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Abstract For the linear finite element solution to a linear elliptic model prob-
lem, we derive an error estimator based upon appropriate gradient recovery by
local averaging. In contrast to popular variants like the ZZ estimator, our estimator
contains some additional terms that ensure reliability also on coarse meshes. More-
over, the enhanced estimator is proved to be (locally) efficient and asymptotically
exact whenever the recovered gradient is superconvergent. We formulate an adap-
tive algorithm that is directed by this estimator and illustrate its aforementioned
properties, as well as their importance, in numerical tests.
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1 Motivation and introduction

In order to motivate what follows, we start with a remark concerning the standard
residual a posteriori error estimator for anisotropic elliptic problems. Let uS be the
finite element approximation of u satisfying appropriate homogeneous boundary
conditions and

− div(Aε∇u) = f in � ⊂ R
2 (1.1)
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where Aε , ε ∈ (0, 1], is a diagonal matrix with diagonal (ε, 1/ε). We are interested
in the so-called energy norm error ‖∇(uS − u)‖Aε := ‖A1/2

ε ∇(uS −u)‖L2(�). The
standard approach for the explicit residual estimator

η :=
[ ∑

T ∈T
η2

T

]1/2
with η2

T = hT

∫

∂T
| [[Aε∇uS · ν]] |2 + h2

T

∫

T
| f |2 (1.2)

(cf. e.g. [2,3,26] and define the jump appropriately) yields global upper and local
lower bounds such that in particular (suppose f to be piecewise polynomial)

‖∇(uS − u)‖Aε ≤ C1√
ε
η ≤ C2

ε
‖∇(uS − u)‖Aε . (1.3)

Both bounds are essentially sharp; see §6.4. The ratio between left and right hand
side, which essentially equals the condition number 1/ε of A1/2

ε , increases with
decreasing ε. This may be expressed by saying that the estimator η is not robust
with respect to ε ∈ (0, 1). Consequently, stopping the adaptive algorithm when
C1η/

√
ε ≤ tol (with suitably chosen C1) is reliable but maybe quite inefficient

for small ε. The first and second row of Table 1 illustrate the resulting relationship
between CPU time/number of degree of freedoms (DOFs) and tolerance for the
corresponding worst case of ε = 0.1. The symbol ‘∗’ indicates that the correspond-
ing values could not be obtained because of “out of memory”; for more details see
§6.4. The third row is obtained by stopping (and adapting) with the help of the esti-
mator E that is proposed and analyzed in this article. Notice that there is a relevant
improvement for smaller tolerances. This improvement gets particularly important
when the approximate solution of anisotropic equations like (1.1) constitutes an
inner iteration of an infinite-dimensional solver as e.g. in Deuflhard/Weiser [12] or
generalizations of Bänsch/Morin/Nochetto [5].

We derive the estimator E for the model problem and the finite element discret-
ization that are described in §2. Although the model problem is more general, we
shall stick with (1.1) for the rest of this introduction.

Inspired by the superconvergence results in Xu/Zhang [28] and the observed
asymptotic exactness in Carstensen/Bartels [9] for (1.1) with ε = 1, we choose as
main building block ζ of E the estimator in Zienkiewicz/Zhu [29] or, more gen-
erally, the energy norm of GuS − ∇uS where GuS is the continuous outcome of
a gradient recovery procedure operating on the typically discontinuous ∇uS . The
required properties of this smoothing procedure are discussed in §3.1. In particu-
lar, we introduce the notion of local nondeteriorating smoothing procedures and
characterize them with the help of local consistency and stability conditions. The
latter ones are related to those in Ainsworth/Craig [1] or [2, Chapter 4].

Table 1 CPU times (left columns, in seconds) and #DOFs (right columns) that are necessary
to guarantee that the energy norm error is below given tolerances using the standard residual
estimator η/

√
ε and the estimator E of this article

tol 0.5 0.05 0.005 0.001√
10 η 0.19 447 11.3 23 691 1 973 1 658 081 ∗

E 0.05 145 0.8 1 741 79 97 267 1 663 1 524 851
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Since the main building block ζ stems from a post-processing procedure, it
cannot be reliable (see, e.g., §6.1) and thus should not be used in a ‘black box
algorithm’. To remedy without loosing the nice properties of ζ , we propose in
§3.2 to derive an a posteriori estimator for (the relevant part of) the error of the
recovered gradient GuS . To this end, we use a corresponding residual estimator ρ
and an additional term γ that accounts for the fact that GuS in general does not
satisfy the Galerkin orthogonality and that is derived by adapting techniques from
Chen/Wu [11].

We add these terms to the estimator and prove global upper and local lower
bounds in §4 that imply in particular the following counterpart of (1.3):

‖∇(uS − u)‖Aε ≤ E = ζ + C1√
ε
(ρ + γ ) ≤ ‖∇(uS − u)‖Aε + C̃2

ε
‖GuS − ∇u‖Aε

≤ C2

ε2
‖∇(uS − u)‖Aε .

The first two inequalities illustrate the main difference between the a posteriori
analysis in §4 and the preceding ones in Rodriguez [20], Carstensen/Bartels [9],
and Carstensen [8]: the part of the error missed by ζ is treated in such a way that the
estimator consists of a ‘constant-free’ principal part and a not robust but (hopefully)
superconvergent ‘security part’ that also involves some interpolation constant. The
last inequality and its local counterparts, which ensures efficiency regardless of the
concrete quality of GuS , hinge on the fact that the smoothing procedure is locally
nondeteriorating.

In §5 we formulate an adaptive algorithm that takes advantage of the structure
of E in stopping and marking. We apply this algorithm to four test problems in §6
and obtain, in particular, Table 1.

The disadvantages in (1.3) may be also remedied by a posteriori error estimates
on suitable anisotropic elements; see Bernardi/Verfürth [6, §3]. For more general
problems, such an approach requires mesh generation/refining techniques which
are more sophisticated than the bisection algorithm of §5. Nevertheless, it may be
worthwhile combining such techniques with the approach given here.

Constant-free upper bounds have been constructed with the help of infinite-
dimensional local problems. In order to obtain compatible local boundary data,
one can use equilibrated fluxes, see [2,3] and the references therein, or employ
the built-in cancellation of the Galerkin solution with the help of suitable weights;
see Carstensen/Funken [10] and Morin/Nochetto/Siebert [19]. Upper bounds with
constant-free ‘leading’ term have been obtained by Strouboulis/Babuška/Gangaraj
[24] basing upon finite-dimensional local problems with equlibrated fluxes and by
Luce/Wohlmuth [17] with the help of a nonconforming local gradient recovery.
The complementing (local) lower bounds in these approaches involve interpola-
tion constants or require additional computations. If the anisotropic equation (1.1)
is covered, the estimators (or their leading term) are not proved to be robust with
respect to ε ∈ (0, 1).
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2 Model problem and discretization

We start by introducing the linear elliptic model problem and its discretization with
the help of finite elements.

Throughout this article, we denote the norm of a space X by ‖·‖X . For weighted
L2-norms like ‖·‖X = (

∫
D w | · |2)1/2, we write also ‖·‖w;D where w stands for

the weight and D for the domain of integration. The weightw ≡ 1 and the domain
D = � will be often omitted; in particular, ‖·‖ is an abbreviation for ‖·‖L2(�).

2.1 Model problem and assumptions on the data

Let � be a bounded polygonal Lipschitz (in the sense of [7, (1.4.4)]) domain of
the plane R

2. The boundary ∂� is divided into two disjoint parts: 	D for Dirichlet
boundary conditions and 	N for Neumann boundary conditions. The outward nor-
mal vector of ∂� is denoted by n. For convenience, we exclude the pure Neumann
problem by supposing that the Dirichlet part 	D is closed and has strictly positive
length: H1(	D) > 0. The corresponding boundary conditions are given with the
help of the functions v and g satisfying

v ∈ H1(	D) and g ∈ L2(	N). (2.1)

The load term fulfills

f ∈ L2(�). (2.2)

Finally, let the variable coefficients of the linear elliptic operator be given by a
matrix-valued mapping A : � → R

2×2. We suppose that

∀ x ∈ � A(x) is symmetric (2.3a)

and that there are given two continuous functions λ,� : � → R such that

∀ x ∈ �, ξ ∈ R
2 \ {0} 0 < λ(x)|ξ |2 ≤ A(x)ξ · ξ ≤ �(x)|ξ |2. (2.3b)

We define λ� := inf� λ > 0 and�� := sup� � < ∞. Moreover, we assume that

A is continuous and piecewise affine. (2.3c)

Let u be the typically unknown weak solution of

− div
(

A∇u
) = f in �, u = v on 	D, A∇u · n = g on 	N.

In other words:

u ∈ Xv and ∀ϕ ∈ X0
∫

�

A∇u · ∇ϕ =
∫

�

f ϕ +
∫

	N

gϕ, (2.4)

where Xv := {w ∈ H1(�) | w = vH1-a.e. on 	D}. In view of assumptions (2.3a)
and (2.3b), problem (2.4) is a linear, symmetric, uniformily elliptic boundary value
problem. Thus, the other assumptions on 	D, v, g, and f , ensure existence and
uniqueness of u; see e.g. [16, Theorem 7.3.5].
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Both conditions in (2.3c) affect the results on the efficiency of the estimator in
§3.2. The first condition, the continuity of A, will be crucial for the lower bound
in Proposition 4.2, while the second one avoids only the appearance of additional
higher order terms in the lower bounds of Lemma 4.1. The first part of (2.1) allows
in particular to use Lagrange interpolation for the approximation of the Dirichlet
boundary values; for an approach with v ∈ H1/2(	D) only, we refer to Sacchi/Vee-
ser [21]. The second part of (2.1) and (2.2) exclude the more involved cases of pure
functionals.

