matrix with coefficients Qij defined by

Qij =
∫
�

A ∇ ϕi ∇ ϕj dx

is a diagonally dominant matrix (hypothesis (1.17)). This allows us to prove
(Proposition 3.1) that the solution uh of (0.2) satisfies

α

∫
�

|∇�h(Tk(uh))|2 dx ≤ k ‖f‖L1(�),

for every h and every k > 0. This is the main estimate of the present paper.
The assumption that Q is a diagonally dominant matrix is unfortunately a

restriction on the coercive matrices A with L∞(�) coefficients and on the tri-
angulations Th of �. In the case of Laplace’s operator, we recall in Sect. 6 the
classical result (see e.g. Ciarlet and Raviart [9]) which asserts that this condition
is satisfied when every inner angle of every d-simplex of the triangulations Th is
acute. We also show in that section that Q is a diagonally dominant matrix for
an adequate regular family of triangulations when the matrix A is of the form

A(x) = a(x)C + E(x),

where

a ∈ L∞(�), a.e. x ∈ �, a(x) ≥ α > 0,

C is a symmetric coercive matrix with constant coefficients,

E ∈ L∞(�)d×d with ‖E‖L∞(�)d×d sufficiently small.

In Sect. 5 we complete the main result of the present paper, namely the
convergence of uh to u in the sense of (0.4), by the error estimate (Theorem 5.1)

‖uh − u‖
W1,q

0 (�)
≤ C h2(1− 1

r ) ‖f‖Lr(�),

when d = 2 or d = 3, when f belongs to Lr(�) with 1 < r < 2 and when the
coefficients of the matrix A are smooth.

Some other error estimates have been obtained previously in similar settings.
Scott [23] derived error estimates for finite element approximations of general
elliptic problems with singular data in norms of order lower than the elliptic
norms. In particular, when the datum is a Dirac distribution in a plane domain,
he proved an error estimate of order h in the L2 norm. Also Clain [10] ob-
tained by duality arguments error estimates in fractional Sobolev norms for the
Laplace operator in a plane convex domain with bounded Radon measure data.
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In Sect. 4 we consider the case where f is a bounded Radon measure. We
prove that for a subsequence (still denoted by h) the unique solution uh of (0.2)
converges to a solution u of




∀ q with 1 ≤ q < d
d−1 , u ∈ W1,q

0 (�),

∀ k > 0, Tk(u) ∈ H1
0(�),

−div A ∇ u = f in D′(�),

(0.5)

in the following sense (compare with (0.4))

{
uh ⇀ u weakly in W1,q

0 (�),

�h (Tk(uh)) ⇀ Tk(u) weakly in H1
0(�),

(0.6)

for every q with 1 ≤ q < d
d−1 and for every k > 0. In general it is not known

whether the solution of (0.5) is unique or not. When this solution is unique (this
is the case if ∂� is smooth and if d = 2 and/or if the coefficients of the matrix A
are smooth), the whole sequence converges. We therefore obtain in this context
a result which is similar to the result recently obtained in dimension d = 2 by
Gallouët and Herbin [17].

0.1 Notation

In the present paper, � denotes an open bounded subset of R
d with d ≥ 2. A

particular case is the case where � is an open bounded polyhedron.
We use the notation A v w for the scalar product of the vector A v by the

vector w (which is often denoted by tw · A v).
For a measurable set S ⊂ �, we denote by |S| the measure of S, by Sc the

complement �\S of S, and by χs the characteristic function of S.
For 1 < p < +∞, we denote by W1,p(�) the standard Sobolev space

W1,p(�) = {u ∈ Lp(�) : ∇ u ∈ Lp(�)d},

equipped with the norm

‖u‖W1,p(�) = (‖u‖p
Lp(�) + ‖∇ u‖p

Lp(�)d
)1/p ,

and by W1,p
0 (�) the closure in W1,p(�) of C∞

c (�), the space of those C∞ func-

tions whose support is compact and contained in�. Since� is bounded, W1,p
0 (�)

will be equipped with the equivalent norm

‖u‖
W1,p

0 (�)
= ‖∇ u‖Lp(�)d .
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We denote by W−1,p′
(�), with p′ = p

p−1 , the dual of W1,p
0 (�), and when p = 2,

we denote as usual

H1(�) = W1,2(�), H1
0(�) = W1,2

0 (�) and H−1(�) = W−1,2(�).

We denote by Mb(�) the space of Radon measures on�with total bounded
variation, also called the space of bounded Radon measures.

For every r with 1 < r < +∞, we denote by Lr,∞(�) the Marcinkiewicz
space whose norm is defined by

‖v‖Lr,∞(�) = sup
λ>0

(λ |{x ∈ � : |v(x)| ≥ λ}|1/r). (0.7)

For every real number k > 0 we define the truncation Tk : R → R by

Tk(s) =



s if |s| ≤ k,

k
s
|s| if |s| ≥ k.

1 Setting of the problem and main result

We consider a matrix A such that

A ∈ L∞(�)d×d, (1.1)

a.e. x ∈ �, ∀ ξ ∈ R
d, A(x)ξξ ≥ α|ξ |2, (1.2)

for some α > 0, and a right-hand side f such that

f ∈ L1(�). (1.3)

Let us recall the definition of the renormalized solution of the problem

{−div A ∇ u = f in �,

u = 0 on ∂�.
(1.4)

Definition 1.1 A function u is a renormalized solution of (1.4) if u satisfies

u ∈ L1(�) , (1.5)

∀ k > 0 , Tk(u) ∈ H1
0(�) , (1.6)

lim
k→∞

1
k

∫
�

|∇Tk(u)|2 dx = 0 , (1.7)
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


∀ k > 0, ∀ S ∈ C1
c(R) with supp S ⊂ [−k, +k],

∀ v ∈ H1
0(�) ∩ L∞(�) ,∫

�

A ∇ Tk(u)∇ v S(u)dx + ∫
�

A ∇ Tk(u)∇ Tk(u) S′(u) v dx

= ∫
�

f S(u) v dx .

(1.8)

In (1.8) every term makes sense since Tk(u) belongs to H1
0(�). Equation

(1.8) is the correct way to write the result which is obtained formally when
using v S(u) as test function in (1.4).

It is easy to see that when f belongs to L1(�) ∩ H−1(�), the usual weak
solution of (1.4), namely




u ∈ H1
0(�),

∀v ∈ H1
0(�),

∫
�

A ∇ u ∇ v dx = ∫
�

f v dx,
(1.9)

is also a renormalized solution of (1.4) and conversely.
The above definition of renormalized solution was introduced by Lions and

Murat [19] (see also [11,21,22]). Two others definitions of solutions, the entropy
solution and the solution obtained as limit of approximations, were introduced
at the same time respectively by Bénilan et al. [2] and by Dall’Aglio [12]. The
three definitions can be proved to be equivalent (see e.g. [11]), and they can
actually be given for monotone operators acting in W1,p

0 (�). In the linear case
considered in the present work, the three definitions are also equivalent to the
definition of solution by transposition introduced in 1969 by Stampacchia [25]
(see e.g. [11]).

The main interest of the definition of renormalized solution is the following
existence, uniqueness and continuity theorem.

Theorem 1.2 Assume that A and f satisfy (1.1), (1.2) and (1.3). Then there exists
a renormalized solution of (1.4). This solution is unique. Moreover this unique
solution belongs to W1,q

0 (�) for every q with 1 ≤ q < d
d−1 . It depends continu-

ously on the right-hand side f in the following sense: if f ε is a sequence which
satisfies

f ε → f strongly in L1(�),

when ε tends to zero, then the sequence uε of the renormalized solutions of
(1.4) for the right-hand sides f ε satisfies for every k > 0 and for every q with
1 ≤ q < d

d−1
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Tk(u
ε) → Tk(u) strongly in H1

0(�),

uε → u strongly in W1,q
0 (�),

when ε tends to zero, where u is the renormalized solution of (1.4) for the
right-hand side f . Finally, if f1 and f2 belong to L1(�), and if u1 and u2 are
the renormalized solutions of (1.4) for the right-hand sides f1 and f2, then for
every k > 0, the function Tk(u1 − u2) belongs to H1

0(�) and for every q with
1 ≤ q < d

d−1 one has

α‖Tk(u1 − u2)‖2
H1

0 (�)
≤ k ‖f1 − f2‖L1(�),

‖u1 − u2‖W1,q
0 (�)

≤ C1(d, |�|, q)
1
α

‖f1 − f2‖L1(�), (1.10)

where the constant C1(d, |�|, q) only depends on d, |�| and q.

Now we consider a family of triangulations Th satisfying for each h > 0 the
following assumption:



the triangulation Th is made of a finite number
of closed d-simplices T (namely triangles when d = 2,
tetrahedra when d = 3, etc.) such that:

(i) �h = ∪{T : T ∈ Th} ⊂ �,

(ii) for every compact set K with K ⊂ �, there exists
h0(K) > 0 such that K ⊂ �h for every h with h < h0(K),

(iii) for T1 and T2 of Th with T1 
= T2, one has |T1 ∩ T2| = 0,

(iv) every face of every T of Th is either a subset of ∂�h,
or a face of another T ′ of Th.

