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Abstract We show that a posteriori estimators for the obstacle problem are easily
obtained from the theory for linear equations. The theory would be even simpler
if the Lagrange multiplier does not have a nonconforming contribution as it has in
actual finite element computations.
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1 Introduction

Elliptic obstacle problems often lead to the minimization of a quadratic functional
on a subspace V ⊂ H 1(�),

�(v) := 1

2
a(v, v) − (f, v) (1.1)

subject to the constraint

v(x) ≥ χ(x) for almost all x ∈ �. (1.2)

The solution u can be characterized by the linear equations

a(u, v) = (f, v) + 〈σ, v〉 for all v ∈ V, (1.3)

where σ ∈ V ∗ is the Lagrange multiplier associated to the constraint (1.2). Simi-
larly, when the discrete solution uh in a finite element space Vh has been computed,
one has

a(uh, v) = (f + σh, v) for all v ∈ Vh. (1.4)
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Obviously, uh is also the finite element approximation of the solution of the linear
elliptic problem

a(z, v) = (f + σh, v) for all v ∈ V. (1.5)

There is a well-established theory and a large number of a posteriori error esti-
mators for linear equations, and z − uh can be controlled e. g. by residual based
estimators, by local problems or by hierarchical estimators. More estimators for
linear problems are found in the monographs [1,10].

We will show that all the estimators for ‖z−uh‖1 are also suited for the obstacle
problem and the control of ‖u − uh‖1. The a posteriori error analysis in [2,5–9] is
well understood in this framework. The crucial inequality is

‖u − uh‖1 ≤ ‖z − uh‖1 + higher order terms. (1.6)

It will not be necessary to repeat here the manipulations known from the theory
of linear equations. Of course, one must be aware of traps when looking for a gen-
eral theory. This will be indicated for the estimators in the literature cited above.
We only have to add terms of higher order known from [2,9]. The extra terms are
not intrinsic for obstacle problems; they are caused by the fact that the constraint
(1.2) is often modeled by conditions with point functionals in finite element com-
putations and that L∞(�) 
⊂ H 1(�). – Remark 1(1) below justifies that the extra
terms in (1.6) are labelled as higher order terms.

The efficiency of the estimators is also true if the Lagrange multiplier is incor-
porated into the estimation process; cf. [9]. This will be elucidated for residual
based estimators by a general argument that is also satisfied by estimators based
on local Dirichlet problems, Neumann problems or averaging techniques.

2 The Lagrange multiplier in the estimator

To be specific, let a(·, ·) be the quadratic form (associated to the Poisson equation)

a(u, v) :=
∫

�

∇u(x) · ∇v(x) dx

that is coercive on V := H 1
0 (�), and let (·, ·) refer to the inner product in L2(�).

Moreover, let V+ := {v ∈ V ; v(x) ≥ 0 a.e.}. The obstacle is assumed to be given
by a function χ ∈ V .

The existence of the solution u ∈ K := {v ∈ V ; v(x) ≥ χ(x) for x ∈ � a.e.}
is clear for the obstacle problem, and there is the well-known characterization

a(u, v − u) ≥ (f, v − u) for all v ∈ K. (2.1)

The associated Lagrange multiplier σ is defined by (1.3), i.e. 〈σ, v〉 := a(u, v) −
(f, v). Here 〈·, ·〉 refers to the pairing of H−1 and H 1

0 , but we will also write (σ, v)
whenever σ can be understood as an L2 function. We rewrite (2.1) as

〈σ, v − u〉 ≥ 0 for all v ∈ K. (2.2)
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By applying this inequality to v := χ , v := 2u − χ and any v ≥ u we obtain

〈σ, u − χ〉 = 0 and 〈σ, w〉 ≥ 0 for all w ∈ V+ , (2.3)

which together with (2.2) provides the complememtarity conditions.
The discretization of the obstacle problem means that the linear space is re-

placed by the finite element space Vh and, in the case of interest, the constraint
(1.2) is replaced by

v(xi) ≥ χ(xi), i = 1, 2, . . . , dim Vh,

where the xi’s are the nodal points of a basis of Vh. The Lagrange multiplier σh

is given by the non-negative residues of the finite element equations in the contact
zone, and

〈σh, vh〉 ≥ 0 for all vh ∈ Vh, vh ≥ 0. (2.4)

Specifically, σh provides a unique functional on Vh, but the extension of σh from
V ∗

h to H−1(�) is not unique. Following the literature, we may represent σh by an
L2 function, and we will understand σh in this way. Since σh arises from point func-
tionals on Vh, the inequality (σh, v) ≥ 0 cannot be guaranteed for all v ∈ V+. For
this reason, an approximation of σ by a nonnegative L2 function is constructed in
[2,9] by considering 〈σh, vh〉 as a lumped integral. In this way, one gets a splitting,

σh = σ+
h + σce with (σ+

h , v) ≥ 0 for all v ∈ V+.

