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Abstract A class of explicit multistep exponential methods for abstract semilinear
equations is introduced and analyzed. It is shown that the k-step method achieves
order k, for appropriate starting values, which can be computed by auxiliary rou-
tines or by one strategy proposed in the paper. Together with some implementation
issues, numerical illustrations are also provided.
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1 Introduction

In the present paper we derive and analyze a family of explicit multistep exponential
methods for the time integration of abstract semilinear problems

u′(t) = Au(t) + f (t, u(t)), u(0) = u0, 0 ≤ t ≤ T . (1)

Problem (1) is assumed to fit in Henry’s setting [6], which covers many inter-
esting applications. To be more precise, we assume that A : D(A) ⊂ X → X is
the infinitesimal generator of a C0-semigroup etA, t ≥ 0, of linear and bounded
operators in a complex Banach space X, with growth governed by

‖etA‖ ≤ Meωt , t ≥ 0, (2)

for some M > 0, ω ∈ R. The class of nonlinearities allowed in this setting depends
on the nature of the semigroup etA, t ≥ 0. If etA, t ≥ 0, is just a C0-semigroup,
we assume, by simplicity, that f : [0, T ] × X → X is globally Lipschitz, i.e.

‖f (t, η) − f (t, ξ)‖ ≤ L‖η − ξ‖, η, ξ ∈ X, 0 ≤ t ≤ T ,
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for some L > 0. However, if the semigroup is analytic, we can afford for stronger
nonlinearities. In this case, for 0 ≤ α < 1, let Xα be the domain of the α-th frac-
tional power of (ν − A), i.e. Xα = D((ν − A)α), for some fixed ν > ω, endowed
with the graph norm ‖ · ‖α of (ν − A)α (different choices of ν > ω result in the
same space Xα and equivalent norms ‖ · ‖α). Then, for an analytic semigroup, the
nonlinearity f is assumed to be defined on [0, T ]×Xα → X, for some 0 ≤ α < 1,
and to be globally Lipschitz

‖f (t, η) − f (t, ξ)‖ ≤ L‖η − ξ‖α, η, ξ ∈ Xα, 0 ≤ t ≤ T , (3)

for some L > 0.
In summary, f is always assumed to satisfy (3) for some appropriate 0 ≤ α < 1

depending on the nature of the semigroup. Although, by simplicity, we assume that
f is globally Lipschitz in the sense of (3), the proof of our main result (Theorem 1)
can easily be adapted to cover the case where f satisfies (3) only in some strip
along the exact solution.

It is well known that, under (2) and (3), problem (1) possesses a unique mild
solution u : [0, T ] → Xα for u0 ∈ Xα [6,24].

In this setting, time discretizations of (1), by means of either Runge-Kutta type
or linear multistep methods, have been widely considered in the literature [5,17–19,
23].

On the other hand, exponential integrators and related variants [4,16,21,22,
27–29] were proposed a time ago as an alternative to those classical methods. How-
ever, exponential integrators were considered of limited practical interest since they
require evaluations of the form

γ (hA)v, v ∈ X, (4)

where either γ (hA) = elhA or

γ (hA) =
∫ l

0
e(l−σ)hAp(σ) dσ, (5)

with p(σ) a polynomial and l ≥ 1 an integer (these integrals can be understood in
Bochner’s sense and they define bounded operators in X [7]). Thus, to implement
an exponential integrator we need to assume that evaluations in (4) can be carried
out, within some prescribed accuracy, by means of suitable auxiliary routines. Of
course, this is a strong assumption from the computational point of view. However,
noticing that the underlying entire functions

γ (λ) =
∫ l

0
e(l−σ)λp(σ ) dσ,

behave like eλ, we can efficiently evaluate (4), by using a Krylov approach [8,
9], at least in case A is a sparse matrix. Moreover, for model problems involving
differential operators with constant coefficients, in canonical domains, this goal
can be achieved by using discrete Fourier techniques (see Section 6).