(1.11)

Note that because of (iv) the triangulations are conforming. A particular case
is the case where � is a polyhedron of R

d, and where �h coincides with � for
every h.

The vertices of the d-simplices T of Th are denoted by ai. There are interior
and boundary vertices, namely vertices which belong to

◦
�h and vertices which

belong to ∂�h. We denote by I the set of indices corresponding to interior
vertices and by B the set of indices corresponding to boundary vertices.

For every T ∈ Th, we denote by hT the diameter of T and by ρT the diameter
of the ball inscribed in T. We set

h = sup
T∈Th

hT , (1.12)

and we assume that h tends to zero. We also assume that the family of triangula-
tions Th is regular in the sense of Ciarlet [8], namely that there exists a constant
σ such that
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∀ h, ∀ T ∈ Th,
hT

ρT
≤ σ . (1.13)

On every triangulation Th, we define the space Vh of those continuous func-
tions which are affine on each d-simplex of Th and which vanish on �\ ◦

�h,
namely

Vh = {vh ∈ C0(�) : vh = 0 in �\ ◦
�h, ∀T ∈ Th, vh|T ∈ P1}. (1.14)

One has

Vh ⊂ H1
0(�).

For every (interior or boundary) vertex ai of Th, i.e. for every i ∈ I ∪ B, we
define the function ϕi by

{
ϕi ∈ C0(�h), ϕi|T ∈ P1 for every T ∈ Th,

ϕi(ai) = 1, ϕi(aj) = 0 for every vertex aj of Th with aj 
= ai.

One has

∑
i∈I∪B

ϕi = 1 in �h. (1.15)

When ai is an interior vertex, i.e. when i ∈ I, then the function ϕi belongs to
H1

0(
◦
�h), and extending ϕi by zero to �\ ◦

�h, we obtain a function of Vh, still
denoted by ϕi. The functions ϕi, i ∈ I, are a basis of the space Vh.

We define the interpolation operator �h by

{∀v ∈ C0(�) with v = 0 in �\ ◦
�h,

�h(v) ∈ Vh, (�h(v))(ai) = v(ai) for every vertex ai of Th,

or equivalently by

�h(v) =
∑
i∈I

v(ai) ϕi.

For all interior vertices ai and aj of Th, i.e. for every i and j of I, we define the
real number

Qij =
∫
�

A ∇ ϕi ∇ ϕj dx; (1.16)
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this defines an I × I matrix Q. The main assumption of the present paper is that
Q satisfies

∀ i ∈ I, Qii −
∑

j∈I
j 
=i

|Qij| ≥ 0. (1.17)

In other words, Q is assumed to be a diagonally dominant matrix. This
assumption is close to the usual assumption which ensures that the discrete
maximum principle holds true (see Remark 6.2 below). We present in Sect. 6
some examples where assumption (1.17) is satisfied.

For every triangulation Th, we consider the solution uh of


uh ∈ Vh ,

∀ vh ∈ Vh ,
∫
�

A ∇ uh ∇ vh dx = ∫
�

f vh dx . (1.18)

Note that the right-hand side of (1.18) makes sense since f belongs to L1(�)
and vh to Vh ⊂ L∞(�). The solution uh of (1.18) exists and is unique.

Our main result is the following.

Theorem 1.3 Assume that A, f and Th satisfy (1.1), (1.2), (1.3), (1.11), (1.12),
(1.13) and (1.17). Then the unique solution uh of (1.18) satisfies for every k > 0
and for every q with 1 ≤ q < d

d−1

�h (Tk(uh)) → Tk(u) strongly in H1
0(�),

uh → u strongly in W1,q
0 (�),

when h tends to zero, where u is the unique renormalized solution of (1.4).

This theorem will be proved in Sect. 3, using the tools that we will prepare
in Sect. 2. In Sect. 4 we will give a variant of this result in the case where f is a
bounded Radon measure, and in Sect. 5 an error estimate when d = 2 or d = 3,
when f belongs to Lr(�) with 1 < r < 2 and when the coefficients of the matrix
A are smooth.

2 Tools

In this section we prove various results which will be used in particular in the
proofs of Theorems 1.3 and 4.1.

The following result is a piecewise P1 variant of a result of Boccardo and
Gallouët [4,5] (see also Bénilan et al. [2]).

Theorem 2.1 Assume that vh ∈ Vh and that vh satisfies

∀ k > 0,
∫
�

|∇�h(Tk(vh))|2 dx ≤ k M, (2.1)
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for some M > 0. Then, for every q with 1 ≤ q < d
d−1

‖vh‖
W1,q

0 (�)
≤ C2(d, |�|, q)M, (2.2)

where the constant C2(d, |�|, q) only depends on d, |�| and q.

Remark 2.2 When d ≥ 3, we will actually prove a result which is stronger than
(2.2), namely

‖vh‖
L

d
d−2 ,∞

(�)
≤ C(d)M, (2.3)

‖∇ vh‖
L

d
d−1 ,∞

(�)d
≤ C(d)M, (2.4)

for a constant C(d) which only depends on d, where Lr,∞(�) denotes the
Marcinkiewicz space whose norm is defined by (0.7). Indeed (2.4) and the
embedding inequality

∀ q, 1 ≤ q < r, ‖ψ‖Lq(�) ≤ C(q, r, |�|) ‖ψ‖Lr,∞(�) (2.5)

immediately imply (2.2). ��

The proof of Theorem 2.1 uses the following lemma.

Lemma 2.3 Let vh ∈ Vh and let k > 0. If for some T ∈ Th there exists y ∈ T with
|vh(y)| ≥ k, then there exists a d-simplex S ⊂ T with |S| = C(d) |T| such that

∀ x ∈ S, |�h(Tk(vh))(x)| ≥ k
2

,

where the strictly positive constant C(d) only depends on d.

Proof Consider T ∈ Th. In order to simplify the notation, in this proof we
denote by ai, i = 0, . . . , d, the vertices of T. Let λi, i = 0, . . . , d, be the barycen-
tric coordinates with respect to the ai’s. Recall that

∀ i, j, i, j = 0, . . . , d, λi ∈ P1, λi(aj) = δij,

∀ x ∈ R
d,

d∑
i=0

λi(x) = 1,

and that T is characterized by

T = {x ∈ R
d : 0 ≤ λi(x) ≤ 1, i = 0, . . . , d}.
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If vh is affine in T and if |vh(y)| ≥ k for some y ∈ T, there exists a vertex, say
a0, where |vh(a0)| ≥ k. We define S as

S =
{

x ∈ T : λ0(x) ≥ 3
4

}
.

Then S is a d-simplex contained in T and similar to T.
Since the function �h(Tk(vh)) is affine in T, it satisfies for every x ∈ T

�h(Tk(vh))(x) =
d∑

i=0

λi(x)�h(Tk(vh))(ai) =
d∑

i=0

λi(x)Tk(vh)(ai),

and therefore one has, for every x ∈ S

|�h(Tk(vh))(x)| =
∣∣∣∣∣∣

d∑
i=0

λi(x)Tk(vh)(ai)

∣∣∣∣∣∣
≥ λ0(x)|Tk(vh)(a0)| −

d∑
i=1

λi(x)|Tk(vh)(ai)|

≥ λ0(x)k −
d∑

i=1

λi(x)k = λ0(x)k − (1 − λ0(x))k ≥ k
2

.

It remains to estimate the measure of S. Let T̂ be the reference unit
d-simplex with vertices â0 = 0 and âi = ei, i = 1, . . . , d, where ei, i = 1, . . . , d, is
the canonical basis of R

d. Let FT be the invertible affine mapping that maps T̂
onto T. Set Ŝ = F−1

T (S). It is easy to check that

Ŝ =
{

x̂ ∈ T̂ : λ̂0(x̂) ≥ 3
4

}
,

and that |S| = |Ŝ|
|T̂| |T| = C(d) |T|, with C(d) = |Ŝ|

|T̂| a constant that depends only

on d. This proves the result. ��

Proof of Theorem 2.1 Sobolev’s theorem asserts that

∀ v ∈ H1
0(�), ‖v‖L2∗

(�) ≤ CS‖∇ v‖L2(�)d ,

where 2∗ = 2d
d−2 if d ≥ 3 (and then CS only depends on d), and where 2∗ is any

real number with 1 ≤ 2∗ < +∞ if d = 2 (and then CS depends on |�|). From
this estimate and (2.1) we deduce that
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∫
�

|�h(Tk(vh))|2∗
dx ≤ C2∗

S


∫
�

|∇�h(Tk(vh))|2 dx




2∗
2

≤ C2∗
S (k M)

2∗
2 . (2.6)

For k > 0, we define the set B(k) by

B(k) =
⋃

{T ∈ Th : ∃ y ∈ T with |vh(y)| ≥ k} .

From Lemma 2.3 we know that for every T ∈ Th, with T ⊂ B(k), there exists
S ⊂ T, with |S| = C(d) |T| and

∀ x ∈ S, |�h(Tk(vh))(x)| ≥ k
2

.