The complement σce carries the consistency error of the extension.
We note that the sign of the Lagrange multipliers has been chosen here as usual

in optimization theory, and σ+
h coincides with −σh(uh) in [9] and with −ρh in [2].

For convenience, we refer to the energy norm and the dual norm that are equiv-
alent to ‖ · ‖1 and ‖ · ‖−1, resp., and extend the symbols also to subsets ω ⊂ �,

|||v|||ω :=
(∫

ω

∇v(x) · ∇v(x) dx

)1/2

,

|||λ|||∗,ω := sup{〈λ, v〉; v ∈ H 1
0 (ω), |||v|||ω = 1}.

The subscript ω will be omitted if ω = �. By definition, |||w||| = |||λ|||∗ if w is the
solution of the auxiliary equation

a(w, v) = 〈λ, v〉 for all v ∈ V. (2.5)

3 Reliable estimators

First we compare the finite element solution of the obstacle problem with the error
of an associated linear elliptic equation. In this way it will be possible to apply
all the well-known a posteriori error estimators for linear problems, and Lemma 1
will be crucial for our investigation.

For convenience, we assume that the obstacle is defined by a function χ =
χh ∈ Vh. (Otherwise there are additional terms as given in [9, (4.1)].)
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Lemma 1 Let uh be the finite element solution of the obstacle problem and z be the
solution of the linear problem (1.5) for which uh is also the finite element solution.
Then

|||u − uh||| ≤ |||z − uh||| + |||σh − σ+
h |||∗ + (σ+

h , uh − χ)1/2. (3.1)

Proof We start with

a(uh − u, v) − a(uh − z, v) = a(z − u, v)

= (f, v) + 〈σh, v〉 − [(f, v) + 〈σ, v〉]
= 〈σ+

h − σ, v〉 + 〈σce, v〉. (3.2)

We recall that σ and σ+
h are nonnegative functionals and that also 〈σ, u − χ〉 = 0

holds according to (2.3). The first term in (3.2) is evaluated for v := uh − u,

〈σ+
h − σ, uh − u〉 = 〈σ+

h , uh − χ〉 − 〈σ+
h , u − χ〉︸ ︷︷ ︸

≥0

− 〈σ, uh − χ〉︸ ︷︷ ︸
≥0

+ 〈σ, u − χ〉︸ ︷︷ ︸
=0

≤ (σ+
h , uh − χ).

Combining the relations above we obtain

|||uh − u|||2 = a(uh − u, uh − u)

≤ a(uh − z, uh − u) + 〈σce, uh − u〉 + (σ+
h , uh − χ)

≤ (|||uh − z||| + |||σce|||∗) |||uh − u||| + (σ+
h , uh − χ).

Note that an inequality for positive numbers of the form x2 ≤ ax + b implies that
x ≤ a + b1/2, and the proof of (3.1) is complete. �
Remark 1 (1) While (σh, uh − χ) = 0, the term (σ+

h , uh − χ) does not vanish
in general. It can be evaluated after uh has been computed. If σ+

h is fixed as
described in [5,9], only those elements of the triangulation contribute which
have one node but not all its nodes in the contact area. We note that (σ+

h , uh−χ)
was expressed in [9, Proposition 3.7] by quantities that occur in the resid-
ual error estimator anyway. In this framework the term |||σ − σ+|||∗ is also
expressed in terms of computable quantities. From the Bramble–Hilbert lemma
it follows that it can be estimated by ch‖σ+‖0 or ch2‖∇σ+‖0.

(2) The term (σ+
h , uh − χ) is treated in [2] by a different technique.

(3) The relation (σ+
h , uh − χ) = −(σ ce, uh − χ) shows that we have an effect of

the point functionals. The representation on the left hand side of the formula,
however, is better suited for numerical computations of an estimator.

(4) An alternative to (3.1) is an estimator that refers to z+, i.e. the solution of

a(z+, v) = (f + σ+
h , v) for all v ∈ V. (3.3)

We obtain by the same arguments as above

|||u − uh||| ≤ |||z+ − uh||| + (σ+
h , uh − χ)1/2. (3.4)

At first glance, this estimate seems to be preferable since there is one term
less. This conceals the fact that uh is the finite element solution of the linear
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problem (1.5), but not of (3.3). The standard a posteriori error estimators can
be directly applied to estimate |||uh − z||| while modifications are required for
bounds of |||uh − z+||| since uh is not the finite element approximation of z+.

(5) The extra terms do not occur if the constraint (1.2) is modeled by inequalities
in L2(�) as e. g. in [8].

Following [9] we also want an estimate that includes the discretization error of
the Lagrange multiplier.

Corollary 1 Let uh be the finite element solution of the obstacle problem and z be
the solution of the auxiliary problem (1.5). Then

|||u − uh||| + |||σ − σh|||∗ ≤ 3|||z − uh||| + 2|||σh − σ+
h |||∗ + 2(σ+

h , uh − χ)1/2.