2.2 Discretization, approximate solution, and error notion

We shall use linear finite elements in order to approximate the function u in (2.4).
Suppose that T0 is a conforming (admissibile) triangulation of � subordinated to
the subdivision of ∂� and to the mapping A in the following sense: for every
triangle T ∈ T0 and any edge E of T , there holds

A|T is affine, (2.5a)

H1(E ∩ 	D) > 0 ⇒ H1(E ∩ 	D) = H1(E ∩ ∂�). (2.5b)

In what follows, we shall refer to T0 as the macro triangulation. The following two
quantities of T0 will be important:

αmin := smallest angle occuring in T0 and µ := maxT ∈T0 hT

minT ∈T0 hT
, (2.6)

where hT := diam T denotes the diameter of a triangle T .
Let T be any (not necessarily quasi-uniform) refinement of T0 that was obtained

with the help of the newest-vertex bisection; see e.g. [22]. Hereafter, we suppose
that, together with T0 itself, we are given an appropriate fixed set of refinement
edges. The triangles and edges of T also satisfy (2.5) and their minimum angle is
bounded away from 0 in terms of αmin. The set of the nodes (or vertices) of T is
denoted by N . Let S be the space of continuous piecewise affine finite elements
over T :

S := {
w ∈ C(�̄) | ∀ T ∈ T w|T ∈ P1(T )

}
,

where Pk(T ), k ∈ N, stands for the polynomials over T with degree ≤ k.
In view of (2.5), the triangulation T induces a subdivision of 	D with nodes

ND := N ∩	D. Let I denote the corresponding piecewise affine Lagrange interpo-
lation operator associated with these nodes. Thanks to (2.1), we can approximate
the Dirichlet boundary values by Iv in a computationally convenient way.

The finite element approximation ūS of u in (2.4) is then characterized by

ūS ∈ Sv and ∀χ ∈ S0
∫

�

A∇ūS · ∇χ =
∫

�

f χ +
∫

	N

gχ, (2.7)

where Sv := {w ∈ S | ∀ z ∈ ND w(z) = v(z)}. Similarly to u, the finite element
approximation ūS exists and is unique.

In practice, one often does not solve the linear system resulting from (2.7)
exactly. We therefore suppose that uS ∈ S is an approximation of ūS and will



272 F. Fierro, A. Veeser

provide an a posteriori error analysis for the approximate finite element solution
uS . Notice that, if v is not piecewise affine and thus (2.7) a nonconforming method,
uS − u ∈ X0 does not hold.

The properties (2.3a) and (2.3b) of A imply that the so-called energy norm

‖∇w‖A :=
( ∫

�

A∇w · ∇w
)1/2

for w ∈ H1(�) (2.8)

is a norm on X0, but only a seminorm on H1(�). However, [21, (2.7)] and the
natural assumption uS = Iv on 	D imply that

‖∇(uS − u)‖A ≥ √
λ�

(
C1 ‖uS − u‖H1(�) − C2 ‖Iv − v‖	D

)
,

where C1 and C2 depend on the minimum angle αmin of T0 and �. We will see
in Remark 4.1 that ‖Iv − v‖	D is formally of higher order and so, if uS = Iv on
	D holds, ‖∇(uS − u)‖A is also in the nonconforming case an error notion that is
essentially ‘equivalent’ to ‖uS − u‖H1(�).

3 Gradient smoothing and error estimator

The purpose of this section is to introduce the computable quantities that will be
used to bound the energy norm error ‖∇(uS − u)‖A. The definition of these quan-
tities involves a procedure that removes the discontinuities in the gradient of the
approximate solution uS and will be discussed beforehand.

3.1 Assumptions on gradient smoothing

Let us start with a motivation for the use of gradient recovery by smoothing in
a posteriori error estimation. Since the approximate solution uS from §2.2 is an
element of the space S, its gradient ∇uS is constant on each triangle of T and thus,
typically, has jumps across interelement edges. Due to (2.3c) and (2.2), the exact
gradient ∇u does not have such jumps. Therefore, one may hope that a suitable
continuous (or smoothed) version GuS of ∇uS approximates ∇u better than the
discontinuous ∇uS . This can be actually achieved in many cases, even for singular
solutions; see e.g. §6.3.

Having this in mind, one may build up an error estimator with the help of the
computable distance ‖∇uS − GuS‖A between untreated and smoothed gradient.
The properties of the smoothing procedure for obtaining GuS will then affect the
properties of the corresponding estimator.

We now introduce the assumptions on the smoothing procedure that will be
used in the a posteriori analysis of §4. In view of the preceding motivation, the
smoothing procedure has to be of the form

σ : ∇S → S × S, ∇w �→ σ [∇w], (3.1a)

where ∇S := {∇w | w ∈ S} is a subspace of the discontinuous piecewise constant
mappings into R

2 over the triangulation T . Of course, one wants σ to be simple
and therefore it seems to be reasonable to suppose that

σ is linear. (3.1b)
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Remarkably, property (3.1a) is the only assumption on the smoothing proce-
dure σ that is needed in deriving an a posteriori upper bound, i.e. in ensuring the
(asymptotic) reliability of the corresponding error estimator. This fact was already
observed by Carstensen/Bartels [9].

However, the estimator may overestimate the error, that is, may not be efficient.
In order to exclude this, one needs to show a complementing a posteriori global
lower bound. It is desirable to do this by passing local lower bounds, because the
latter ones play a crucial role for the convergence of adaptive finite elements in the
works Dörfler [13], Morin/Nochetto/Siebert [18,19], and Veeser [25].

In view of the triangle inequality, the distance between untreated and smoothed
gradient bounds the energy norm error up to a constant (locally) from below iff
the same holds for the error of the smoothed gradient. If the latter is true, we shall
say that the smoothing procedure is (locally) nondeteriorating. The meaning of
“local” may be specified in various ways; here, we shall use triangles along with
their “smallest balls” B(T ) := ∪{T ′ ∈ T : T ′ ∩ T �= ∅}, T ∈ T . In the fol-
lowing theorem we determine the corresponding class of locally nondeteriorating
smoothing procedures for Laplace’s equation.

Theorem 3.1 (Locally nondeteriorating smoothers) Let σ be a smoothing
procedure satisfying (3.1). Then the following two statements are equivalent:

(i) If f = 0 and A = Id is the identity matrix, then σ is locally nondeteriorating
in the following sense: for any triangle T ∈ T ,

‖σ [∇uS] − ∇u‖T ≤ C ‖∇(uS − u)‖B(T ) ,

with C depending only on the minimum angle αmin of the macro triangulation
T0.

(ii) σ is locally consistent and stable in the following sense: for any w ∈ S and
any triangle T ∈ T ,

∇w is constant in B(T ) ⇒ σ [∇w] = ∇w on T, (3.2a)

‖σ [∇w]‖T ≤ C ‖∇w‖B(T ) (3.2b)

with C depending only on αmin.

Proof Here we prove only the implication (i) ⇒ (ii); the opposite one follows
from Proposition 4.2 below. Let us first prove (3.2b). Given w ∈ S, take homoge-
neous boundary data in the continuous problem (2.4) such that u = 0 and choose
uS = w as approximate solution. Then (i) implies (3.2b). In view of the linearity
of σ , this entails that

σ [∇w]|T depends only on ∇w|B(T ). (3.3)

In fact, if w̃ ∈ S is such that ∇w̃ = ∇w in B(T ) but σ [∇w̃] �= σ [∇w], then

|α|‖σ [∇w̃] − σ [∇w]‖T − ‖σ [∇w]‖T ≤ ‖σ [∇(w + α(w̃ − w))]‖T

≤ C‖∇w + α∇(w̃ − w)‖B(T )
= C‖∇w‖B(T ) (3.4)

produces a contradiction for α ↗ ∞.
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To prove the consistency (3.2a), suppose that ∇w = c on B(T ). Arrange the
data of (2.4) such that u(x) = c ·x for all x ∈ � and choose uS = u. Consequently,
(3.3) and (i) lead to σ [∇w] = σ [∇uS] = ∇u = c = ∇w on T . ��

The assumptions (3.1) and (3.2) on the gradient smoothing are closely related
to the general framework of gradient recovery in Ainsworth/Craig [1] or [2, Chap-
ter 4]. The main difference is the weaker invariance (or consistency) condition
(3.2a): [1,2] require invariance on T also if ∇w is affine on B(T ). This stron-
ger version was used to derive superconvergence of the smoothed gradient under
certain circumstances.

The local nature of the additional assumptions (3.2) imply that the smoothed
gradient can be computed locally. Consequently, global procedures as in Bank/Xu
[4] do not directly enter in the given framework.

If A is not the identity, statement (ii) still ensures that the smoother is locally
nondeteriorating, but with a constant that involves the condition number of A. This
dependence gets less sensitive, if we suppose in addition:

σ can be extended to D × D, D := {w : � → R | ∀ T ∈ T w|T ∈ P0(T )},
(3.5a)

such that, for each triangle T ∈ T ,

A is constant in B(T ) ⇒ Aσ [∇w] = σ [A∇w] on T . (3.5b)

This relies on the following observation: given (3.5b) and an A that is constant in
B(T ), (3.2b) implies its energy norm counterpart

‖σ [∇w]‖A;T ≤ C ‖∇w‖A;B(T ) (3.6)

without intervention of the condition number of A.
We conclude this subsection by discussing the smoothing procedure that is

associated to the ZZ estimator and that will be used for our numerical tests in §6.
Let (φz)z∈N be the canonical nodal basis of S and denote the star around a node
z ∈ N by ωz = suppφz = ∪{T ∈ T : T � z}. Given w ∈ S, we then define
σ [∇w] ∈ S × S by the following local averaging:

∀ z ∈ N σ [∇w](z) = L2(ωz)
−1

∫

ωz

∇w ∈ R
2. (3.7)

In other words: σ [∇w] is the projection on S × S of ∇w with the help of the
‘lumped scalar product’; see also e.g. [26, §1.5].