Therefore if T ⊂ B(k)

∫
T

|�h(Tk(vh))|2∗
dx ≥

∫
S

|�h(Tk(vh))|2∗
dx ≥

(
k
2

)2∗

|S| =
(

k
2

)2∗

C(d) |T|,

and so

|B(k)| =
∑

T⊂B(k)

|T| ≤
∑

T⊂B(k)

1

C(d)
(

k
2

)2∗

∫
T

|�h(Tk(vh))|2∗
dx

≤ 1

C(d)
(

k
2

)2∗

∫
�

|�h(Tk(vh))|2∗
dx.

From (2.6) one deduces that

|B(k)| ≤ 1

C(d)
(

k
2

)2∗ C2∗
S (kM)

2∗
2 = (2CS)

2∗

C(d)
M

2∗
2

k
2∗
2

. (2.7)

The inclusion {x ∈ � : |vh(x)| ≥ k} ⊂ B(k) and inequality (2.7) imply that

k
2∗
2 |{x ∈ � : |vh(x)| ≥ k}| ≤ k

2∗
2 |B(k)| ≤ (2CS)

2∗

C(d)
M

2∗
2 ,

which is exactly (2.3) when d ≥ 3, since 2∗
2 = d

d−2 .
For every λ > 0 and for every k > 0 one has

{x ∈ � : |∇ vh(x)| ≥ λ}
= {x ∈ � : |∇ vh(x)| ≥ λ and x ∈ B(k)} ∪
∪ {x ∈ � : |∇ vh(x)| ≥ λ and x ∈ B(k)c},
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and therefore{ |{x ∈ � : |∇ vh(x)| ≥ λ}|
≤ |B(k)| + |{x ∈ � : |∇ vh(x)| ≥ λ and x ∈ B(k)c}|. (2.8)

But B(k)c coincides, up to a set of measure zero, with the union of the d-simplices
T ∈ Th which are not contained in B(k). On such a T, one has |vh(x)| ≤ k, and
therefore �h(Tk(vh))(x) = vh(x) and ∇�h(Tk(vh))(x) = ∇ vh(x). Therefore

|{x ∈ � : |∇ vh(x)| ≥ λ and x ∈ B(k)c}|
= |{x ∈ � : |∇�h(Tk(vh))(x)| ≥ λ and x ∈ B(k)c}|
≤ |{x ∈ � : |∇�h(Tk(vh))(x)| ≥ λ}| ≤ 1

λ2

∫
�

|∇�h(Tk(vh))(x)|2dx.

Going back to (2.8) and using (2.7) and hypothesis (2.1), we have proved that
for every λ > 0 and every k > 0

|{x ∈ � : |∇ vh(x)| ≥ λ}| ≤ (2CS)
2∗

C(d)
M

2∗
2

k
2∗
2

+ k M
λ2 .

Taking k = λ
4

2∗+2 M
2∗−2
2∗+2 we obtain

λ
2 2∗

2∗+2 |{x ∈ � : |∇ vh(x)| ≥ λ}| ≤
(
(2CS)

2∗

C(d)
+ 1

)
M

2 2∗
2∗+2 .

When d ≥ 3, since 2 2∗
2∗+2 = d

d−1 , this is exactly (2.4), which implies (2.2) (see

Remark 2.2). When d = 2, this is an estimate for |∇vh| in L
2 2∗

2∗+2 ,∞
(�), where 2∗

is any finite number, and (2.2) follows from this estimate and from (2.5). ��
The next lemmas show that when vh satisfies (2.1), then �h(Tk(vh)) and

Tk(vh) are close in measure.

Lemma 2.4 Let vh ∈ Vh. For every s and every k with 0 < s < k, the set B(k, s)
defined by

B(k, s) = ∪{T ∈ Th : ∃x ∈ T, ∃y ∈ T, |vh(x)| ≥ k, |vh(y)| ≤ s} (2.9)

satisfies

|B(k, s)| ≤ h2

(k − s)2

∫
�

|∇�h(Tk(vh))|2dx. (2.10)
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Proof Consider T ∈ Th which is contained in B(k, s). Then there exist two
points x and y in T such that

|vh(x)| ≥ k and |vh(y)| ≤ s .

Since vh belongs to P1 in T, it attains its maximum and its minimum on the
vertices. Since −s ≤ vh(y) ≤ s, there are two cases:

(i) If vh(x) ≥ k, then there exist two vertices of T, say ai and aj, such that
vh(ai) ≥ k and vh(aj) ≤ s . Hence
Tk(vh(ai)) = k, Tk(vh(aj)) ≤ s and k − s ≤ Tk(vh(ai))− Tk(vh(aj)).

(ii) If vh(x) ≤ −k, then there exist two vertices of T, say ai and aj, such that
vh(ai) ≤ −k and vh(aj) ≥ −s . Hence
Tk(vh(ai)) = −k, Tk(vh(aj)) ≥ −s and k − s ≤ Tk(vh(aj))− Tk(vh(ai)).

Since the gradient of �h(Tk(vh)) is a constant in T, we have in both cases that

k − s ≤ |Tk(vh(ai))− Tk(vh(aj))| = |�h(Tk(vh(ai)))−�h(Tk(vh(aj)))|
≤ |∇�h(Tk(vh))| |ai − aj| ≤ |∇�h(Tk(vh))| h.

Therefore∫
�

|∇�h(Tk(vh))|2 dx ≥
∫

B(k,s)

|∇�h(Tk(vh))|2 dx ≥ |B(k, s)| (k − s)2

h2 ,

which proves (2.10). ��
Lemma 2.5 Let vh ∈ Vh. For every s and every k with 0 < s < k, one has

Ts(�h(Tk(vh))) = Ts(vh) in B(k, s)c, (2.11)

and

∇ Ts(�h(Tk(vh))) = ∇ Ts(vh) almost everywhere in B(k, s)c. (2.12)

Proof Assertion (2.12) immediately follows from (2.11): indeed, the functions
Ts(vh) and Ts(�h(Tk(vh))) belong to H1(�), the set E = B(k, s)c is measurable
and one has ∇v = 0 a.e. in E for every v ∈ H1(�) and for every measurable set
E when v = 0 a.e. in E.

To prove (2.11) we fix x ∈ B(k, s)c. Let us consider a d-simplex T with x ∈ T.
There are five possibilities.

(i) If vh(x) ≥ k, then for every y ∈ T one has |vh(y)| > s. But actually one
has vh(y) > s, since if there exists y0 ∈ T with vh(y0) < −s, by continuity
there also exists y1 ∈ T with |vh(y1)| < s, a contradiction with |vh(y)| > s
for every y ∈ T. Hence for every y ∈ T

Ts(vh)(y) = s, Tk(vh)(y) > s, �h(Tk(vh))(y) > s, Ts(�h(Tk(vh)))(y) = s,



Finite elements approximation of equations with right-hand side in L1 351

and therefore for every y ∈ T

Ts(�h(Tk(vh)))(y) = Ts(vh)(y), (2.13)

which in particular holds for y = x.
(ii) If vh(x) ≤ −k, the proof is similar to (i).

(iii) If |vh(x)| ≤ s, then for every y ∈ T one has |vh(y)| < k, and therefore

Tk(vh)(y) = vh(y), �h(Tk(vh))(y) = vh(y),

Ts(�h(Tk(vh)))(y) = Ts(vh)(y), (2.14)

which in particular holds for y = x.
(iv) If s < vh(x) < k, we consider some z ∈ T. If |vh(z)| ≥ k, we apply (i) or

(ii) and we obtain (2.13), which holds for every y ∈ T, and in particular
for y = x. If |vh(z)| ≤ s, we apply (iii) and we obtain (2.14), which holds
for every y ∈ T, and in particular for y = x.
It remains to consider the case where s < |vh(z)| < k for every z ∈ T. As
in case (i), by continuity one has actually s < vh(z) < k for every z ∈ T.
Then

Tk(vh)(z) = vh(z), �h(Tk(vh))(z) = vh(z),

and therefore for every z ∈ T

Ts(�h(Tk(vh)))(z) = Ts(vh)(z),

which in particular holds for z = x.
(v) If −k < vh(x) < −s, the proof is similar to (iv). ��

In view of (2.10), |B(k, s)| tends to zero when h tends to zero if estimate (2.1)
holds. The following result is therefore an immediate consequence of Lemmas
2.5 and 2.4.

Proposition 2.6 Assume that vh ∈ Vh and that vh satisfies (2.1). Then for every
s and every k with 0 < s < k, one has

Ts(�h(Tk(vh)))− Ts(vh) → 0 in measure, (2.15)

∇ Ts(�h(Tk(vh)))− ∇ Ts(vh) → 0 in measure, (2.16)

when h tends to zero.