(3.5)

Proof Recalling (2.5) we have by the definition of the dual norm and the triangle
inequality

|||σ − σh|||∗ = |||u − z||| ≤ |||u − uh||| + |||uh − z|||.
Combining this inequality with (3.1) we obtain (3.5). �

For completeness and in order to be specific in the next section, we provide the
application to residual based estimators; cf. [1,10]. Let �h be the set of all inter-
element boundaries of the triangulation Th that is assumed to be shape-regular.
When we look at uh as the finite element solution of (1.5), there are the area-based
residuals and the edge-based jumps,

RT := RT (uh) := 	uh + f + σh for T ∈ Th ,

Re := Re(uh) := [[ ∂uh

∂n
]] for e ∈ �h .

They build the local estimator

ηT :=
{

h2
T ‖RT ‖2

0,T + 1

2

∑
e∈∂T

he‖Re‖2
0,e

}1/2

for T ∈ Th. (3.6)

Theorem 1 Let uh be the finite element solution of the obstacle problem. Then
there exists a constant c such that

|||u − uh||| + |||σ − σh|||∗ ≤ c




∑
T ∈Th

η2
T ,R




1/2

+ 2|||σh − σ+
h |||∗

+2(σ+
h , uh − χ)1/2.

Theorem 1 contains the error estimates in [5,8,9] if σ+
h is fixed as in the cited

papers. Similarly, Corollary 1 can be used to derive the a posteriori estimates in
[2,6,7]. We also drop the application of Corollary 1 to further estimators and note
that the direct application is not always visible at first glance. So the estimates in
[2] follow directly from [4], but the different treatments of the extra terms conceal
this fact.
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4 Efficiency of the estimators

When the efficiency of the estimator (3.6) is investigated, it turns out that the origin
of the Lagrange multipliers (i.e. point functionals) formally does not imply com-
plications as in the upper estimates. As a point of departure we recall that we know
from the linear theory [1,10] that

ηT ≤ c


|||z − uh|||2ωT

+
∑

T ′⊂ωT

h2
T ′‖f − fh‖2

0,T ′




1/2

. (4.1)

Here, as usual, ωT := ∪{T ′ ∈ Th; T and T ′ have a common edge or T ′ = T }.
Moreover, fh is an approximation of f by piecewise linear (or quadratic) poly-
nomials, and σh is assumed to be chosen as a function in the same polynomial
space.

Although we have |||uh−z||| ≤ |||uh−u|||+|||u−z||| = |||uh−u|||+|||σh−σ |||∗,
we cannot use the triangle inequality for replacing |||uh − z|||ω by |||uh − u|||ω +
|||σh − σ |||∗,ω. Fortunately, (4.1) is obtained in the literature by estimates with test
functions in H 1

0 (ωT ). Specifically, lower bounds with residual error estimators are
usually established by a result that can be formulated as follows; see e.g. [1, pp.
28–31], [3, pp. 174–175] or [10, pp. 16–17]. (Here P2, the space of polynomials
of degree lower or equal 2, may be replaced by another space of polynomials.)

Lemma 2 Let w be the solution of

a(w, v) = (p, v)0,� + 〈q, v〉 +
∑

e

(rh, v)0,e for all v ∈ H 1
0 (�),

where p ∈ L2(�), q ∈ H−1(�) and rh|e ∈ P2 for all edges e. Moreover, let ph

be an approximation of p such that ph|T ∈ P2 for all T . Then we have for each T ,

hT ‖p‖0,T +
∑
e∈∂T

h
1/2
e ‖rh‖0,e ≤ c

(‖w‖ωT
+ hT ‖p − ph‖0,ωT

+ |||q|||∗,ωT

)
.

(4.2)

Now we recall that

a(uh − z, v) =
∑
T

(RT , v)0,T +
∑

e

(Re, v)0,e , (4.3)

a(uh − u, v) =
∑
T

(RT , v)0,T +
∑

e

(Re, v)0,e + 〈σ − σh, v〉 . (4.4)

When comparing (4.3) and (4.4), we see that the residues can be estimated by
|||uh − z||| or by |||uh − u||| as main terms. The first case is well known, and the
difference arises from the last term in (4.4). Thus we obtain

Theorem 2 Let uh be the finite element solution of the obstacle problem and ηT

be the estimator (3.6). Then

ηT ≤ c


|||u − uh|||ωT

+ |||σ − σh|||∗,ωT
+

∑
T ′⊂ωT

hT ′‖f − fh‖0,T ′


 . (4.5)
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The efficiency of estimators based on local problems is also clear; cf. [6,7].
Since test functions with local support are used, we have an analogue of Lemma
2. Moreover, the equivalence of various estimators can be found in [10].
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