The conditions (3.1a), (3.1b), (3.2a), and (3.5) are readily verified. In order to
show (3.2b), let w ∈ S, T ∈ T , and estimate

‖σ [∇w]‖T ≤
∑

z∈N∩T

∣∣σ [∇w](z)∣∣ ‖φz‖T

≤
∑

z∈N∩T

‖φz‖T L2(ωz)
−1/2 ‖∇w‖ωz

≤ C ‖∇w‖B(T )

by using the Cauchy-Schwarz inequality as well as the inequalities ‖φz‖T ≤ ChT

and L2(ωz) ≥ Ch2
T , where hT := diam T stands for the diameter of T .
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Remark 3.1 (Consistency and stability on stars) Suppose that the smoothing
procedure satisfies (3.1). Analyzing the verification of (3.2) for (3.7), we see that

∇w is constant in ωz ⇒ σ [∇w](z) = ∇w(z) (3.8a)∣∣σ [∇w](z)∣∣ ≤ CL2(ωz)
−1/2 ‖∇w‖ωz

(3.8b)

for all nodes z ∈ N implies (3.2). The opposite implication is also true but we
shall omitt the proof here; cf. also [2, Lemma 4.5].

3.2 Estimator for the energy norm error

We now build up an error estimator for the energy norm error ‖∇(uS − u)‖A
that is based on the difference ∇uS − GuS , GuS := σ [∇uS], between untreated
and smoothed discrete gradient. Doing so, we will also provide guidelines for the
a posteriori error analysis in §4.

Let us temporarily suppose that there is no error in the Dirichlet boundary val-
ues: uS −u ∈ X0. To estimate ‖∇(uS − u)‖A or, equivalently,

∫
�

A∇(uS −u) ·∇ϕ
for any ϕ ∈ X0 with ‖∇ϕ‖A ≤ 1, the motivation from §3.1 suggests to write

∫

�

A∇(uS − u) · ∇ϕ =
∫

�

A(∇uS − GuS) · ∇ϕ +
∫

�

A(GuS − ∇u) · ∇ϕ.
(3.9)

The first integral can be easily, and in a ‘constant-free’ manner, estimated by the
computable quantity

ζ := ‖∇uS − GuS‖A =
[ ∫

�

(∇uS − GuS) · A(∇uS − GuS)
]1/2

, (3.10)

which will be the principal part of our error estimator. If the smoothing procedure
(3.7) is used, then ζ is the well-known estimator of Zienkiewicz/Zhu [29]. To split
ζ into local contributions, we use the partition of unity

∑
z∈N φz = 1 provided by

the canonical basis functions of S: for all z ∈ N , we set

ζ 2
z := ‖∇uS − GuS‖2

Aφz
=

∫

ωz

(∇uS − GuS) · A(∇uS − GuS)φz . (3.11)

The quantity ζ alone, as any post-processing technique, cannot be a reliable esti-
mator. In fact, consider A = Id, 	D = ∂�, v = 0, and a load term f �= 0 that is
L2(�)-orthogonal to S. Then u �= 0 but uS := ūS = 0, whence ‖∇(uS −u)‖A > 0.
However, due to (3.2a), we have GuS = σ [∇uS] = 0 and thus ζ = 0. For a con-
crete example and related underestimation, see [2, §4.7] or §6.1 and §6.2.

In order to obtain a reliable estimator, we have to add terms to ζ . We therefore
turn to the second integral in (3.9), which may be superconvergent according to the
aforementioned motivation. Consequently, if we estimate this integral in a sharp
way, we get additional terms for the estimator that may be superconvergent.
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Using equation (2.4) for the exact solution u, the second integral in (3.9) can
be viewed as the residual of the smoothed gradient GuS:

∫

�

A(GuS − ∇u) · ∇ϕ = 〈R, ϕ〉

:=
∫

�

AGuS · ∇ϕ −
∫

�

f ϕ −
∫

	N

gϕ. (3.12)

Writing

〈R, ϕ〉 = 〈R, ϕ − χ〉 + 〈R, χ〉 (3.13)

with a suitable χ ∈ S0 allows us to control the first term on the right hand side with
standard techniques. Recalling GuS ∈ S × S and (2.3c), we observe that AGuS
does not jump across interior (or interelement) edges. The corresponding estimates
will thus involve only the element residual r that is defined by r := f +div(AGuS),
the Neumann residual AGuS · n − g, and the eigenvalues of A. More precisely,
〈R, ϕ − χ〉 will be bounded from above in terms of

ρ :=
[ ∑

z∈N
λ−1

z ρ2
z

]1/2
, (3.14)

where

λz := infωz λ,

ρ2
z := h2

z

∫

ωz

|r − r̄z |2φz + hz

∫

∂ωz∩	N

|AGuS · n − g|2φz,

hz := diamωz, r̄z :=



(∫
ωz
φz

)−1 ∫
ωz

rφz if z ∈ N \ ND,

0 if z ∈ ND.

The corresponding lower bounds will involve also

�z := supωz
�.

For the second term of the right hand side in (3.13), we shall use a multilevel
decomposition of S. The bisections generating T from T0 can be recorded by a
forest of binary trees F , where each triangle corresponds to a node, the triangles
of T0 are roots, and those of T are leafs; see e.g. [22] and Figure 1 for an example.
Let F� be the maximal subforest of F with depth equal or smaller than � ≥ 0 such
that its leafs constitute a conforming triangulation, which will be called T�. We
denote by N� the vertices (or nodes) in T� and by S� the continuous linear finite
elements over Tl . Clearly, there holds

S� ⊂ S�+1, S = ⋃
�≥0 S� and N� ⊂ N�+1, N = ⋃

�≥0 N�. (3.15)
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Fig. 1 A macro triangulation (top left), a refinement (bottom left), and its corresponding forest
of binary trees (right), which has maximal depth 4

The indicators of the �th level are given by

γ�z :=
{

|〈R, φ�z〉|, z ∈ N� \ 	D,

0, z ∈ N� ∩ 	D,
(3.16)

where (φ�z)z∈N�
are the canonical basis function in S� satisfying φ�z(z) = 1 and

φ�z(y) = 0 for all y ∈ N� \ {z}. Moreover, we define

Ñ� := (
N� \ N�−1

) ∪ {z ∈ N�−1 | φ�z �= φ�−1,z}

for � ≥ 1 and Ñ0 := N0. To any node z ∈ Ñ� with � ≥ 1, there corresponds
a hat function φ�z that is not contained in S�−1. Consequently the corresponding
indicators γ�z , z ∈ Ñ� provide the information on the residual R that cannot be
seen on the previous level � − 1. This will allow to bound the term 〈R, χ〉 from
above in terms of

γ :=
[
λ−1
�

∑
�≥0

∑

z∈Ñ�

γ 2
�z

]1/2
, (3.17)

which measures how much GuS −∇u misses to mimic the Galerkin orthogonality
of ∇(ūS − u).

To finish this subsection, let us turn back to general Dirichlet boundary values.
If we suppose that uS = Iv on 	D, the corresponding error will be bounded by

δ :=
[ ∑

z∈ND

δ2
z

]1/2
with δ2

z = �zhz

∫

	D

|∂τ (v − Iv)|2φz, (3.18)

where ∂τ denotes the tangential derivative on 	D.
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4 Error control

In this section we derive the theoretical main results of this article: upper and lower
bounds for the energy norm error in terms of the computable quantities that have
been introduced in §3.

4.1 Upper bound

Let us first establish a global upper bound for the error in the energy norm (2.8)
between the exact solution u and the approximate finite element solution uS of §2.

Theorem 4.1 (Global upper bound) Suppose that the smoothing procedure
satisfies (3.1a) and that uS = Iv on 	D. Then the energy norm error of the approx-
imate finite element solution uS is globally bounded in the following way:

‖∇(uS − u)‖A ≤ ζ + C(ρ + γ + δ),

where ζ , ρ, γ , δ are given by (3.10), (3.14), (3.17), (3.18), and the constant C
depends only on αmin and µ in (2.6) of the macro triangulation T0.

Proof 1. We start by decomposing the error appropriately. Let ũ be the solution of
(2.4), where the Dirichlet boundary values v are replaced by their approximation
vS = Iv. Since

∫
�

A∇(ũ − u) · ∇ϕ = 0 for all ϕ ∈ X0 and uS − ũ ∈ X0, the
energy norm error then splits into two parts:

‖∇(uS − u)‖2
A = ‖∇(uS − ũ)‖2

A + ‖∇(ũ − u)‖2
A , (4.1)

where the second term ‖∇(ũ − u)‖A measures the error due to the approximation
of the Dirichlet boundary values, while the first term ‖∇(uS − ũ)‖A can be esti-
mated with the help of (3.9), (3.12), and (3.13). Thus, given any ϕ ∈ X0 with
‖∇ϕ‖A ≤ 1 and any χ ∈ S0, we write

∫

�

A∇(uS − ũ) · ∇ϕ =
∫

�

A(∇uS − GuS) · ∇ϕ + 〈R, ϕ − χ〉 + 〈R, χ〉
(4.2)

As already observed in §3.2, the first term is easily estimated by ζ in a ‘constant-
free’ manner. Estimates for the other two terms and ‖∇(ũ − u)‖A will be provided
in the following steps of proof.