We conclude this section with an analogue in Vh of the fact that in the
continuous case, for every v ∈ H1

0(�) and every k > 0, one has

A ∇ (v − Tk(v))∇ Tk(v) = 0 almost everywhere in �.
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Proposition 2.7 Under assumption (1.17), one has for every vh ∈ Vh and every
k > 0 ∫

�

A ∇ (vh −�h(Tk(vh)))∇�h(Tk(vh))dx ≥ 0. (2.17)

Proof Since

vh =
∑
i∈I

vh(ai) ϕi and �h(Tk(vh)) =
∑
i∈I

Tk(vh)(ai) ϕi,

using the definition (1.16) of Qij, we have

∫
�

A ∇ (vh −�h(Tk(vh)))∇�h(Tk(vh))dx

=
∑
i,j∈I

Qij (vh(ai)− Tk(vh(ai))) Tk(vh(aj)) =
∑
i∈I

Si,

where

Si = Qii (vh(ai)− Tk(vh(ai))) Tk(vh(ai))

+
∑

j∈I
j 
=i

Qij (vh(ai)− Tk(vh(ai))) Tk(vh(aj)).

Fix i ∈ I. If |vh(ai)| ≤ k, then vh(ai)−Tk(vh(ai)) = 0 and Si = 0. If |vh(ai)| > k,
then

(vh(ai)− Tk(vh(ai))) Tk(vh(ai)) = |vh(ai)− Tk(vh(ai))| k.

Since |Tk(vh(aj))| ≤ k for every j, one has

Si ≥ Qii|vh(ai)− Tk(vh(ai))| k −
∑

j∈I
j 
=i

|Qij||vh(ai)− Tk(vh(ai))| k

= |vh(ai)− Tk(vh(ai))| k
(

Qii −
∑
j∈I
j 
=i

|Qij|
)

≥ 0,

owing to hypothesis (1.17). This proves that

∀ i ∈ I, Si ≥ 0,

and therefore (2.17), as desired. ��
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Remark 2.8 Proposition 2.7 asserts that condition (1.17) is a sufficient condition
for (2.17) to hold true for every vh ∈ Vh. Actually (1.17) is also necessary (and
therefore necessary and sufficient) for (2.17) to hold true for every vh ∈ Vh.
Indeed, as seen in the above proof,

∫
�

A ∇ (vh −�h(Tk(vh)))∇�h(Tk(vh))dx

=
∑
i,j∈I

Qij (vh(ai)− Tk(vh(ai))) Tk(vh(aj))

=
∑
i∈I

Qii (vh(ai)− Tk(vh(ai))) Tk(vh(ai))

+
∑
j∈I
j 
=i

Qij (vh(ai)− Tk(vh(ai))) Tk(vh(aj)).

Fixing i ∈ I and taking vh(ai) = k + 1 and vh(aj) = −k sgn(Qij) for every j ∈ I,
j 
= i, proves that (1.17) holds true when (2.17) holds for every vh ∈ Vh. ��

3 Proof of Theorem 1.3

In this section we prove Theorem 1.3.
We first obtain an a priori estimate on the solution uh of (1.18).

Proposition 3.1 Under the assumptions of Theorem 1.3, the solution uh of (1.18)
satisfies for every h > 0 and every k > 0

∫
�

A ∇�h(Tk(uh))∇�h(Tk(uh))dx ≤
∫
�

f �h(Tk(uh))dx. (3.1)

In particular, uh satisfies

α

∫
�

|∇�h(Tk(uh))|2 dx ≤ k ‖f‖L1(�). (3.2)

Proof Since uh ∈ Vh, the function Tk(uh) is continuous and the function
�h(Tk(uh)) belongs to Vh. Using this function as test function in (1.18) we have

∫
�

A ∇ uh ∇�h(Tk(uh))dx =
∫
�

f �h(Tk(uh))dx.
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On the other hand, Proposition 2.7 shows that∫
�

A ∇ (uh −�h(Tk(uh)))∇�h(Tk(uh))dx ≥ 0.

This immediately implies (3.1). From (3.1) and from the coercivity (1.2) of A
one deduces (3.2). ��

Estimate (3.2) is the main estimate of the present paper. By Theorem 2.1, it
implies that uh is bounded in W1,q

0 (�) for every q with 1 ≤ q < d
d−1 . We now

prove the strong convergence of uh in this space.

Theorem 3.2 Under the assumptions of Theorem 1.3, the solution uh of (1.18)
satisfies for every q with 1 ≤ q < d

d−1

uh → u strongly in W1,q
0 (�), (3.3)

when h tends to zero, where u is the unique renormalized solution of (1.4).

Proof Consider a sequence f ε of functions such that

f ε ∈ L2(�), f ε → f strongly in L1(�).

Such a sequence is easily obtained by taking for example f ε = T 1
ε
(f ). Let uεh be

the unique solution of (1.18) for the right-hand side f ε. Then uh − uεh satisfies




uh − uεh ∈ Vh,

∀ vh ∈ Vh,
∫
�

A ∇ (uh − uεh)∇ vh dx = ∫
�

(f − f ε) vh dx.

Applying estimate (3.2) to this problem, we obtain for every k > 0, every h > 0
and every ε > 0

α

∫
�

|∇�h(Tk(uh − uεh))|2 dx ≤ k ‖f − f ε‖L1(�),

which implies by Theorem 2.1 that for every q with 1 ≤ q < d
d−1 , every h > 0

and every ε > 0

‖uh − uεh‖
W1,q

0 (�)
≤ C2(d, |�|, q)

1
α

‖f − f ε‖L1(�). (3.4)

On the other hand, since f ε ∈ L2(�) and since the family of triangulations
Th satisfies (1.11), (1.12) and (1.13), it is well known that for every fixed ε

uεh → uε strongly in H1
0(�), (3.5)
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when h tends to zero, where uε is the unique solution of

{
uε ∈ H1

0(�),

−div A ∇ uε = f ε in D′(�).
(3.6)

Finally, the function uε, which is the unique weak solution of (3.6), is also the
unique renormalized solution in the sense of Definition 1.1 of the problem

{−div A ∇ uε = f ε in �,

uε = 0 on ∂�.
(3.7)

By estimate (1.10) we have

‖uε − u‖
W1,q

0 (�)
≤ C1(d, |�|, q)

1
α

‖f ε − f‖L1(�), (3.8)

for every q with 1 ≤ q < d
d−1 , where u is the unique renormalized solution of

(1.4).
Writing now

‖uh − u‖
W1,q

0 (�)
≤ ‖uh − uεh‖

W1,q
0 (�)

+ ‖uεh − uε‖
W1,q

0 (�)
+ ‖uε − u‖

W1,q
0 (�)

,

and using (3.4), (3.5) and (3.8), we have proved that for every ε > 0 and every
q with 1 ≤ q < d

d−1

lim sup
h→0

‖uh − u‖
W1,q

0 (�)
≤

(
C1(d, |�|, q)+ C2(d, |�|, q)

) 1
α

‖f ε − f‖L1(�).

Taking the limit when ε tends to zero proves (3.3). ��
To complete the proof of Theorem 1.3, it remains to prove that �h(Tk(uh))

converges strongly to Tk(u) in H1
0(�). This is done in the following result.

Proposition 3.3 Under the assumptions of Theorem 1.3, the solution uh of (1.18)
satisfies for every k > 0

�h(Tk(uh)) → Tk(u) strongly in H1
0(�), (3.9)

when h tends to zero.

Proof Fix k > 0. In view of estimate (3.2), we can extract a subsequence (which
depends on k and is still denoted by h) such that for some wk ∈ H1

0(�)

�h(Tk(uh)) ⇀ wk weakly in H1
0(�), (3.10)
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when h tends to zero. By estimate (3.2) and Proposition 2.6, uh satisfies (2.15),
namely

Ts(�h(Tk(uh)))− Ts(uh) → 0 in measure,

when h tends to zero, for every s with 0 < s < k. The convergence (3.10),
the convergence (3.3), the Rellich-Kondrashov’s compactness theorem and the
continuity of the function Ts prove that

Ts(wk) = Ts(u),

for every s with 0 < s < k. Passing to the limit when s tends to k, we obtain
Tk(wk) = Tk(u). But since |�h(Tk(uh))| ≤ k, the convergence (3.10) implies
that |wk(x)| ≤ k, hence Tk(wk) = wk. This yields wk = Tk(u), and since the
limit does not depend on the subsequence, we have proved that

�h(Tk(uh)) ⇀ Tk(u) weakly in H1
0(�), (3.11)

when h tends to zero without extracting a subsequence.
Let us now prove that this convergence is strong.
Lebesgue’s dominated convergence theorem combined with

|f �h(Tk(uh))| ≤ |f | k ∈ L1(�),

with the weak convergence (3.11) and with Rellich–Kondrashov’s compactness
theorem implies that∫

�

f �h(Tk(uh))dx →
∫
�

f Tk(u)dx.

Therefore passing to the limit with respect to h in (3.1) yields

lim sup
h→0

∫
�

A ∇�h(Tk(uh))∇�h(Tk(uh))dx ≤
∫
�

f Tk(u)dx. (3.12)

On the other hand, since u is the renormalized solution of (1.4), it is well
known that one has∫

�

A ∇ Tk(u)∇ Tk(u)dx =
∫
�

f Tk(u)dx , (3.13)

but let us give a proof of (3.13) for completeness.
Take S = ψn in (1.8), where

∀ s ∈ R, ψn(s) = ψ
( s

n

)
,
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with ψ ∈ C1
c(R) a fixed function such that

ψ(s) = 1 if |s| ≤ 1
2

, ψ(s) = 0 if |s| ≥ 1.

