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Abstract The Gautschi-type method has been proposed by Hochbruck and Lub-
ich for oscillatory second-order differential equations. They conjecture that this
method allows for a uniform error bound independent of the size of the system.
The conjecture is proved in this note.
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1 Introduction

In [5], Hochbruck and Lubich consider the Gautschi-type method for the solution
of systems of oscillatory second-order differential equations

y′′ = −Ay + g(y), y(0) = y0, y′(0) = y′
0, (1)

where A is a symmetric and positive semi-definite real matrix of arbitrarily large
norm. The aim is to use step sizes that are not restricted by the large norm of A
or, in more physical terms, by the frequencies of A, which are the eigenvalues of
� := √

A. The Gautschi-type method, which is based on the requirement that it
solves exactly linear problems with constant inhomogeneity g, is given by

yn+1 − 2 cos (h�) yn + yn−1 = h2 sinc2
(

h�

2

)
g(φ(h�)yn),

with the filter function φ whose purpose is to filter out resonant frequencies at
integer multiples of π .

The following error bound for the Gautschi-type method is proved in [5].
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Theorem 1 If the solution of system (1) satisfies the finite-energy condition

1

2
y′(t)T y′(t) + 1

2
y(t)T Ay(t) ≤ 1

2
K2

for 0 ≤ t ≤ T , then the error of the Gautschi-type method for 0 ≤ tn = nh ≤ T
is bounded by,

‖y(tn) − yn‖ ≤ h2C �(n, N),

where C depends on ‖y(t0)‖, T , ‖g‖, ‖gy‖, ‖gyy‖, φ and K . The term �(n, N) :=
min{log(n + 1) log(N + 1),

√
N} is slowly growing with the number n of steps

taken and the dimension N of system (1).

The conjecture is that the term �(n, N) can be dropped. This question is
of obvious interest if the system (1) arises from a semi-discretisation of wave
equations.

The conjecture is proved in section 2 by using an alternative technique of esti-
mating the componentwise product En • G of the Jacobian G of g with a matrix
En describing all possible resonances between the frequencies.

2 Proof of the uniform error bound

To prove the conjecture of Hochbruck and Lubich in [5], one has to bound ‖En•G‖
in the norm induced by the Euclidean norm, where En = (

εn(αj , αk)
)N
j,k=1 and

εn(α, β) = 1

n

1

β
Sn(α, β)I (α, β),

with

Sn(α, β) = 2
n−1∑
j=0

sin(j + 1)α

sin α
e−ijβ

and

I (α, β) = −
(

cos β − cos α

β2 − α2 + 1

2
· sin2 α

2(
α
2

)2 · φ(β)

)
.

A uniform bound is stated in Lemma 1 and proved for the filter function

φ(β) = sin β

β
. (2)

This filter function is chosen for the sake of a simpler proof, but the technique
of the proof can be used to derive bounds of the same type for many more filter
functions.
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Lemma 1 Let En be the matrix
(
εn(αj , βk)

)N
j,k=1, where αj , βk are arbitrary real

numbers and the filter function (2) is used. In the matrix norm induced by the
Euclidean norm the componentwise product of En with an arbitrary N ×N matrix
G is bounded by

‖En • G‖ ≤ 1

6
‖G‖.

Note: The bound is independent of n and of the size N of the matrices involved.

Proof The crux is to use the two-dimensional Fourier transform. If it can be shown
that εn(α, β) is the Fourier transform of an L1-function ε̌n(x, y), that is

εn(α, β) =
∫ ∞

−∞

∫ ∞

−∞
ε̌n(x, y)e−iαx−iβy dxdy =: F(ε̌n(x, y)), (3)

then it holds that

En • G =
∫ ∞

−∞

∫ ∞

−∞
ε̌n(x, y) Dα(x) · G · Dβ(y) dxdy

with

Dα(x) = diag(e−iα1x, · · · , e−iαNx),

Dβ(y) = diag(e−iβ1y, · · · , e−iβNy).

Hence it follows

‖En • G‖ ≤
∫ ∞

−∞

∫ ∞

−∞
|ε̌n(x, y)|‖G‖dxdy = ‖ε̌n‖1‖G‖.

Standard Fourier techniques can be used to find ε̌n. An indicator function for the
set A is designated by 1A(x, y) in the following. The equations

cos β − cos α

β2 − α2 = F
(

−1

4
1{|x|+|y|≤1}(x, y)

)

and

1

2
· sin2 α

2(
α
2

)2 · sin β

β︸ ︷︷ ︸
=φ(β)

= F
(

1

4
(1 − |x|)1[−1,1]2(x, y)