Actually, as soon as the required evaluations (4) are considered a feasible task, at
least in the context of some relevant applications, exponential integrators have got
a renewed interest [1,2,10–15,21]. While most of these references deal with expo-
nential Runge-Kutta methods, in the present paper we consider a class of explicit



A class of explicit multistep exponential integrators 369

k-step exponential integrators, similar to those in [1,2,22], applied to abstract semi-
linear problems (1). We prove that the k-step method, for arbitrary k ≥ 1, exhibits
full order k under the only assumption that the composition f (t, u(t)) in (1) is
smooth enough in time, so that no order reduction takes place cf. [13]. These meth-
ods might be very competitive, since no solvers are used whatsoever. However, in
the present paper we do not address the comparison of the efficiency of exponential
integrators against the one of classical methods.

The paper is organized as follows. In Section 2 we derive the family of k-step
schemes, whose convergence is analyzed in Section 3. It turns out that, to achieve
the full order, suitable starting values are required. This issue is studied in Section 4.
Section 5 is devoted to implementation details concerning the evaluations in (4).
Finally, some numerical illustrations are shown in Section 6.

2 Construction of the methods

We start by constructing a class of explicit multistep exponential integrators for (1)
in the spirit of [1,2,22].

Let u : [0, T ] → Xα be the solution of (1). In order to derive the k-step method,
let us consider a step-size h = T/N , N ≥ k, and the corresponding time levels
tn = nh, 0 ≤ n ≤ N . The variation-of-constants formula for the interval [tn, tn+k],
n + k ≤ N , reads

u(tn+k) = e(tn+k−tn)Au(tn) +
∫ tn+k

tn

e(tn+k−s)Af (s, u(s)) ds

= ekhAu(tn) + h

∫ k

0
e(k−σ)hAf (tn + σh, u(tn + σh)) dσ. (6)

Then, given approximations un+j ∼ u(tn+j ), 0 ≤ j ≤ k − 1, it is natural to define
the new approximation un+k ∼ u(tn+k) by

un+k = ekhAun + h

∫ k

0
e(k−σ)hAPn,k−1(tn + σh) dσ, (7)

where Pn,k−1 stands for the Lagrange interpolation polynomial of degree k − 1
through the points {(tn+j , f (tn+j , un+j ))}k−1

j=0. It is clear, under the proviso that

both ekhAv and ∫ k

0
e(k−σ)hAσ jv dσ, 0 ≤ j ≤ k − 1,

are computable for any v ∈ X, that (7) defines an explicit time integrator for (1).
Naturally, starting values u0, . . . , uk−1 should be provided (see Section 4).

Notice that in (7) the variation-of-constants formula is used from tn to tn+k ,
while in the ETD integrators of Adams type [1,2,22] it is used from tn+k−1 to tn+k .

Both, for the practical implementation and for the analysis, it is convenient to
write

Pn,k−1(tn + σh) =
k−1∑
j=0

(
σ
j

)
	jfn,
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where fm = f (tm, um), 0 ≤ m ≤ N − 1, and 	 denotes the standard forward
difference operator. Thus, (7) becomes

un+k = ekhAun + h

k−1∑
j=0

γj (k, hA)	jfn, (8)

where

γj (k, λ) =
∫ k

0
e(k−σ)λ

(
σ
j

)
dσ, 0 ≤ j ≤ k − 1.

In Section 3 it is proved that for given starting values u0, . . . , uk−1 ∈ Xα there
holds un+k ∈ Xα for n ≥ 0, so that (8) is well defined.

3 Convergence analysis

Before stating the main theorem of this paper, we need to introduce some notation
and preliminary results.

The product spaces Xk
β , 0 ≤ β ≤ α, are endowed with the norm

‖V ‖β = max
0≤j≤k−1

‖vj‖β, V = [v0, . . . , vk−1]T ∈ Xk
β.

The operator norm of a linear and bounded operator S : Xk
β1

→ Xk
β2

, 0 ≤ βj ≤ α,
j = 1, 2, is denoted by ‖S‖β1→β2 .