Since supp ψn ⊂ [−n, +n], (1.8) reads as

∫
�

A ∇Tn(u)∇v ψn(u)dx +
∫
�

A ∇Tn(u)∇Tn(u) ψ ′
n(u) v dx =

∫
�

f ψn(u) v dx,

where we take v = Tk(u), that belongs to H1
0(�) ∩ L∞(�). We obtain

∫
�

A ∇Tn(u)∇Tk(u) ψn(u)dx +
∫
�

A ∇Tn(u)∇Tn(u) ψ ′
n(u)Tk(u)dx

=
∫
�

f ψn(u)Tk(u)dx.

Since ∇Tk(u) = 0 when |u(x)| ≥ k, we observe that

A ∇Tn(u)∇Tk(u) ψn(u) = A ∇Tk(u)∇Tk(u),

when n ≥ 2k. On the other hand, since |ψ ′
n| ≤ ‖ψ ′‖L∞(R)

n , one has

∣∣∣∣∣∣
∫
�

A ∇Tn(u)∇Tn(u) ψ ′
n(u)Tk(u)dx

∣∣∣∣∣∣
≤ ‖A‖L∞(�)d×d

‖ψ ′‖L∞(R)
n

k
∫
�

|∇Tn(u)|2 dx,

where the right-hand side tends to zero when n tends to infinity owing to (1.7).
Finally by Lebesgue’s dominated convergence theorem

∫
�

f ψn(u)Tk(u)dx →
∫
�

f Tk(u)dx,

when n tends to infinity. This proves (3.13).
From (3.12) and (3.13) we deduce that

lim sup
h→0

∫
�

A ∇�h(Tk(uh))∇�h(Tk(uh))dx ≤
∫
�

A ∇ Tk(u)∇ Tk(u)dx,



358 J. Casado-Díaz et al.

which combined with the weak convergence (3.11) implies the strong conver-
gence (3.9). ��

4 The case where f is a bounded Radon measure

In this section we consider the case where f no longer belongs to L1(�), but
belongs to Mb(�), the space of Radon measures with total bounded variation.
We obtain results which are weaker than in the case where f belongs to L1(�),
but which are still satisfactory in dimension d = 2 and/or when the coefficients
of the matrix A are smooth.

In this section we assume that

f ∈ Mb(�). (4.1)

Then, since Vh is contained in C0(�), uh is still correctly defined by (1.18).
Moreover, the statement and the proof of Proposition 3.1 remain valid with
f ∈ L1(�) replaced by f ∈ Mb(�), the measure f dx replaced by df in (3.1) and
‖f‖L1(�) replaced by ‖f‖Mb(�) in (3.2). With these modifications estimate (3.2)

is satisfied, and therefore by Theorem 2.1, uh is bounded in W1,q
0 (�) for every

q with 1 ≤ q < d
d−1 . So there exist some u and some subsequence, still denoted

by h, such that for every q with 1 ≤ q < d
d−1

uh ⇀ u weakly in W1,q
0 (�), (4.2)

when h tends to zero along this subsequence.
Let v ∈ C∞

c (�). Taking vh = �h(v) in (1.18) yields

∫
�

A ∇ uh ∇�h(v)dx =
∫
�

�h(v)df ,

in which it is easy to pass to the limit when h tends to zero owing to (4.2) and
to the fact that for v ∈ C∞

c (�)

�h(v) → v strongly in W1,∞(�).

Moreover the first part of the proof of Proposition 3.3 remains valid (the fact
that uh is bounded in W1,q

0 (�) is sufficient to obtain wk = Tk(u)) and implies
that for every k > 0 one has

�h(Tk(uh)) ⇀ Tk(u) weakly in H1
0(�),

when h tends to zero along the subsequence for which (4.2) holds.
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We have proved the following Theorem.

Theorem 4.1 Assume that A, Th and f satisfy (1.1), (1.2), (1.11), (1.12), (1.13),
(1.17) and (4.1). Then there exist a subsequence, still denoted by h, and a function
u such that for every k > 0 and for every q with 1 ≤ q < d

d−1 one has

�h(Tk(uh)) ⇀ Tk(u) weakly in H1
0(�), (4.3)

uh ⇀ u weakly in W1,q
0 (�), (4.4)

when h tends to zero along this subsequence, where u satisfies

∀ k > 0, Tk(u) ∈ H1
0(�), (4.5)

∀ q with 1 ≤ q <
d

d − 1
, u ∈ W1,q

0 (�), (4.6)

∀ v ∈ C∞
c (�),

∫
�

A ∇ u ∇ v dx =
∫
�

v df . (4.7)

In (4.7), one can also by density take v ∈ W1,p
0 (�) for every p with p > d.

Let us discuss the assumptions and the results of Theorem 4.1. The hypo-
theses of this theorem are weaker than those of Theorem 1.3, since f is assumed
to belong to Mb(�) and not to L1(�). But the conclusions also are weaker,
since convergences (4.3) and (4.4) are weak and not strong convergences, and
since they take place only for a subsequence. Indeed, when A and/or ∂� are not
smooth, it is not known whether the solution of (4.5), (4.6), (4.7) is unique or
not. This is the main reason why renormalized solutions, entropy solutions and
solutions obtained as limit of approximations were introduced when f ∈ L1(�).
In particular, a counterexample due to Serrin [24] shows that for every q with
1 ≤ q < 2, one can exhibit a coercive matrix Aq with coefficients in L∞(�) and
some function uq 
= 0 such that

{
uq ∈ W1,q

0 (�),

−div Aq ∇ uq = 0 in D′(�).
(4.8)

Note however that in this counterexample q is fixed and that uq does not satisfy
Tk(uq) ∈ H1

0(�) for every k > 0. Observe also that Bénilan and Bouhsiss [3]
showed that for the specific matrix Aq of this counterexample, every solution
of (4.8) which also satisfies Tk(uq) ∈ H1

0(�) for every k > 0 is zero (this does
not prove the uniqueness of the solution of (4.5), (4.6), (4.7), but it is a first step
in this direction).

However there are cases where the solution of (4.6), (4.7) is known to be
unique, and in such cases the whole sequences (and not just subsequences)
converge in (4.3) and (4.4) (this is clear since then the limit u is uniquely
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determined independently of the subsequence). On the one hand, when A has
sufficiently smooth coefficients and when ∂� is sufficiently smooth, the opera-
tor u → −div A ∇ u is an isomorphism from W1,q

0 (�) onto W−1,q(�) for every
q with 1 < q < +∞. Therefore, in this case the solution of (4.6), (4.7) is unique.
On the other hand, the two dimensional case presents some special feature.
Indeed, in view of Meyer’s regularity theorem [20], when ∂� is sufficiently
smooth, the operator u → −div A ∇ u is an isomorphism from W1,q

0 (�) onto
W−1,q(�) for every q with 2 − δ < q < 2 + δ, where δ > 0 only depends on the
dimension d, on the open set �, on the coercivity coefficient α of the matrix A
and on ‖A‖L∞(�)d×d . Therefore since in the two dimensional case q < d

d−1 reads
as q < 2, the solution of (4.6), (4.7) is unique when ∂� is sufficiently smooth.

In the two dimensional case, for Laplace’s operator with a bounded Radon
measure right-hand side, the weak convergence (4.4) of the solution of (1.18) to
the (unique) solution of (4.6), (4.7) has recently been established by Gallouët
and Herbin [17] by a proof based on the similarity between P1 finite elements
and finite volume schemes and on one of their previous results [16] (see also
[14]). The weak convergence (4.4) could also be proved by using the W1,p-esti-
mates of Brenner and Scott [6] in the two following cases: the case where d = 2
and where the matrix A is a general coercive matrix with L∞(�) coefficients,
and the case where d = 3 and where the matrix A has smooth coefficients ;
note that these estimates are established under the assumption that the family
of triangulations is quasi-uniform in the sense of [6].

Let us finally return to the result of Theorem 4.1, which is unsatisfactory for
a general coercive matrix A with L∞(�) coefficients but which has the advan-
tage that its proof is self-contained. If we appeal to the very powerful result
of Aguilera and Caffarelli [1] (we chose not to do so up to now in order to
keep our results self-contained), we can obtain a much more complete result,
namely the fact that in Theorem 4.1, the function u is the unique solution by
transposition of problem (1.4). Indeed Aguilera and Caffarelli [1] claim that
for a coercive matrix A with L∞(�) coefficients (the result is only proved for
Laplace’s operator in [1]), when g ∈ W−1,p(�) for some p > d and when ∂� is
sufficiently smooth, the solution wh of


wh ∈ Vh ,

∀vh ∈ Vh ,
∫
�

tA ∇ wh ∇ vh dx = 〈g, vh〉, (4.9)

satisfies

wh → w in C0,γ (�), (4.10)

for some γ > 0 which depends only on the data of the problem, where w is the
unique solution of {

w ∈ H1
0(�),

−div tA ∇w = g in D′(�).
(4.11)
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This is the discrete analogue of De Giorgi’s regularity theorem. In the setting
of Theorem 4.1, we have, taking vh = wh in (1.18) (with f dx replaced by df )
and vh = uh in (4.9)

∫
�

wh df =
∫
�

A ∇uh ∇wh dx =
∫
�

tA ∇wh ∇uh dx = 〈g, uh〉,

in which it is now easy to pass to the limit in view of (4.10) and of (4.4). This
yields

〈g, u〉 =
∫
�

w df , (4.12)

for every g ∈ W−1,p(�) with p > d, where w is the solution of (4.11). Equation
(4.12) is nothing but Stampacchia’s definition of the solution by transposi-
tion of (1.4) (see [25]). Recall that this solution is unique. Using Aguilera and
Caffarelli’s result, we have thus proved that the function u defined in Theo-
rem 4.1 is the unique solution by transposition of problem (1.4), which implies
that the whole sequences converge in (4.3) and (4.4). This result is much stronger
than Theorem 4.1, whose proof is in contrast self-contained.