2. In order to prepare for the proper estimate of 〈R, ϕ − χ〉, we derive an
appropriate representation formula, thereby choosing a particular χ ∈ S0. To this
end, we follow the lines of [15, Lemma 4.1]. Integration by parts on each triangle
T ∈ T and the use of

∑
z∈N φz = 1 as well as χ = ∑

z∈N χ(z)φz gives

〈R, ϕ−χ〉=
∑
z∈N

(∫

∂ωz∩	N

[
AGuS · n−g

][
ϕ−χ(z)]φz −

∫

ωz

r
[
ϕ − χ(z)

]
φz

)
.

The choice

χ(z) =



(∫
ωz
φz

)−1 ∫
ωz
ϕφz if z ∈ N \ ND,

0 if z ∈ ND,
(4.3)
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guarantees χ ∈ S0 as well as
∫
ωz

[
ϕ − χ(z)

]
φz = 0 for all z ∈ N \ ND and thus

〈R, ϕ − χ〉 =
∑
z∈N

( ∫

∂ωz∩	N

[
AGuS · n − g

][
ϕ − χ(z)

]
φz

−
∫

ωz

[
r − r̄z

][
ϕ − χ(z)

]
φz

)
. (4.4)

3. We proceed by estimating the right hand side of (4.4) and start by recall-
ing two auxiliary inequalities. If E is an edge of a triangle T ∈ T containing
the node z ∈ N , then there holds the following trace theorem (use scaling argu-
ments and, e.g., [16, Theorems 6.2.40 and 6.2.25] on the reference triangle): for
all ψ ∈ H1(T ),

‖ψ‖E ≤ C
(

h−1/2
z ‖ψ‖T + h1/2

z ‖∇ψ‖T

)
. (4.5)

Moreover, we have the following Poincaré inequality; see e.g. [21, Lemma 3.5]:
Suppose that

∫
ωz
ψφz = 0 if z ∈ N \ ND or ψ = 0 on ∂ωz ∩ 	D if z ∈ ND. Then

‖ψ‖ωz
≤ Chz ‖∇ψ‖ωz

. (4.6)

Furthermore, thanks to (2.3b), there holds

‖∇ψ‖ωz
≤ λ

−1/2
z ‖∇ψ‖A;ωz

. (4.7)

Combined with (4.3), the two inequalities (4.6) and (4.7) imply

‖ϕ − χ(z)‖ωz
≤ Chzλ

−1/2
z ‖∇ϕ‖A;ωz

.

Thus, by means of a ‘weighted’ Cauchy-Schwarz inequality and φz ≤ 1, we
derive
∣∣∣
∫

ωz

[
r − r̄z

][
ϕ − χ(z)

]
φz

∣∣∣ ≤ ‖r − r̄z‖φz
‖ϕ − χ(z)‖φz

≤ Chzλ
−1/2
z ‖∇ϕ‖A;ωz

and, using also the scaled trace theorem (4.5),
∣∣∣
∫

∂ωz∩	N

[
AGuS · n − g

][
ϕ − χ(z)

]
φz

∣∣∣
≤ ‖AGuS · n − g‖φz;∂ωz∩	N

‖ϕ − χ(z)‖φz;∂ωz∩	N

≤ C ‖AGuS · n − g‖φz;	N

[
h−1/2

z ‖ϕ − χ(z)‖ωz
+ h1/2

z ‖∇ϕ‖ωz

]

≤ Ch1/2
z λ

−1/2
z ‖AGuS · n − g‖φz;	N

‖∇ϕ‖A;ωz
.

In view of the last two inequalities, each term in the sum of (4.4) is bounded by
Cλ−1/2

z ρz ‖∇ϕ‖A;ωz
. We thus arrive at

〈R, ϕ − χ〉 ≤ C1ρ (4.8)

by summing up, applying Cauchy-Schwarz, observing that each triangle is con-
tained in three stars, and recalling ‖∇ϕ‖A ≤ 1.
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4. In order to bound 〈R, χ〉, we first show the following estimate, the proof of
which is inspired by the one of Chen/Wu [11, Lemma 2.4]:

〈R, χ〉 ≤ C
[ ∑
�≥0

∑

z∈Ñ�

γ 2
�z

]1/2 ‖∇χ‖ . (4.9)

To this end, we introduce an interpolation operator as in Scott/Zhang [23] for each
level � of the decomposition (3.15): given w ∈ H1(�), set �−1w := 0 and, for
� ≥ 0,

��w :=
∑

z∈N�

��w(z)φ�z ∈ S� with ��w(z) =
∫

σ�z

ψ�zw,

where σ�z is a certain edge containing z and ψ�z the affine function such that

w|σ�z ∈ P1(σ�z) ⇒
∫

σ�z

ψ�zw = w(z). (4.10)

The choice of σ�z is subject to the following conditions:

• if z ∈ 	D, then σ�z ⊂ 	D is a Dirichlet edge;
• if z ∈ N� \ Ñ� (and so � ≥ 1), then σ�z = σ�−1,z ;
• if z ∈ Ñ� then, σ�z is an edge of level �, i.e. an edge of T� containing z and a

‘new’ node from N� \ N�−1, with the convention N−1 := ∅.

Thus, we have the following properties for χ ∈ S0:

�Lχ(z) = χ(z) for L = L(z) = max{� ≥ 0 | z ∈ Ñ�},
z ∈ N� ∩ 	D ⇒ ��χ(z) = 0,

z ∈ N� \ Ñ� ⇒ ��χ(z) = ��−1χ(z).

In view of these properties, we have χ = ∑
�≥0(�� −��−1)χ and can deduce

〈R, χ〉 =
∑
�≥0

〈R, (�� −��−1)χ〉

=
∑
�≥0

∑

z∈Ñ�

(�� −��−1)χ(z)〈R, φ�z〉

≤
[ ∑
�≥0

∑

z∈Ñ�

γ 2
�z

]1/2[ ∑
�≥0

∑

z∈Ñ�

|(�� −��−1)χ(z)|2
]1/2

. (4.11)

To estimate the second factor, it is convenient to embed the multilevel decom-
position (3.15) into a quasi-uniform one. Denote by T̃i the finest conforming tri-
angulation obtained by bisecting every triangle of T0 up to level i , by S̃i the space
of continuous piecewise affine finite elements over T̃i , and by P̃i the orthogonal
H1

0 (�)-projection onto S̃i ∩ X0, with the convention P̃−1 := 0. We then may write

χ = ∑
i≥0 χi with χi := (P̃i − P̃i−1)χ.
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We fix a z ∈ Ñ� and claim that

(�� −��−1)χi (z) = 0 whenever i ≤ �− 2. (4.12)

Consider first the case z ∈ Ñ� ∩ N�−1. Then there holds z ∈ Ñ�−1 ∪ Ñ�−2.
In fact, we can suppose � ≥ 3 without loss of generality and so it is sufficient to
analyze the possible refinements in Figure 2 of a triangle of T�−3 containing z and
a new node from N� \N�−1. The edges σ�−1,z and σ�z are therefore at least of level
l − 2. Consequently, χi is affine on these edges and we obtain (4.12) with the help
of the property (4.10) of ψ�z :

��−1χi (z) = χi (z) = ��χi (z).

Consider now the other case z ∈ Ñ� \N�−1 and let z1, z2 be the two adjacent nodes
in Ñ� ∩ N�−1 such that z = 1

2 (z1 + z2). Then σ�z and the edge given by z1 and
z2 are at least of level � and �− 1, respectively. Consequently, χi is affine on both
edges and ��−1χi on the one given by z1 and z2. Combing this with (4.10) and
the first case, we get

��χi (z) = χi (z)

= 1
2

[
χi (z1)+ χi (z2)

] = 1
2

[
��−1χi (z1)+��−1χi (z2)

] = ��−1χi (z)

and (4.12) is proved.
On the other hand, for i > �− 2, we claim

|(�� −��−1)χi (z)| ≤ Ch−α
� |χi |H1−α(B(z;�−2)), (4.13)

-3

-3-3 -2/-1

-1

0

-3

-3-3 -2/-1

-1

0

-1

-3

-3-3 -2/-1
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0

-1

0

-3

-3-3 -2/-1

-1

0

-10

-3

-3-3 -2/-1

-1

0

-1

0

0

Fig. 2 Possibile refinements (apart from symmetric variants of the first, second, and fourth one)
of a triangle in T�−3 containing a node from N� \ N�−1. Other possibilities are outruled by the
conforming newest-vertex bisection. The numbers associated to the nodes indicate their level
relative to �. If a node is contained in Ñ� ∩ N�−1, then its associated number is in boldface.
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where α ∈ (0, 1
2 )will be chosen in a moment, | · |H1−α(B(z;�−2)) is the seminorm of

H1−α(B(z; �− 2)
)
, h� denotes the typical edge length of level �, and B(z; �− 2)

is the union of all stars in T�−2 containing z. To prove (4.15), we start by writing

|(�� −��−1)χi (z)| = |(�� −��−1)(χi − c)(z)|
≤ |��(χi − c)(z)| + |��−1(χi − c)(z)|. (4.14)

with c ∈ R arbitrary. For the first term, we employ ‖ψ�z‖L∞(σ�z) ≤ Ch−1
� (see

[23, Lemma 3.1]), a scaled trace inequality similar to (4.5), as well as the Poincaré
inequality [14, Lemma 3.4] and derive

|��(χi − c)(z)| ≤
∣∣∣
∫

σ�z

ψ�z(χi − c)
∣∣∣

≤ Ch−1
� ‖χi − c‖L1(σ�z)