On the other hand, for ϕ ∈ C([0, T ], X), set ‖ϕ‖∞ = max
0≤t≤T

‖ϕ(t)‖. Using that

for 0 ≤ σ ≤ k and 0 ≤ β ≤ α we know that

‖(σh)βeσhA‖0→β ≤ Meω∗kh, (9)

where ω∗ = max {ω, 0}, it is clear that for 0 ≤ β ≤ α, j ≥ 0 and 0 < σ ≤ l,
1 ≤ l ≤ k,

‖e(l−σ)hAσ jϕ(σ )‖β ≤ Meω∗kh‖ϕ‖∞
σ j

(l − σ)βhβ
.

This bound implies that there exists c1 = c1(k, β) > 0 such that
∥∥∥∥
∫ l

0
e(l−σ)hAσ jϕ(σ ) dσ

∥∥∥∥
β

≤ c1Mh−βeω∗kh‖ϕ‖∞, (10)

for 1 ≤ l ≤ k, 0 ≤ j ≤ k − 1, a basic estimate that will be used repeatedly. More-
over, (10) guarantees that γj (k, hA) maps X in Xα , since by (10) with ϕ constant
we get

‖γj (l, hA)‖0→β ≤ c2Mh−βeω∗kh, (11)

for some positive constant c2 = c2(k, β). Thus un ∈ Xα for n ≥ k, when the
starting points lay in Xα .
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Now, given the exact solution u : [0, T ] → Xα of (1), set g(t) = f (t, u(t)),
0 ≤ t ≤ T . For 0 ≤ n ≤ N − k, let P̂n,k−1(t) be the Lagrange interpolation
polynomial of degree k − 1 with P̂n,k−1(tn+j ) = g(tn+j ), 0 ≤ j ≤ k − 1. The
defects ρn+k are then defined by

u(tn+k) = ekhAu(tn) + h

∫ k

0
e(k−σ)hAP̂n,k−1(tn + σh) dσ + ρn+k. (12)

Assume that g ∈ Ck([0, T ], X). The elementary bound for the interpolation
error reads [25]

‖g(tn + σh) − P̂n,k−1(tn + σh)‖ ≤ hk‖g(k)‖∞, (13)

for 0 ≤ σ ≤ k. Now, subtracting (12) from (6), we get

ρn+k = h

∫ k

0
e(k−σ)hA(g(tn + σh) − P̂n,k−1(tn + σh)) dσ,

whence, by (10) and (13), for 0 ≤ β ≤ α, there holds

‖ρn+k‖β ≤ c1Meω∗khhk+1−β‖g(k)‖∞. (14)

For the subsequent analysis it is convenient to rewrite the k-step method as a
one-step scheme. To this end, let us denote Un = [un, . . . , un+k−1]T , U(tn) =
[u(tn), . . . , u(tn+k−1)]T , Rn = [0, . . . , 0, ρn+k−1]T ∈ Xk

α , En = U(tn)−Un and
finally, let M(hA), B(hA) : Xk → Xk be the operators defined by the operator
valued matrices

M(hA) =




0 I 0 . . . 0

0 0 I
. . .

...
...

. . .
. . .

. . . 0

0
. . .

. . .
. . . I

ekhA 0 . . . 0 0




and

B(hA) =




0 . . . 0
...

. . .
...

0 . . . 0
b0(hA) . . . bk−1(hA)


 ,

where

bl(hA) =
k−1∑
j=l

(−1)j−l

(
j
l

)
γj (k, hA), 0 ≤ l ≤ k − 1. (15)

(Notice that bl(hA), 0 ≤ l ≤ k −1, depend also on k, but we drop this dependency
in the notation).
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Throughout this section C > 0 stands for a constant depending only on k, α,
ω, M and T , perhaps with different values at different places.