5 Error estimate

When f belongs to L1(�), Theorem 1.3 proves the convergence of the finite
element method, but it does not provide any error estimate. In this section we
prove that when � and the coefficients of A are sufficiently smooth, and when
f belongs to Lr(�) (or to the Marcinkiewicz space Lr,∞(�)) with r > 1, then
the argument used in the proof of Theorem 3.2 also provides an error estimate
in dimension 2 and 3.

To simplify the presentation, we assume in this section that either d = 2 or
d = 3, that � is a convex polyhedron, that �h = � for every h > 0, and that
the coefficients of A belong to W1,∞(�). In this case, it is well known that for
every g ∈ L2(�) the unique solution wh of problem (1.18) with right-hand side
g satisfies

‖wh − w‖H1
0 (�)

≤ C h ‖g‖L2(�), (5.1)

where w is the unique weak solution of problem (1.9) with right-hand side g,
and where the constant C > 0 is independent of h and g (but depends on �,
α, ‖A‖W1,∞(�)d×d and on the parameter σ which measures the regularity of the
family of triangulations, see (1.13)).

We also assume in this section that f belongs to the Marcinkiewicz space
Lr,∞(�) for some r with 1 < r < 2 (this holds in particular if f belongs to
Lr(�)). For every ε > 0, we set
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f ε = T 1
ε
(f ),

which belongs to L∞(�) ⊂ L2(�), and we denote by uεh the solution of (1.18)
with right-hand side f ε. Defining also uε as the solution of (3.6), we write for
every q with 1 ≤ q < d

d−1

‖uh − u‖
W1,q

0 (�)
≤ ‖uh − uεh‖

W1,q
0 (�)

+ ‖uεh − uε‖
W1,q

0 (�)
+ ‖uε − u‖

W1,q
0 (�)

. (5.2)

From (5.1) applied to g = f ε, wh = uεh and w = uε, and from the continuous

imbedding of H1
0(�) in W1,q

0 (�), we have for a new constant C (which depends
on q, �, α, ‖A‖W1,∞(�)d×d and σ )

‖uεh − uε‖
W1,q

0 (�)
≤ C h ‖f ε‖L2(�).

Using then (3.4) and (3.8), we deduce that for a new constant C, which is inde-
pendent of ε, h and f (but depends on d, q, �, α, ‖A‖W1,∞(�)d×d and σ ), one
has

‖uh − u‖
W1,q

0 (�)
≤ C

(
‖f − f ε‖L1(�) + h ‖f ε‖L2(�)

)
. (5.3)

We now estimate the right-hand side of this inequality by using the coarea
formula, namely

‖g‖p
Lp(�) = p

+∞∫
0

tp−1 |{x ∈ � : |g(x)| ≥ t}| dt,

which gives




‖f − f ε‖L1(�)=
+∞∫
0

|{x ∈ � : |f (x)− T 1
ε
(f )(x)| ≥ t}| dt

=
+∞∫
0

|{x ∈ � : (|f (x)| − 1
ε
) ≥ t}| dt

=
+∞∫

1
ε

|{x ∈ � : |f (x)| ≥ t}| dt,

(5.4)




‖f ε‖2
L2(�)

= 2
+∞∫
0

t |{x ∈ � : |T 1
ε
(f )(x)| ≥ t}| dt

= 2

1
ε∫

0
t |{x ∈ � : |f (x)| ≥ t}| dt.

(5.5)
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By the definition (0.7) of the norm in the Marcinkiewicz space Lr,∞(�), we
have

|{x ∈ � : |f (x)| ≥ t}| ≤ ‖f‖r
Lr,∞(�)
tr

,

and thus 


‖f − f ε‖L1(�) ≤ 1
r − 1

εr−1 ‖f‖r
Lr,∞(�),

‖f ε‖L2(�) ≤
√

2
2 − r

1

ε1− r
2

‖f‖
r
2
Lr,∞(�).

(5.6)

Then (5.3) gives

‖uh − u‖
W1,q

0 (�)
≤ C

(
1

r − 1
εr−1 ‖f‖r

Lr,∞(�) +
√

2
2 − r

h

ε1− r
2

‖f‖
r
2
Lr,∞(�)

)
.

Taking in this inequality ε = h
2
r

‖f‖Lr,∞(�)
yields, for every q with 1 ≤ q < d

d−1 and

for every h > 0

‖uh − u‖
W1,q

0 (�)
≤ C(d, q, r,�,α, ‖A‖W1,∞(�)d×d , σ)h2(1− 1

r ) ‖f‖Lr,∞(�). (5.7)

We have proved the following result.

Theorem 5.1 Under the assumptions of Theorem 1.3, if we further assume that
either d = 2 or d = 3, that f ∈ Lr,∞(�) for some r with 1 < r < 2, that � is a
convex polyhedron, that �h = � and that the coefficients of the matrix A belong
to W1,∞(�), then we have the error estimate (5.7).

To the best of our knowledge, this estimate is new in the case where r is close
to 1, but also in the case where Lr(�) ⊂ H−1(�). Indeed when r is such that
Lr(�) ⊂ H−1(�), i.e. when r > 1 if d = 2 or when r ≥ 6/5 if d = 3, one can
interpolate between the estimate (5.1) for g ∈ L2(�) and the easy estimate for
g ∈ H−1(�)

‖wh − w‖H1
0 (�)

≤ ‖wh‖H1
0 (�)

+ ‖w‖H1
0 (�)

≤ 2
α

‖g‖H−1(�).

This interpolation yields

‖wh − w‖H1
0 (�)

≤ Cδ h2(1− 1
r )−δ ‖g‖Lr(�) for every δ > 0 if d = 2,

‖wh − w‖H1
0 (�)

≤ C h3( 5
6 − 1

r ) ‖g‖Lr(�) if d = 3.
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If one compares this interpolation estimate with (5.7), the order of convergence
is higher in (5.7) but the norm under consideration is weaker since the space
W1,q

0 (�) is larger than H1
0(�).

To conclude this section let us recall two error estimates obtained in a setting
different of (but related to) the present one. In dimension d = 2 for Laplace’s
equation and f a Dirac mass, Scott [23] proved that for a quasi-uniform family
of triangulations one has

‖uh − u‖L2(�) ≤ Ch,

while in the same setting, when f is a bounded Radon measure, Clain [10]
proved that one has

‖uh − u‖
W1,p

0 (�)
≤ C hs‖µ‖Mb(�),

for every s with 0 < s < 1 and every p with 1 < p < 2
1+s . These estimates are

neither stronger nor weaker than (5.7).

6 Examples of triangulations and matrices

In this section, we present examples of families of triangulations and of matrices
for which all the assumptions of Theorem 1.3, namely (1.1), (1.2), (1.11), (1.12),
(1.13) and (1.17), are satisfied. After some general considerations (which are
standard), we successively consider the case where the matrix A is the identity,
the case of a coercive matrix with constant coefficients, the case where A is the
product of a coercive matrix with constant coefficients by a scalar function, and
finally a pertubation of the latest case.

6.1 General considerations

For every d-simplex T of Th and for every vertex ai of T, we denote in this
section by Fi the face opposite to ai and by ni the exterior (to the d-simplex T)
unit normal to the face Fi.

Our results are based on the following proposition, whose proof is a straight-
forward adaptation of a classical result (for Laplace’s operator see e.g.
Drăgănescu et al. [13] and the references therein).

Proposition 6.1 Assume that the matrix A satisfies (1.1) and (1.2). If the trian-
gulation Th is such that for every T ∈ Th



∀ i ∈ I, ∀ j ∈ I ∪ B, j 
= i,

∑
T∈Th

ai, aj∈T

1
d2

|Fi| |Fj|
|T|2


∫

T

A dx


 ni nj ≤ 0, (6.1)
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then (1.17) is satisfied. In particular, if for every interior vertex ai and every (inte-
rior or boundary) vertex aj of T with aj 
= ai, i.e. for every i ∈ I and j ∈ I ∪ B
with j 
= i, one has


∫

T

A dx


 ni nj ≤ 0, (6.2)

then (1.17) is satisfied.