≤ Ch−1/2
� ‖χi − c‖σ�z

≤ Ch−1/2
�

[
h−1/2
� ‖χi − c‖T + h1/2−α

� |χi |H1−α(T )
]

≤ Ch−α
� |χi |H1−α(T ),

where T ∈ T� is chosen such that it contains σ�z and c = ∫
T χi . If z ∈ Ñ� ∩ N�−1,

then one similarly obtains the same estimate for the second term with T from
T�−1 ∪T�−2. The remaining estimate of the second term for z ∈ Ñ� \N�−1 follows
from ��−1χi (z) = 1

2

[
��−1χi (z1)+��−1χi (z2)

]
, where z1, z2 ∈ Ñ� ∩ N�−1 are

defined as before. Inserting these estimates into (4.14) then yields (4.13).
We square (4.13), sum it over z ∈ Ñ� and, after noting P̃i−1χi = 0, apply

[27, Theorem 5.1] with an admissibile α to arrive at

∑

z∈Ñ�

|(�� −��−1)χi (z)|2 ≤ Ch−2α
� |χi |2H1−α(�)

≤ C

(
hi

h�

)2α

‖∇χi‖2. (4.15)

In view of (4.12), (4.15), and h� = q�h0 with q = 1/
√

2 < 1, we obtain

∑
�≥0

∑

z∈Ñ�

|(�� −��−1)χ(z)|2

=
∑
�≥0

∑
i, j≥�−1

∑

z∈Ñ�

(�� −��−1)χi (z)(�� −��−1)χ j (z)

≤
∑
�≥0

∑
i, j≥�−1

[ ∑

z∈Ñ�

|(�� −��−1)χi (z)|2
]1/2[ ∑

z∈Ñ�

|(�� −��−1)χ j (z)|2
]1/2

≤ C
∑
�≥0

∑
i, j≥�−1

qα[(i+ j)−2�]‖∇χi‖‖∇χ j‖.
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To estimate further, we proceed similarly to the proof of [27, Theorem 5.8] by
reordering, exploiting

∑min{i, j}+1
�=0 q−2α� ≤ Cq−2αmin{i, j} and

∑
i≥0 ‖∇χi‖2 =

‖∇χ‖2 in the following way:

∑
�≥0

∑

z∈Ñ�

|(�� −��−1)χ(z)|2 ≤ C
∑

i, j≥0

min{i, j}+1∑
�=0

qα[(i+ j)−2�]‖∇χi‖‖∇χ j‖

≤ C
∑

i, j≥0

qα|i− j |‖∇χi‖‖∇χ j‖

≤ C
∑
m≥0

qαm
∑
i≥0

‖∇χi‖‖∇χi+m‖

≤ C
∑
m≥0

qαm
[ ∑

i≥0

‖∇χi‖2
]1/2[ ∑

i≥m

‖∇χi‖2
]1/2

≤ C

1 − qα
‖∇χ‖2

This and (4.11) verify (4.9).
5. To finish the bound of 〈R, χ〉, we have to prove an appropriate stability bound

for ‖∇χ‖. Let T ∈ T be arbitrary. Since, for any constant c, (4.3) implies

‖∇χ‖T = ‖∇(χ − c)‖T ≤
∑

z∈N∩T

|χ(z)− c| ‖∇φz‖T

≤ C
∑

z∈N∩T

L2(ωz)
−1/2 ‖ϕ − c‖ωz

≤ Ch−1
T ‖ϕ − c‖B(T ) ,

we obtain the local stability estimate

‖∇χ‖T ≤ C ‖∇ϕ‖B(T )

with the help of the Bramble-Hilbert Lemma [23, (4.2)]. Its global counterpart
is derived by squaring and then summing over T ∈ T . Taking also (2.3b) into
account, we have

‖∇χ‖ ≤ C ‖∇ϕ‖ ≤ Cλ−1/2
� ‖∇ϕ‖A

which, together with (4.9) and ‖∇ϕ‖A ≤ 1, leads to

〈R, χ〉 ≤ C2γ . (4.16)

6. Next, we estimate the error ‖∇(ũ − u)‖A due to the approximation of the
Dirichlet boundary values. Since

∫
�

A∇(ũ − u) · ∇ϕ = 0 for all ϕ ∈ X0, there
holds ‖∇(ũ − u)‖A ≤ ‖∇w‖A for any extensionw ∈ X Iv−v of the approximation
error Iv− v in the Dirichlet boundary values. We choose w as in [19, Lemma 3.4]
(replace ∂� there by 	D). Then w satisfies

∫

T
|∇w|2 ≤ ChT

∫

	D∩∂T
|∂τ (Iv − v)|2



284 F. Fierro, A. Veeser

for all T ∈ TD := {T ∈ T | H1(	D ∩ ∂T ) > 0} and the support of w is con-
tained in the union

⋃
T ∈TD

T of these triangles; see the proof of [19, Lemma 3.4].
Consequently,

‖∇(ũ − u)‖2
A ≤ ‖∇w‖2

A =
∑

T ∈TD

‖∇w‖2
A;T ≤ C

∑
T ∈TD

�T hT ‖∂τ (Iv − v)‖2
	D∩∂T

with �T := supT �. Since �T hT ≤ C�zhz whenever T ⊂ ωz , this implies

‖∇(ũ − u)‖A ≤ C3δ. (4.17)

7. Combining (4.1), (4.2), (4.8), (4.16), and (4.17) finally yields

‖∇(uS − u)‖A ≤
[(
ζ + C1ρ + C2γ

)2 + C2
3δ

2
]1/2

, (4.18)

which implies the claimed upper bound. ��
Remark 4.1 (Error due to interpolated Dirichlet boundary values) We saw in
§2.2, that, if uS = Iv on 	D, the energy norm error ‖∇(uS − u)‖A is ‘equivalent’
to ‖uS − u‖H1(�) up to the perturbation term

√
λ� ‖Iv − v‖	D. The latter term

is dominated by δ and thus will be automatically taken into account by the error
estimator. In fact, Iv(z)− v(z) = 0 for all z ∈ ND implies

λ� ‖Iv − v‖2
	D

≤ Cλ�
∑
T ∈T

H1(	D∩∂T )>0

h2
T ‖∂τ (Iv − v)‖2

	D∩∂T

≤ C
λ�

��

∑
z∈ND

hzδ
2
z ,

where the constant C depends on the minimum angle αmin of the macro triangu-
lation T0. Moreover, since δ formally has at least the order of ‖∇(uS − u)‖A, the
perturbation

√
λ� ‖Iv − v‖	D is formally of higher order.

4.2 Local lower bounds

In order to assess the local and global sharpness of the upper bound in Theorem 4.1,
we derive complementing lower bounds. In this subsection we establish local lower
bounds, while in the following §4.3 global ones. In the light of the motivation of
§3.1, we proceed in two steps. First, we provide lower bounds that involve also the
error of the possibly superconvergent smoothed gradient. Second, we show that
this error is bounded by the energy norm error in any event. The lower bound for
the energy norm error is then an immediate consequence.

In step 3 of the proof of Theorem 4.1, we estimated the local dual norm of the
residual by stronger and thus overestimating integral norms. In order to recover
partially from this overestimation by means of an inverse inequality also for non-
discrete integrands, we let f̄ and ḡ be possibly discontinuous approximations of f
and g, respectively, such that f̄ is affine on every triangle and ḡ quadratic on every
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Neumann edge. The lower bounds will then involve also the oscillation measures
defined by

oscT ( f ;ω)2 =
∑
T ∈T
T ⊂ω

h2
T

�T

∥∥ f − f̄
∥∥2

T , oscT (g;ω)2 =
∑
E∈E

E⊂∂ω∩	N

hE

�E
‖g − ḡ‖2

E ,

where ω is a subdomain of �, �E := �T with T being the triangle that contains
E , and hE := diam E is the diameter of the edge E . Notice that these oscillation
terms formally have at least the order of the error of the possibly superconvergent
smoothed gradient.

Also the Dirichlet indicators δz , z ∈ N ∩ 	D, are made up by means of a too
strong and thus overestimating norm. However, these indicators already measure
an oscillation of the Dirichlet boundary values and we therefore do not derive
corresponding lower bounds.

Proposition 4.1 (Local lower bounds with smoothed gradient) The indi-
cators ζz , ρz , z ∈ N , and γ�z , � ≥ 0, z ∈ N�, are bounded in the following
way:

ζz ≤ ‖∇(uS − u)‖Aφz
+ ‖GuS − ∇u‖Aφz

,

�
−1/2
z ρz ≤ C1

[ ‖GuS − ∇u‖A;ωz
+ oscT ( f ;ωz)+ oscT (g;ωz)

]
,

�
−1/2
�z γ�z ≤ C2 ‖GuS − ∇u‖A;ω�z ,

where the constants C1 and C2 depend only on αmin, ω�z = suppφ�z indicates a
star on the level �, and ��z := supω�z �.

Proof 1. The first inequality is an immediate consequences of the triangle inequal-
ity. The third one readily follows from (3.12) and ‖∇φ�z‖A ≤ C�1/2

�z . To prove the
second one, we use the constructive argument of Verfürth, see e.g. [26], to derive

hT ‖r‖T ≤ C
[
�

1/2
T ‖GuS − ∇u‖A;T + hT

∥∥ f̄ − f
∥∥

T

]

for any triangle T and

h1/2
E ‖AGuS · n − g‖E

≤ C3
[
�

1/2
E ‖GuS − ∇u‖A;T + h1/2

E ‖ḡE − g‖E + hE
∥∥ f̄ − f

∥∥
T

]
,

where E is a Neumann edge and T the triangle containing E . For convenience of
the reader and completeness, we prove these estimates in the next two steps. Since
‖r − r̄z‖φz ≤ ‖r‖ωz , hE ≤ hT and hz ≤ ChK whenever the edge or triangle K
contains z, the proof is then complete.