Now we establish the bounds for lh ≤ T

‖M(hA)l‖α→α ≤ C, l ≥ 0, (16)

‖M(hA)l‖0→α ≤ C · t−α
l , l ≥ k, (17)

‖M(hA)lB(hA)‖0→α ≤ C · t−α
l+1, l ≥ 0. (18)

To this end, we first notice that, due to the circulant structure of the matrix
M(hA), we have

M(hA)pk+r = epkhA · M(hA)r, p ≥ 0, r ≥ 0, (19)

which readily proves (16).
To prove (17), for l ≥ k, we write l = pk + r with p ≥ 1, 0 ≤ r ≤ k − 1.

From (19), (16) and (9) we deduce

‖M(hA)l‖0→α ≤ ‖epkhA‖0→α · ‖M(hA)r‖α→α ≤ C

tαpk

≤ C

tαl
.

Finally, to prove (18) we distinguish two different cases.
If l ≥ k, since clearly ‖B(hA)‖0→0 ≤ C, by (17) we obtain

‖M(hA)lB(hA)‖0→α ≤ C

tαl
≤ C

tαl+1
.

If 0 ≤ l ≤ k − 1 we use (11), (15) and (16) to get

‖M(hA)lB(hA)‖0→α ≤ C

hα
≤ C

tαl+1
.

Now we are in a position to state and prove the main result.

Theorem 1 Let u : [0, T ] → Xα be the solution of (1). Assume that A, f and
α satisfy conditions (2) and (3). Assume also that g(t) = f (t, u(t)), 0 ≤ t ≤ T ,
belongs to Ck([0, T ], X). Let un, 0 ≤ n ≤ N , be the numerical approximation
to u(tn) obtained using the k-step method (8) with h = T/N and given starting
values u0, . . . , uk−1 ∈ Xα satisfying

‖u(tj ) − uj‖α ≤ C0 · hk, 0 ≤ j ≤ k − 1. (20)

Then, there exists K > 0 such that

‖u(tn) − un‖α ≤ K · hk · ‖g(k)‖∞, 0 ≤ n ≤ N.

The constant K depends only on k, α, L, ω, M , C0 and T but it is independent of
h and g.
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Proof For V = [v0, . . . , vk−1]T ∈ Xk
α , set

Fn(V ) = [f (tn, v0), . . . , f (tn+k−1, vk−1)]T ∈ Xk.

Using the identity

h

k−1∑
j=0

γj (k, hA)	jfn = h

k−1∑
l=0

bl(hA)fn+l ,

it is clear that (8) becomes

Un+1 = M(hA)Un + hB(hA)Fn(Un).

Analogously, (12) becomes

U(tn+1) = M(hA)U(tn) + hB(hA)Fn(U(tn)) + Rn+1,

so that, subtracting the last two expressions we get

En+1 = M(hA)En + hB(hA)(Fn(U(tn)) − Fn(Un)) + Rn+1,

which, by the discrete variation-of-constants formula, results in

En = M(hA)nE0

+h

n−1∑
l=0

M(hA)n−1−lB(hA)(Fl(U(tl)) − Fl(Ul))

+
n∑

l=1

M(hA)n−lRl.

Taking norms in this expression leads to

‖En‖α ≤ (I ) + (II ) + (III ), (21)

where

(I ) = ‖M(hA)nE0‖α,

(II ) = h

n−1∑
l=0

‖M(hA)n−1−lB(hA)‖0→α · ‖Fl(U(tl)) − Fl(Ul)‖0,

(I II ) =
n∑

l=1

‖M(hA)n−lRl‖α.

To bound these three terms, we proceed as follows. By (16),

(I ) ≤ C‖E0‖α.