Proof We give it here for the reader’s convenience.
For this proof we extend the definition (1.16) of Qij, which was given only

for i and j in I, to the case where i and j belong to I ∪ B by setting

∀ i, j ∈ I ∪ B, Qij =
∫
�h

A ∇ ϕi ∇ ϕj dx.

(In (1.16) we did not define Qij for i and/or j in B since these values are not
required in the statement of hypothesis (1.17); these new Qij coincide with the
Qij defined by (1.16) when i and j belong to I.)

First step. Since
∑

j∈I∪B
ϕj(x) = 1 in �h (see (1.15)), one has

∑
j∈I∪B

∇ ϕj(x) = 0 in �h.

For every i ∈ I ∪ B this implies that

∑
j∈I∪B

Qij =
∫
�h

A ∇ ϕi

∑
j∈I∪B

∇ ϕj dx = 0,

and therefore for every i ∈ I

0 =
∑

j∈I∪B

Qij = Qii +
∑

j∈I
j 
=i

Qij +
∑
j∈B

Qij. (6.3)

Observe that for i = j ∈ I, one has

Qii =
∫
�h

A ∇ ϕi ∇ ϕi dx ≥ 0.

If we assume that

∀ i ∈ I, ∀ j ∈ I ∪ B, j 
= i, Qij ≤ 0, (6.4)
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then one has Qij = −|Qij| for every i ∈ I and every j ∈ I ∪ B with j 
= i.
Therefore, for every i ∈ I

Qii −
∑

j∈I
j 
=i

|Qij| = Qii +
∑

j∈I
j 
=i

Qij = −
∑
j∈B

Qij =
∑
j∈B

|Qij| ≥ 0,

which proves that the matrix Q satisfies (1.17) when (6.4) holds.
Second step. Let T be a d-simplex of Th. When ai is a vertex of T, one has

∇ ϕi = − 1
d

|Fi|
|T| ni in T;

indeed ϕi = 0 on Fi, and so ∇ ϕi is orthogonal to Fi; since ϕi(ai) = 1, one has
∇ ϕi = − 1

hi
ni, where hi is the distance of ai to the hyperplane which contains Fi;

finally |T| = 1
d |Fi|hi. Therefore, when both ai and aj are vertices of T, one has

∫
T

A ∇ ϕi ∇ ϕj dx = 1
d2

|Fi| |Fj|
|T|2


∫

T

A dx


 ni nj. (6.5)

On the other hand, when ai and/or aj is not a vertex of T, then ϕi and/or ϕj is
zero on T, and then

∫
T

A ∇ ϕi ∇ ϕj dx = 0.

This implies that for every i and j in I ∪ B, one has




Qij =
∫
�h

A ∇ ϕi ∇ ϕj dx =
∑

T∈Th
ai, aj∈T

∫
T

A ∇ ϕi ∇ ϕj dx

=
∑

T∈Th
ai, aj∈T

1
d2

|Fi| |Fj|
|T|2


∫

T

A dx


 ni nj.

(6.6)

Third step. In view of (6.6), assumption (6.1) is nothing but (6.4) and the first
result of Proposition 6.1 follows from the first step above. On the other hand,
hypothesis (6.2) immediately implies that (6.1) holds true, which proves the
second result of Proposition 6.1. ��
Remark 6.2 The first step of the above proof establishes that (6.4) implies (1.17).
Actually condition (6.4), i.e. Qij ≤ 0 for j 
= i, is also necessary for (1.17) to
hold, at least as far as “strictly interior vertices” ai are concerned.
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Let us indeed define the strictly interior vertices as those vertices ai for which,
for every d-simplex T ∈ Th with ai ∈ T, all the vertices of T are interior vertices.
Since Qij = 0 when j 
= i and when ai and aj do not belong to a same d-simplex
T, one has Qij = 0 for every j ∈ B when ai is a strictly interior vertex; then (6.3)
reads as

0 = Qii +
∑

j∈I
j 
=i

Qij.

But Qij ≥ −|Qij| for every j 
= i and therefore one has

Qii −
∑

j∈I
j 
=i

|Qij| ≤ 0,

when ai is a strictly interior vertex. If (1.17) holds true, we necessarily have for
every strictly interior vertex ai

Qii −
∑

j∈I
j 
=i

|Qij| = 0,

and therefore Qij = −|Qij|, i.e. Qij ≤ 0 for every j 
= i when ai is a strictly
interior vertex.

We have therefore proved that condition (6.4) is a sufficient condition for
(1.17) to hold, and that this condition is necessary and sufficient when ai is a
strictly interior vertex. Let us finally note that (6.1) is equivalent to (6.4), but
that (6.2) is only a sufficient condition for (6.1) to hold. ��

Let us now present some examples of matrices A and of regular families of
triangulations Th for which assumption (1.17) is satisfied.

6.2 The case where A is the identity matrix

Consider first the case where the matrix A is the identity Id, i.e. the case where
the operator is Laplace’s operator −�. Then condition (6.2), which implies
(1.17), is satisfied if and only if

∀ i ∈ I, ∀ j ∈ I ∪ B with j 
= i, ni nj ≤ 0. (6.7)

In the two dimensional case, (6.7) is satisfied if every inner angle of every
triangle is acute, i.e. not larger than π/2. In the three dimensional case, (6.7)
is satisfied if every inner dihedral angle of every tetrahedron is acute. When
d ≥ 4, we will say that the inner angles are acute if ni nj ≤ 0.

We have proved the following well-known result.
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Proposition 6.3 In the d-dimensional case, (1.17) holds for Laplace’s operator if
every inner angle of every d-simplex of Th is acute, i.e. if (6.7) holds.

An example of family of triangulations which enjoys all the properties re-
quired in Sect. 1 for Laplace’s operator is therefore obtained by triangulating
R

d by a regular family of triangulations with acute inner angles, and by taking
for Th the union of the d-simplices T which satisfy T ⊂ �.

For d = 2, one such family of triangulations is obtained by covering R
2 by

squares of vertices (ih, jh) with i, j ∈ Z, and then by subdividing each square
{(x1, x2) : i ≤ x1 ≤ (i + 1)h, j ≤ x2 ≤ (j + 1)h} into 2 triangles along its first or
its second diagonal. Other triangulations (e.g. by equilateral triangles) are of
course possible.

For d = 3, one such family of triangulations is obtained by covering R
3 by

cubes of vertices (ih, jh, kh) with i, j, k ∈ Z, and then by subdividing each cube
{(x1, x2, x3) : ih ≤ x1 ≤ (i + 1)h, jh ≤ x2 ≤ (j + 1)h, kh ≤ x3 ≤ (k + 1)h} into 6
tetrahedra obtained by slicing each cube along the three planes defined in the
cube (0, h)3 by x1 = x2, x2 = x3 and x3 = x1. It is easy to see that condition
(6.7) is satisfied for this subdivision. Other subdivisions of the cube (e.g. the
subdivisions into 6 similar thetrahedra where the diagonal x1 = x2 = x3 of the
cube (0, h)3 is replaced by one of the other four diagonals of the cube, but also
subdivisions into 5 tetrahedra) are also possible.

In order to ensure that (1.17) holds true, one can of course use, in place of
the sufficient condition (6.2), the condition (6.1), which is weaker and almost
necessary (see Remark 6.2). In the two dimensional case, for two given vertices
ai and aj with i ∈ I, j ∈ I ∪ B and j 
= i, there is either no triangle T with ai ∈ T
and aj ∈ T, or ai and aj belong to the same triangle; in this case the edge [ai aj] is
not included in ∂�h and there are exactly two triangles T+ and T− which share
the two vertices ai and aj. When A = Id, condition (6.1) is nothing but




∀ i ∈ I, ∀ j ∈ I ∪ B, j 
= i,

1
22

|F+
i | |F+

j |
|T+| n+

i n+
j + 1

22

|F−
i | |F−

j |
|T−| n−

i n−
j ≤ 0.

(6.8)

Denote by θ+ the inner angle facing the edge [ai aj] in T+ and by h+
i the

distance of ai to the straight line which contains F+
i . Then

|T+| = 1
2
|F+

i |h+
i = 1

2
|F+

i | |F+
j | sin θ+,

n+
i n+

j = cos (π − θ+) = − cos θ+,

1
22

|F+
i | |F+

j |
|T+| n+

i n+
j = −1

2
cos θ+

sin θ+ .
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Therefore if θ− denotes the inner angle facing the edge [ai aj] in T−, condition
(6.8) becomes

−1
2

cos θ+

sin θ+ − 1
2

cos θ−

sin θ− = −1
2

sin (θ+ + θ−)
sin θ+ sin θ− ≤ 0.

Since θ+ and θ− belong to (0,π), (6.8) is equivalent to

∀i ∈ I, ∀j ∈ I ∪ B, i 
= j, θ+ + θ− ≤ π .

In the two dimensional case, we have thus proved the following classical result
(see e.g. Drăgănescu et al. [13] and the references therein).

Proposition 6.4 In the two dimensional case, (1.17) holds for Laplace’s operator
if for every edge [ai aj] of the triangulation which is not included in ∂�h, the sum
of the two inner angles θ+ and θ− facing [ai aj] is not larger than π .