2. We introduce r̄T := div(AGuS)|T + f̄|T ∈ P1(T ) and letψT := ∏
z∈N∩T φz

be the bubble function of T . Since ϕT := r̄TψT ∈ X0, an integration by parts on
T and (3.12) imply

−
∫

T
rϕT = 〈R, ϕT 〉 =

∫

T
A(GuS − ∇u) · ∇ϕT .
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Since

‖∇ϕT ‖A;T ≤ �
1/2
T ‖∇ϕT ‖T (4.19)

thanks to (2.3b) and ‖∇ϕT ‖T ≤ Ch−1
T ‖r̄T ‖T thanks to inverse inequalities, we

obtain

∣∣∣
∫

T
rr̄TψT

∣∣∣ ≤ ‖GuS − ∇u‖A;T ‖∇ϕT ‖A;T

≤ Ch−1
T �

1/2
T ‖GuS − ∇u‖A;T ‖r̄T ‖T .

and hence
∫

T
|r̄T |2ψT ≤ (

Ch−1
T �

1/2
T ‖GuS − ∇u‖A;T + ‖ f̄ − f ‖T

)‖r̄T ‖T .

We estimate the left hand side from below by C‖r̄‖2
T with the help of [2, Theo-

rem 2.2] and arrive at the claimed bound for the element residual:

hT ‖r‖T ≤ hT ‖r̄T ‖T + hT
∥∥ f̄ − f

∥∥
T

≤ C
(
�

1/2
T ‖GuS − ∇u‖A;T + hT ‖ f̄ − f ‖T

)
.

3. The bound for the Neumann residual can be proved in quite similar way. In
fact, we write

AGuS · n − g = [
AGuS · n − ḡ

] + [
ḡ − g

]

use the bubble function ψE = ∏
z∈N∩E φz of the edge E , and [2, Theorem 2.4]. ��

Let us compare the upper and local lower bounds in Theorem 4.1 and Propo-
sition 4.1. The indicators controlling the error of the smoothed gradient differ by
multiplicative factors that depend on the local condition number of the matrix A,
e.g.

√
�z/λz . This disturbing gap, which originates from the use of worst case a pri-

ori estimates like (4.7) and (4.19), is however avoided for the principal indicators
ζz , z ∈ N .

As announced, we now show that the local error of the smoothed gradient GuS
is essentially bounded by the local energy norm error. Since (3.6), which we will
use for this purpose, requires a locally constant coefficient matrix A, this bound
will involve oscillations of A. To measure them, we define

oscT (A;ω) := max
T ⊂ω

supB(T ) | ĀT − A|
infB(T ) λ

, (4.20)

where ω is a subdomain of �, | · | stands also for the matrix norm induced by the
Euclidean norm | · |, and ĀT := L2(B(T ))−1

∫
B(T ) A is the mean value of A in the

patch B(T ) around T .
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Proposition 4.2 (Asymptotic nondeterioration of smoothed gradient)
Suppose the smoothing procedure σ has the properties (3.1), (3.2), and (3.5).
Then σ is asymptotically nondeteriorating in that, for any T ∈ T , the smoothed
gradient GuS = σ [∇uS] satisfies

‖GuS − ∇u‖A;T ≤ CκB(T )
[
‖∇(uS − u)‖A;B(T ) + oscT

(
f ; B(T )

)]
,

where C depends only on αmin and

κB(T ) = supB(T ) �
1/2

infB(T ) λ1/2

[
1 + O

(
oscT (A; T )

)]
(4.21)

is, up to oscillation of A, the local condition number of A1/2.

Note that this proposition implies the missing implication in the proof of The-
orem 3.1.

Proof Thanks to (3.2a) and (3.1b), we may start with

‖GuS − ∇u‖A;T ≤ ‖∇(u − p)‖A;T + ‖σ [∇(uS − p)]‖A;T
where p ∈ P1 is any polynomial of degree 0 or 1. Invoking (3.6), we derive

‖σ [∇(uS − p)]‖A;T ≤
{

1 + oscT (A; T )
}1/2 ‖σ [∇(uS − p)]‖ ĀT ;T

≤ C
{

1 + oscT (A; T )
}1/2 ‖∇(uS − p)‖ ĀT ;B(T )

for the second term on the right hand side and thus arrive at

‖GuS − ∇u‖A;T ≤ ‖∇(u − p)‖A;T + C
{

1 + oscT (A; T )
}1/2

×‖∇(uS − p)‖ ĀT ;B(T ) . (4.22)

To choose the polynomial p, let us first observe the following: if T1, T2 ⊂ B(T )
are two different triangles sharing an edge E ∈ E with normal ν and pi := uS |Ti ∈
P1, i = 1, 2, then we have the identity ∇(p1 − p2) = [∇(p1 − p2) · ν]ν and
therefore the inequality

∇(p1 − p2) · ĀT ∇(p1 − p2) = |∇(p1 − p2) · ν|2 ν · ĀT ν

≤ λ−1
B(T )|∇(p1 − p2) · ν|2[ν · ĀT ν

]2

≤ λ−1
B(T )

[
ĀT ∇(p1 − p2) · ν]2

,

with λB(T ) := infB(T ) λ. This, together with the first part of (2.3c), yields

| Ā1/2
T ∇(p1 − p2)| ≤ Ch−1/2

E ‖∇(p1 − p2)‖ ĀT ;E

≤ Ch−1/2
E λ

−1/2
B(T )

∥∥ ĀT ∇(p1 − p2) · ν∥∥E

≤ Ch−1/2
E λ

−1/2
B(T )

{
1 + oscT (A; T )

}
‖J‖E , (4.23)
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where J denotes the jump in the normal component of A∇uS across E . Moreover,
there holds the local lower bound

�
−1/2
E h1/2

E ‖J‖E ≤ C
[ ‖∇(uS − u)‖A;ωE

+ oscT ( f ;ωE )
]
,

where�E := supωE
� and ωE = T1 ∪ T2; see e.g. [18, Lemma 3.4]. Inserting this

inequality into (4.23), we obtain, for any pair T1, T2 ⊂ B(T ) sharing one side E ,

| Ā1/2
T ∇(p1 − p2)| ≤ Ch−1

T

�
1/2
B(T )

λ
1/2
B(T )

{
1 + oscT (A; T )

}

×
{

‖∇(uS − u)‖A;ωE
+ oscT ( f ;ωE )

}
(4.24)

with �B(T ) := supB(T ) �.
To finish the proof, we take p := uS |T ∈ P1 in (4.22). We then have to estimate

the second term on the right hand side in (4.22) appropriately. Let T ′ ∈ T be an
arbitrary triangle in B(T ). Then there exists a path of triangles in B(T ) from T to
T ′. More precisely, there exists a finite sequence (Ti )

n
i=0 such that

• T0 = T , Tn = T ′,
• each triangle Ti is in B(T ), there holds Ti �= Tj whenever i �= j , and
• each pair (Ti−1,Ti ) has one common side.

We now set pi := uS |Ti , i = 0, . . . , n, and devise

‖∇(uS − p)‖ ĀT ;T ′ ≤ L2(T ′)1/2| Ā1/2
T ∇(pn − p0)|

≤ ChT

n∑
i=1

| Ā1/2
T ∇(pi − pi−1)|

≤ C
�

1/2
B(T )

λ
1/2
B(T )

{
1 + oscT (A; T )

}

×
{

‖∇(uS − u)‖A;B(T ) + oscT ( f ; B(T ))
}

by noting that all triangles in B(T ) have about the same diameter and employing
(4.24). We ‘sum’ over T ′ ⊂ B(T ) and observe that the number of triangles in B(T )
is bounded in terms of αmin. Inserting the resulting inequality in (4.22) then finally
yields the claimed estimate. ��
Remark 4.2 (Continuity of coefficient matrix) The continuity of the coefficient
matrix A plays a crucial role in the proof of Proposition 4.2. In fact, arranging the
data of (2.4) and (2.7) such that

A(x1, x2) =
{

Id
2 Id

and u(x1, x2) = ūS(x1, x2) =
{

1 + x1 if x1 ≤ 0,
1 − 1

2 x1 if x1 ≥ 0

are exact and approximate solutions reveals that a smoothing procedure satisfying
(3.1a) cannot be locally nondeteriorating if A has jumps.
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The combination of Propositions 4.1 and 4.2 implies local lower bounds for
the energy norm error. For their formulations, it is convenient to use the indicators

ρz := �
−1/2
z ρz γ z := �

−1/2
z γz (4.25)

for all z ∈ N , where γz := γ�z with � so large such that N� = N .

Theorem 4.2 (Local lower bounds) The indicators ζz , ρz , γ z , are bounded by
the local energy norm error. More precisely, for any z ∈ N ,

ζz +ρz +γ z ≤CκB(ωz)

[
‖∇(uS − u)‖A;B(ωz) + oscT

(
f ; B(ωz)

) + oscT (g;ωz)
]
,

with C depending only on αmin and κB(ωz) satisfies (4.21) where T is replaced by
ωz and B(ωz) := ⋃{T ∈ T : T ∩ ωz �= ∅}.

4.3 Global lower bounds

In this subsection we derive global lower bounds and thus analyze the global sharp-
ness of the upper bound in Theorem 4.1. Most of these global bounds readily follow
from the local ones in the preceding subsection 4.2.

Let us start with the counterpart of Proposition 4.1.