)

are readily justified. The second equation follows by two one-dimensional Fourier
transformations and this is where the filter function φ(β) enters the proof. The
one-dimensional inverse Fourier transform of the filter function φ(β) needs to be
known. If one defines

h(x, y) := −1

4
1{|x|+|y|≤1}(x, y) + 1

4
(1 − |x|)1[−1,1]2(x, y)

then

−I (α, β) = F (h(x, y)) ,

and therefore
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i

β
I (α, β) = F(f (x, y)), withf (x, y) :=

∫ y

−∞
h(x, v) dv, (4)

where f ∈ L1 has bounded support. A straightforward calculation using (4) now
shows that εn(α, β) (with filter (2)) is the Fourier transform of the function

ε̌n(x, y) = −2i

n

n−1∑
j=0

j∑
l=0

f (x − j + 2l, y − j), (5)

where

f (x, y) =




0 for |x| ≥ 1 or |y| ≥ 1
1
4 (1 − |x|)(y + 1) for |x| < 1, −1 < y ≤ −1 + |x|

− 1
4 |x|y for |x| < 1, −1 + |x| < y < 1 − |x|

1
4 (1 − |x|)(y − 1) for |x| < 1, 1 − |x| ≤ y < 1.

Since f has bounded support, the same is true for ε̌n for fixed n, and hence it
is in L1. The bound ‖ε̌n‖1 = 1/6 for all n is derived by calculating the L1-norm
of ε̌n explicitly. The support of ε̌n is a triangle composed of squares. Fortunately,
the shifted versions of function f in (5) cancel out each other in the interior of
the triangle and ε̌n is only non-zero on the boundary consisting of 4n unit squares
where the function ε̌n has L1-norm (2/n) · ‖f ‖1/4 = 1/(24n) (cf. Fig. 1). Hence
‖ε̌n‖1 = 4n/(24n) = 1/6. The pictorial calculation of ‖ε̌n‖1 can be conducted
rigorously by using the function

b(x, y) =
{ − 1

4xy for y < 1 − x
1
4 (1 − x)(y − 1) for 1 − x ≤ y

to write f as

f (x, y) = b(x, y) · 1[0,1]2(x, y) + b(−x, y) · 1[0,1]2(x + 1, y)

−b(−x, −y) · 1[0,1]2(x + 1, y + 1) − b(x, −y) · 1[0,1]2(x, y + 1).

The function b has the property

b(x, y) = b(1 − x, 1 − y), for all x, y. (6)

Fig. 1 − 1
2i

ε̌1(x, y) = f (x, y) and − 3
2i

ε̌3(x, y) with filter (2)
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A straightforward but tedious calculation using (6) shows that ε̌n is given by

ε̌n(x, y) = −2i

n

n−2∑
j=−1

−b(−x − j − 1, −y + j + 1) · 1[0,1]2 (x + j + 2, y − j)

−2i

n

n−1∑
j=0

−b(x − j, −y + j) · 1[0,1]2 (x − j, y − j + 1)

−2i

n

n−1∑
l=0

b(x − n + 2l + 1, y − n + 1) · 1[0,1]2 (x − n + 2l + 1, y − n + 1)

−2i

n

n∑
l=1

b(−x + n − 2l + 1, y − n + 1) · 1[0,1]2 (x − n + 2l, y − n + 1).

Since the interior of the support of the functions in this sum is disjoint, the L1-norm of
ε̌n(x, y) can be calculated by calculating the L1-norm of each function in the sum. By using
simple integral transformations, it can be seen that all functions have the same L1-norm, namely
‖(2/n) · b · 1[0,1]2‖1 = (2/n) · ‖f ‖1/4, hence

‖ε̌n‖1 = 4n · 2

n
·
∫ 1

0

∫ 1

0
|b(x, y)|dx dy = 1

6
(= 2‖f ‖1).

�	

3 Concluding remarks

The Gautschi-type method allows for a uniform error bound with respect to fre-
quencies and to the dimension of the system solved.A bound uniform in frequencies
has already been proved in [5], and the independence of the dimension is shown
in this note by proving the conjecture. Lemma 1 is a replacement for the Lemmas
4 and 5 in [5] and not only gives improved error bounds but also simplifies the
original proof considerably.

The new technique to estimate the componentwise product of matrices has been
inspired by a similar technique of Hochbruck and Lubich in [4] where they used a
one-dimensional Fourier transform for a matrix that depends only on differences
of frequencies. The generalisation for any two-dimensional function evaluated at
the frequencies using a two-dimensional Fourier transform is not obvious and only
possible due to the oscillatory nature of the filter functions. It is hoped that the
presentation of this new technique is helpful for other scientists working with
oscillatory differential equations. A survey of this current research area can be
found in [3].

The removal of the logarithmic term in [5] implies a uniform error bound for
more general equations examined in [1] and [2]. This can be seen easily since the
proof of the error bound for the more general equations is based on Theorem 1.

Lemma 1 improves the original bound for all dimensions since 1/6 ≤ min{log
(n + 1) log(N + 1),

√
N} for N, n ≥ 1. But the most important consequence of

Lemma 1 is that the accuracy of the Gautschi-type method in time is independent
of the grid chosen in space and the relevance this has for semi-discretisations of
partial differential equations.
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