In the case where strictly interior vertics are concerned, the requirement of
Proposition 6.4 is necessary and sufficient for (1.17) to hold (see Remark 6.2).

In the two dimensional case, a triangulation which satisfies the requirement
of Proposition 6.4 is called a Delaunay triangulation, see e.g. Frey and George
[15] or George and Borouchaki [18].

6.3 The case where A is a coercive matrix with constant coefficients

Consider now the case where A is a coercive matrix with constant coefficients.
Then we can always reduce ourselves to the case where A is a symmetric matrix
since for every u

−div A ∇ u = −
∑
k,�

Ak�
∂2u

∂xk∂x�
= −

∑
k,�

Ak� + A�k

2
∂2u

∂xk∂x�

= −div
(

A + tA
2

)
∇ u.

Using an orthonormal change of basis, we write A as

A = tMDDM,

with M an orthogonal matrix and D a diagonal coercive matrix. Then condition
(6.2), which implies (1.17), is satisfied if and only if

∀ i ∈ I, ∀ j ∈ I ∪ B with i 
= j, (DM ni)(DM nj) ≤ 0. (6.9)
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On the other hand, for a triangulation Th, consider the triangulation T̂h
obtained by the change of variables x̂ = D−1M x, namely

T̂h = {T̂ : T̂ = D−1M (T) with T ∈ Th}.
When ai is a vertex of T and ϕi the basis function associated with ai, we define
ϕ̂i on T̂ by

ϕ̂i(x̂) = ϕ̂i(D−1Mx) = ϕi(x) = ϕi(
tMDx̂).

Then ϕ̂i is the basis function associated with âi = D−1Mai, and for every pair of
vertices ai and aj of T, one has, since A = tMDDM

∫
T

A ∇ ϕi ∇ ϕj dx =
∫
T̂

A tMD−1 ∇ϕ̂i
tMD−1 ∇ ϕ̂j |det D| dx̂

= |det D|
∫
T̂

∇ ϕ̂i ∇ ϕ̂j dx̂.

Therefore, in view of (6.5),
(∫

T A dx
)
ninj = |T|A ninj and n̂in̂j have the same

sign.
Actually by the change of variables x̂ = D−1M x, we have transformed the

problem (1.4) into the problem

{−�û = f̂ in �̂,

û = 0 on ∂�̂,

for which we will consider an acute triangulation T̂h of �̂.
We have proved the following result.

Proposition 6.5 In the d-dimensional case, (1.17) holds for a given symmetric
coercive matrix with constant coefficients A = tMDDM if (6.9) holds, or in other
words if every inner angle of every d-simplex of the triangulation T̂h obtained
from Th by the change of variables x̂ = D−1Mx is acute.

6.4 The case where A is the product of a coercive matrix with constant
coefficients by a scalar function, and a perturbation

More generally, consider the case where A is a matrix of the form

A(x) = a(x)C,

where

a ∈ L∞(�), a.e. x ∈ �, a(x) ≥ α,
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for some α > 0 and where C is a symmetric coercive matrix with constant
coefficients, with C = tMDDM as before. Then


∫

T

A dx


 ninj =


∫

T

a(x)C dx


 ninj =


∫

T

a(x)dx


 C ninj

shows that


∫

T

A dx


ninj has the same sign as C ninj = (DM ni)(DM nj).

Therefore every triangulation which satisfies (6.2) for the matrix C also satis-
fies (6.2) for the matrix A = a(x)C, and condition (6.2) is here equivalent to
(6.9). This condition is satisfied if the triangulation obtained by the change of
variables x̂ = D−1Mx has acute inner angles.

Consider finally a (small) perturbation of the previous case, i.e. a matrix A
of the form

A(x) = a(x)C + a(x)E(x), (6.10)

with

a ∈ L∞(�), a.e. x ∈ �, a(x) ≥ α, C = tMDDM,

for some α > 0, where M is some orthogonal matrix and D is some coercive
diagonal matrix, both with constant coefficients. Assume that the triangulation
T̂h obtained by the change of variables x̂ = D−1Mx has strictly δ-acute inner
angles for some δ > 0, in the sense that, for every i ∈ I and every j ∈ I ∪ B with
i 
= j, one has

(DMni)(DMnj) ≤ −δ. (6.11)

Then if

‖E(x)‖L∞(�)d×d ≤ δ,

condition (6.2) is satisfied since
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
∫

T

A dx


 ninj =


∫

T

a(x)dx


 C ninj +


∫

T

a(x)E(x)dx


 ninj

≤

∫

T

a(x)dx


 (DMni)(DMnj)+


∫

T

a(x)dx


 ‖E‖L∞(�)d×d

≤

∫

T

a(x)dx


 (−δ + δ) = 0.

Note also that the matrix A is coercive when ‖E‖L∞(�)d×d is sufficiently small,
since denoting by β > 0 the coercivity coefficient of C, one has for every ξ ∈ R

d

A(x)ξξ = a(x)Cξξ + a(x)E(x)ξξ

≥ a(x)β|ξ |2 − a(x)‖E‖L∞(�)d×d |ξ |2

= a(x)
(
β − ‖E‖L∞(�)d×d

) |ξ |2 ≥ α
β

2
|ξ |2,

when ‖E‖L∞(�)d×d ≤ β/2.

We have proved the following result.

Proposition 6.6 In the d-dimensional case, hypotheses (1.11), (1.12), (1.13) and
(1.17) hold for a matrix A of the form (6.10) and for a family of triangulations
Th when the family of triangulations T̂h obtained by the change of variables
x̂ = D−1M x is regular and has δ-acute inner angles for some δ > 0 (i.e. when the
family of triangulations Th satisfies (6.11)) and when ‖E‖L∞(�)d×d is sufficiently
small.

An example of family of triangulations which enjoys all the properties re-
quired in Sect. 1 for a matrix A of the form (6.10) with ‖E‖L∞(�)d×d sufficiently
small is obtained by triangulating R

d by a regular family of triangulations Th

such that the transformed family of triangulations T̂h has δ-acute inner angles
for some δ > 0, and by taking for Th the union of the d-simplices T which satisfy
T ⊂ �.

Unfortunately, for a general coercive matrix with coefficients in L∞(�), it
is not clear for us whether one can always construct a regular family of trian-
gulations which satisfy (6.2) or (1.17) (recall that (6.2) implies (1.17) but not
conversely).

Let us finally mention that in [7] we will construct in the two dimensional
case a regular family of triangulations for any coercive symmetric matrix A with
L∞(�) coefficients, when the matrix A given by

A(x) =
(

A11(x) A12(x)
A12(x) A22(x)

)
,
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satisfies

|A12(x)| ≤ inf
(

A11(x), A22(x)
)

a.e. x ∈ �.

Acknowledgements The authors thank Michel Crouzeix for a very illuminating discussion. The
present work was made possible by reciprocal visits of the Spanish authors to Paris and of the French
authors to Seville. The authors thank the various institutions which provided the corresponding
financial supports. The research of J. Casado-Díaz was partially supported by the Spanish Ministerio
de Ciencia y Tecnología Grant BFM2002-00672. The research of T. Chacón Rebollo was partially
supported by the Spanish Ministerio de Ciencia y Tecnología Grant BFM2003-07530-C02-01 and
by a Marie Curie Intra-European Fellowship within the 6th European Community Framework
Programme. The research of M. Gómez Marmol was partially supported by the Spanish Ministerio
de Ciencia y Tecnología Grant BFM2003-07530-C02-01.

References

1. Aguilera, N.E., Caffarelli, L.A.: Regularity results for discrete solutions of second order elliptic
problems in the finite element method. Calcolo 23, 327–353 (1986)

2. Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J.L.: An L1-theory of
existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup.
Pisa 22, 241–273 (1995)

3. Bénilan, P., Bouhsiss, F.: Une remarque sur l’unicité des solutions pour l’opérateur de Serrin.
C. R. Acad. Sci. Paris Sér. I 325, 611–616 (1997)

4. Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data.
J. Funct. Anal. 87, 149–169 (1989)

5. Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Comm.
Partial Differ. Equ. 17, 641–655 (1992)

6. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Texts in Applied
Mathematics, vol. 15. Springer, Berlin Heidelberg New York (1994)

7. Casado-Díaz, J., Chacón Rebollo, T., Girault, V., Gómez Mármol, M., Murat, F.: A condition
with ensures the discrete maximum principle for −div A(x)∇ in dimension 2 (to appear)

8. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland, Amsterdam
(1978)

9. Ciarlet, P.G., Raviart, P.A.: Maximum principle and uniform convergence for the finite element
method. Comput. Meth. Appl. Mech. Eng. 2, 17–31 (1973)

10. Clain, S.: Finite element approximations for the Laplace operator with a right-hand side mea-
sure. Math. Models Methods Appl. Sci. 6, 713–719 (1995)

11. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions of elliptic equations
with general measure data. Ann. Scuola Norm. Sup. Pisa 28, 741–808 (1999)

12. Dall’Aglio, A.: Approximated solutions of equations with L1 data. Application to the H-con-
vergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 170, 207–240 (1996)
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