Proposition 4.3 (Global lower bounds with smoothed gradient) The con-
tributions ζ , ρ, and γ of the estimator are bounded in the following way:

ζ ≤ ‖∇(uS − u)‖A + ‖GuS − ∇u‖A ,

ρ ≤ C1 maxz∈N
√
�z/λz

[
‖GuS − ∇u‖A + oscT ( f ;�)+ oscT (g;�)

]
,

γ ≤ C2
√
��/λ� ‖GuS − ∇u‖A ,

where both constants C1 and C2 depend only on αmin and µ in (2.6).

Proof The first inequality is an immediate consequence of the triangle inequality.
The second one follows from squaring, multiplying with λz , and summing up its
local counterparts in Proposition 4.1.

The third inequality is more involved. Defining χ := ∑
�≥0

∑
z∈Ñ�\	D

〈R, φ�z〉
φ�z , we obtain

γ 2 :=
∑
�≥0

∑

z∈Ñ�

γ 2
�z = 〈R, χ〉 ≤ ‖GuS − ∇u‖A �

1/2
� ‖∇χ‖

and so we can conclude by showing ‖∇χ‖ ≤ γ . To this end, we adapt some lines
from the proof of Chen/Wu [11, Theorem 2.2] and start with

‖∇χ‖2 ≤ 2
∑
�≥0

∑

z∈Ñ�

∑
m≥�

∑

y∈Ñm

γ�zγmy

∣∣∣∣
∫

�

∇φ�z · ∇φmy

∣∣∣∣ . (4.26)
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Let us denote by E�z the union of edges of T� that are contained in the support of
φ�z . Given z ∈ Ñ� and y ∈ Ñm such that m ≥ �, we observe∫

�

∇φ�z · ∇φmy = 0 whenever y �∈ E�z (4.27a)

and, otherwise, ∣∣∣∣
∫

�

∇φ�z · ∇φmy

∣∣∣∣ ≤ ‖∇φ�z‖L∞(�)
∥∥∇φmy

∥∥
L1(�)

≤ C
hm

h�
= Cqm−� (4.27b)

in view of

‖∇φ�z‖L∞(T ) ≤ Ch−1
� for all T ∈ T� and

‖∇φmz‖L1(T ) ≤ L2(T ) ‖∇φmz‖L∞(T ) ≤ Chm for all T ∈ Tm .

Moreover, setting Nm,�z := Ñm ∩ E�z and using Cauchy-Schwarz, we get
∑
m≥�

∑
y∈Nm,�z

γmyqm−� =
∑
m≥�

∑
y∈Nm,�z

q3(m−�)/4[γmyq(m−�)/4]

≤
[ ∑

m≥�

∑
y∈Nm,�z

q3(m−�)/2]1/2[ ∑
m≥�

∑
y∈Nm,�z

q(m−�)/2γ 2
my

]1/2
.

Since each Nm,�z with m ≥ � has at most Ch�/hm ≤ Cq�−m elements and there
holds

∑
m≥� q(m−�)/2 = 1/(1 − √

q), the first factor is bounded in terms of αmin
and q whence

∑
m≥�

∑
y∈Nm,�z

γmyqm−� ≤ C
[ ∑

m≥�

∑
y∈Nm,�z

q(m−�)/2γ 2
my

]1/2
.

Inserting (4.27) into (4.26) and the last inequality after another Cauchy-Schwarz,
we derive

‖∇χ‖2 ≤ C
∑
�≥0

∑

z∈Ñ�

γ�z
∑
m≥�

∑
y∈Nm,�z

γmyq(m−�)

≤ Cγ
[∑
�≥0

∑

z∈Ñ�

∑
m≥�

∑
y∈Nm,�z

q(m−�)/2γ 2
my

]1/2
.

It therefore remains to estimate the term in the square root by γ 2. Thanks to Fubini,
this term equals ∑

m≥0

∑

y∈Ñm

γ 2
my

∑
�≤m

∑
z:y∈Nm,�z

q(m−�)/2,

where ‘z : y ∈ Nm,�z’ stands for those z ∈ Ñ� with y ∈ Nm,�z . Since the number
of edges in Tm containing y is bounded by C , the same holds for the number of
these z. Consequently, we have

∑
�≤m

∑
z:y∈Nm,�z

q(m−�)/2 ≤ C/(1−√
q),which

finishes the proof. ��
Finally, we prove the global counterpart of Theorem 4.2.
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Theorem 4.3 (Global lower bound) Denoting the constant in the upper bound
of Theorem 4.1 by C1, we have the complementing global lower bound

ζ + C1(ρ + γ ) ≤ C2κ
2
�

[
‖∇(uS − u)‖A;� + oscT

(
f ;�) + oscT (g;�)

]
,

where C2 depends only on αmin and µ in (2.6) and κ� satifies (4.21), where T is
replaced by �.

Proof In view of Proposition 4.3, we first show that the smoothing procedure σ
is (globally) nondeteriorating. To this end, we square the inequality in Proposi-
tion 4.2 and sum over all T ∈ T . Since during the summation the number of hits
for a triangle is bounded uniformly in terms of the minimum angle of T0, we obtain

‖GuS − ∇u‖A ≤ Cκ�
[
‖∇(uS − u)‖A;� + oscT

(
f ;�)]

.

We conclude by inserting this estimate in the ones of Proposition 4.3. ��

5 Adaptive algorithm

This section proposes an adaptive algorithm based upon §4 and briefly describes the
implementation used for the numerical results in §6. Main feature of the algorithm
is that it benefits from superconvergence of the smoothed gradient in stopping and
adaptivity.

5.1 Adaptivity and superconvergence

Let us first formulate the main steps of our algorithm and then discuss the role of
the a posteriori bounds in §4.

Algorithm 5.1 Suppose that a macro triangulation T0 satisfying (2.5), an approx-
imation C̃ of the constant in Theorem 4.1, a tolerance tol > 0, and a parameter
θ ∈ (0, 1] are given. Set k := 0 and iterate

(1) Obtain uk by solving (2.7) on Tk approximately and compute the corresponding
error indicators.

(2) If ζk + C̃(ρk + γ k + δk) ≤ tol, then STOP.
(3) With the marking indicators µkz := ζkz + ρ

kz
+ γ

kz
+ δkz , z ∈ Nk and

µk,max := maxz∈Nk µkz , define

Mk := {z ∈ Nk | µkz ≥ θµk,max}.

(4) Obtain a new (conforming) triangulation Tk+1 from Tk by bisecting at least
all the triangles of the marked stars ωz , z ∈ Mk , and increment k.
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In order to analyze the stopping test, let us observe that the global bounds in
§4.1 and §4.3 imply

‖∇(uk − u)‖A ≤ ζk + C(ρk + γ k + δk)

≤ ‖∇(uk − u)‖A + Cκ�
{ ‖Guk − ∇u‖A + εk

}

≤ Cκ2
�

{ ‖∇(uk − u)‖A + εk
}

with εk := oscTk ( f ;�)+ oscTk (g;�)+ δk , which is expected to converge faster
than the error. This inequality chain immediately yields the following statements.

Corollary 5.1 (Stopping test) The stopping test in step (2) is reliable when-
ever C̃ overestimates the constant in Theorem 4.1 and it is efficient with constant
C̃C−1κ2

� up to higher order terms.
In addition, regardless of the gap κ2

� and the choice of C̃, the stopping test is
asymptotically exact if ‖Guk − ∇u‖A + εk = o

( ‖∇(uk − u)‖A
)

for k → ∞.

Section 4.2 leads to the following local inequality chain: for any z ∈ Nk ,

µkz ≤ ‖∇(uk − u)‖Aφz
+ C

{ ‖Guk − ∇u‖Aφz
+ εkz

}

≤ CκB(ωz)

{ ‖∇(uk − u)‖A;B(ωz) + εkz
}
,

where εkz := oscTk

(
f ; B(ωz)

) + oscTk

(
g; B(ωz)

) + δkz , which is expected to be
asymptotically smaller than the local error. We thus have the following corollary.

Corollary 5.2 (Marking indicators) In any event, each marking indicator µkz ,
z ∈ Nk , is efficient with constant CκB(ωz) up to higher order terms.

Moreover, if‖Guk − ∇u‖Aφz
+εkz is negligible with respect to‖∇(uk − u)‖Aφz

,
it is efficient with constant close to 1.

The indicator µ̃kz := ζkz +ρkz +γ kz + δkz , which appears in the stopping test,
has similar properties. However, its ‘security part’ ρkz + γ kz offers less protection
from overestimation than ρ

kz
+ γ

kz
of µkz .

5.2 Implementation in ALBERTA and parameters

We have implemented Algorithm 5.1 within the framework of the finite element
toolbox ALBERTA [22] of Schmidt/Siebert. The theory in §4 neglects numerical
integration. For nonpolynomial integrands, we therefore use the quadrature formula
with the highest available order, except for §6.1 where we integrate exactly.

The computation of the error indicators ζk , ρk , δk , and their variants is explicit
and quite simple: only standard operations on the current triangulation are needed.
For the computation of γ k and variants, one can exploit the hierarchical structure
of the ALBERTA mesh in order to simplify its computation; the resulting cost is
thus below one multigrid iteration.

In view of (4.18), we actually implemented the following form of the estimator:

Ek :=
[(
ζk + C1ρk + C2γ k

)2 + C3δ
2
k

]1/2
.
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For the simulations in §6, we chose C1 = 1/5, C2 = 1/3, and C3 = 1; the first two
values are numerically equilibrated for the used macro triangulations, while the
third one is an ad hoc choice. We used θ = 0.5 for the parameter of the maximum
strategy.

6 Numerical results

This last section is devoted to numerical tests that confirm, complement, and apply
the theory in §4. In particular, the numerical examples illustrate

• that the principal part ζk alone is in general not reliable and thus should not be
used in a ‘black box algorithm’,

• that the superconvergence takes place also for unstructured inital meshes and
singular problems,

• the relevance of asymptotic exactness for stopping.

6.1 Oscillatory load

We consider (2.4) with the following data:� = (0, 1)2, 	D = ∂�, A = Id, v = 0,
and the load term is 0 in (0, 0.5) × (0, 1) and has a checkerboard structure in
(0.5, 1)× (0, 1):

f (x1, x2) = 104 ·
{

0 if x1 ∈ (0, 0.5)
χ(x1)χ(x2) if x1 ∈ (0.5, 1)

(6.1)

where χ(s) = sgn sin(32πs), s ∈ R is a ‘characteristic’ function. Clearly, u �= 0.
Figure 3 depicts approximate solutions and meshes of selected iterations, where

the initial mesh consists of the four congruent triangles induced by the diagonals
of the unit square.

Note that the load function (6.1) is L2(�)-orthogonal to the finite element space
over the initial and (at least) 4 next triangulations. Consequently, uk = 0 and thus

Fig. 3 Example (6.1): approximate solutions and meshes for iterations k = 4 (left) and k = 5
(right).
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ζk = 0 for k = 0, . . . , 4. This shows that the principal part ξk alone is not reliable
and may not provide any information for marking. Nevertheless, here thanks to the
security parts ρk and ρ

kz
, Algorithm 5.1 does not stop and introduces a reasonable

mesh grading during these first iterations.
A similar failure of the principal part ζk , which is then cured by δk and δkz ,

takes place for oscillatory Dirichlet boundary values; cf. also the next example
§6.2.

6.2 Interior and ‘boundary’ layer

The following example, which is taken from [19], illustrates that the extreme and
somehow artificial situation of §6.1 may be ‘partially’ encountered in practice,
entailing underestimation of the error. Let � be as in Figure 4, 	D = ∂�, A = Id,
as well as v and f such that

u(x) = arctan
(
60(|x |2 − 1)

)
(6.2)

is the exact solution. Notice that the initial mesh is unstructured, that the layer
{x ∈ � | |x | = 1} crosses the boundary ∂�, and that the load term oscillates
across it. Correspondingly, relevant parts of it are L2(�)-orthogonal to the finite
element space as long as the triangles in that region are relatively coarse.

As a consequence and as can be seen from Table 2, the principal part ζk underes-
timates the error in the beginning but its effectivity index improves with refinement
and even reaches values quite close to 1. The latter is due to the superconvergence
of the smoothed gradient and thus, in agreement with Corollary 5.1, the effectivity
index of the total estimator Ek approaches 1 from above.

Notice that the effectivity index of principal term ζk gets closer to 1 than that
of the total estimator Ek . It may therefore be possible to improve the latter one by
deriving a sharper upper bound that, in contrast to Theorem 4.1, takes the angle
between ∇uk − Guk and Guk − ∇u into account.

Fig. 4 Example (6.2): solution and mesh of iteration k = 0 (left) and k = 9 (right).
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Table 2 Example (6.2): number of DOFs, error of untreated and smoothed gradient, and
effectivity indices for selected iterations.

k #DOFs ‖∇(uk − u)‖A ‖Guk − ∇u‖A
ζk

‖∇(uk − u)‖A

Ek

‖∇(uk − u)‖A

0 18 3.090e+01 2.754e+01 0.478 10.174
3 276 2.694e+01 2.705e+01 0.357 2.931
6 2 227 1.362e+01 1.430e+01 0.737 2.174
9 12 253 4.636e+00 3.438e+00 0.994 2.034

12 54 226 1.971e+00 7.797e−01 0.996 1.560
15 391 889 7.060e−01 1.860e−01 0.992 1.338
17 1 350 407 3.791e−01 8.787e−02 0.993 1.290

6.3 Crack problem

The solution (6.2) is in H2(�), while the solution of the next example has a singu-
larity. Let� = {|x1|+|x2| < 1}\{0 ≤ x1 < 1, x2 = 0},	D = ∂�, A = Id, f = 1
on �, and v such that the exact solution is in polar coordinates (r, θ) given by

u(r, θ) = r1/2 sin(θ/2)− 1
2r2 sin2 θ. (6.3)

Due to the r1/2-singularity, u �∈ H2(�). The second derivatives of u however exist
in L1(�) and so the error of nonlinear approximation decays with #DOFs−1/2.

Figure 5 and Table 3 show that, in spite of the presence of the singularity,
the smoothed gradient is superconvergent, whence the effectivity index of Ek ap-
proaches again 1 from above. Notice also that the decay of ‖∇(uk − u)‖A is opti-
mal in that it coincides with the one of nonlinear approximation. This confirms the
efficiency of the marking indicators stated in Corollary 5.2.

6.4 Anisotropic ellipticity

We conclude with an example where the condition number of the coefficient matrix
A is large. Let � ∈ (0, 1)2 and

Fig. 5 Example (6.3): domain and solution of iteration k = 17 (left). Log-log plot of error of
the untreated (‘+’) and smoothed (‘◦’) gradient versus number of DOFs; the decay rates −0.5
and −0.6 are indicated by dashed lines (right).
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Table 3 Example (6.3): number of DOFs, error of untreated and smoothed gradient, and effec-
tivity indices for selected iterations.

k #DOFs ‖∇(uk − u)‖A ‖Guk − ∇u‖A
ζk

‖∇(uk − u)‖A

Ek

‖∇(uk − u)‖A

0 5 7.839e−01 6.996e−01 0.690 1.347
5 192 1.791e−01 1.746e−01 1.043 1.662

10 614 8.397e−02 4.149e−02 1.008 1.370
15 2 930 3.508e−02 1.131e−02 0.997 1.278
20 16 643 1.425e−02 3.423e−03 0.997 1.230
25 86 203 6.175e−03 1.090e−03 0.998 1.178
30 456 913 2.693e−03 3.738e−04 0.999 1.143

A =
(

0.1 0
0 10

)
(6.4a)

and consider two exact solutions

ui (x1, x2) = 10−(i−1) sin(πxi ), i = 1, 2, (6.4b)

combined with appropriate homogeneous Dirichlet and Neumann conditions so that
the discretization is conforming. The solutions u1 and u2 have the same energy
norm and profile, but depend, respectively, only on the direction associated to the
eigenvalue 0.1 or 10. One thus expects that the difference ui

S −ui between approx-
imate and exact solution depends ‘mainly’ on the direction xi , in particular when
the triangulation has a suitable structure.

To approximate both exact solutions u1 and u2, we employed Algorithm 5.1
and the standard adaptive algorithm of ALBERTA using the explicit residual esti-
mator (1.2) multiplied by C1 = 1/5 and the maximum strategy. The results of

Table 4 Example 6.4: number of DOFs, error and effectivity indices of Ek (left subcolumns)
and ηk (right subcolumns) related to minimum (i = 1) and maximum (i = 2) eigenvalue of A.

i = 1

k #DOFs ‖∇(uS − u)‖A
Ek or

√
10 ηk

‖∇(uS − u)‖A

0 0 5 5 7.002e−01 7.002e−01 0.582 0.671
3 3 145 121 7.917e−02 7.917e−02 1.260 1.063
6 9 6 849 6 393 1.025e−02 1.021e−02 1.217 1.088
9 34 98 683 106 757 2.678e−03 2.540e−03 1.175 1.176

12 305 456 245 446 585 1.255e−03 1.251e−03 1.111 1.097

i = 2

k #DOFs ‖∇(uS − u)‖A
Ek or

√
10 ηk

‖∇(uS − u)‖A

0 0 5 5 4.153e−01 4.153e−01 9.381 10.643
3 3 145 121 4.643e−02 4.689e−02 3.920 12.213
6 6 6 805 6 521 5.968e−03 6.011e−03 2.195 12.178
9 9 97 267 101 675 1.575e−03 1.516e−03 2.497 12.186

12 11 456 055 413 225 7.388e−04 7.528e−04 1.942 12.175
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these four simulations, which all started from the initial mesh in §6.1, are given in
Table 4.

We observe that, on comparable meshes, the energy norm error for i = 1 is
a bit larger than the one for i = 2. This seems to be plausibile, because the case
i = 1 of the minimum eigenvalue is less well-conditioned.

For the latter case i = 1, both estimators have effectivity indices that are bigger
but close to 1, while the standard residual estimator needs more iterations to reach
a given tolerance. The higher number of iterations seems to be partially due to the
maximum strategy: for example, with the fixed fraction strategy of Dörfler [13], the
errors of 1.624e−03 and 8.053e−04 are reached with 267 905 and 1 070 657 DOFs
in 46 and 47 iterations, respectively. In any case, the lower iteration numbers with
the marking indicators µkz , z ∈ Nk , underlines the significance of Corollary 5.2.

For the case i = 2 of the maximum eigenvalue, both estimators start with an
effectivity index of about 10. However, the effectivity index of Ek improves with
refinement, while the one of the residual estimator

√
10 ηk remains about the same.

In view of the other case i = 1, the large effectivity indices of
√

10 ηk are not due
to a bad equilibration of the constant C1 in (1.3). The improving effectivity indices
of Ek are again a consequence of the superconvergence of the smoothed gradient
and Corollary 5.1. For given tolerances, the consequences in terms of CPU time
and #DOFs of these different effectivity indices are illustrated in Table 1 of the
introduction §1; the CPU times correspond to a gcc compilation on an IBM Think
Pad R40 with a 2 GHz Pentium 4M processor and 512 MB.
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