Besides, by (3) and (18),

(II ) ≤ CLh

n−1∑
l=0

‖El‖α

tαn−l

.
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Finally, by decomposing

(III ) =
n−k∑
l=1

‖M(hA)n−lRl‖α +
k−1∑
l=0

‖M(hA)lRn−l‖α

≤
n−k∑
l=1

‖M(hA)n−l‖0→α · ‖Rl‖0 +
k−1∑
l=0

‖M(hA)l‖α→α · ‖Rn−l‖α,

and recalling (14), (17) and (16), we get

(III ) ≤ C

n−k∑
l=1

1

tαn−l

· hk+1 · ‖g(k)‖∞ + C

k−1∑
l=0

hk+1−α · ‖g(k)‖∞

≤ C · hk · ‖g(k)‖∞.

Now, inserting the last estimates in (21), we obtain

‖En‖α ≤ C
(
‖E0‖α + hk · ‖g(k)‖∞

)
+ CLh

n−1∑
l=0

‖El‖α

tαn−l

,

and since ‖E0‖α = O(hk) by hypothesis (20), the proof ends after applying the
Gronwall’s lemma for discrete weakly singular kernels (see e.g. Lemma 4 in [20]
and Theorem 6.1 in [3]) and taking into account that ‖u(tn) − un‖α ≤ ‖En‖α . ��

Notice that with obvious changes in the proof of Theorem 1, we can establish
a similar result for ETD methods of multistep type in [1,2,22].

4 Starting values

In Section 3 it has been shown that the proposed k-step method (8) has order k as
soon as the starting values u0, . . . , uk−1 fulfil (20). This is always true for k = 1,
since u0 = u(0) is given, but for k ≥ 2, k − 1 starting values u1, . . . , uk−1 satis-
fying (20) are required. Thus, let us assume that k ≥ 2. One first possibility is just
to use an auxiliary method to compute u1, . . . , uk−1.

However, in the context of (8), it is natural in the variation-of-constants formula,

u(tj ) = ejhAu0 +
∫ tj

0
e(tj −s)Af (s, u(s)) ds, 1 ≤ j ≤ k − 1,

to replace f (s, u(s)) by its Lagrange interpolation polynomial of degree k − 1
through the nodes {(tl, f (tl, ul))}k−1

l=0 . Then we are led to consider the starting
approximations u1, . . . , uk−1 defined by the implicit system

uj = ejhAu0 + h

k−1∑
l=0

γl(j, hA)	lf0, 1 ≤ j ≤ k − 1, (22)
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which certainly possesses a unique solution U∗ = [u1, . . . , uk−1]T in Xk−1
α . To

see this, we rewrite (22) as a fixed point equation in Xk−1
α

U∗ = N (U∗).

The mapping N : Xk−1
α → Xk−1

α is defined by

N (W) = ξ0 + h
(hA)F(W), W = [w1, . . . , wk−1]T ,

where ξ0 = [ξ01, . . . , ξ0,k−1]T ∈ Xk−1
α has components

ξ0j = ejhAu0 + hγ0(j, hA)f (0, u0), 1 ≤ j ≤ k − 1,

F (W) = [f (t1, w1), . . . , f (tk−1, wk−1)]T ∈ Xk−1 and, finally, 
(hA) is a certain
(k − 1) × (k − 1) operator valued matrix whose entries are linear combinations of
γl(j, hA), 1 ≤ j ≤ k − 1, 1 ≤ l ≤ k − 1.

Notice that (9) and (11) guarantee that ξ0 ∈ Xk−1
α . Moreover, by (3) and (11),

‖N (W2) − N (W1)‖α ≤ Lh1−α‖W2 − W1‖α,

where L = cLMeω∗kh for some c = c(k) > 0, which shows that N is a contraction
for sufficiently small h.

In practice, in view of Theorem 1, it is enough to approximate U∗ within the
order O(hk) in the norm of Xk−1

α . To this end, the fixed point iteration

U [ν+1] = N (U [ν]), (23)

starting from a suitable U [0] = [u[0]
1 , . . . , u

[0]
k−1]T ∈ Xk−1

α can be used. Since, for
ν ≥ 1,

‖U∗ − U [ν]‖α ≤ (Lh1−α)ν‖U∗ − U [0]‖α,

it is of interest to have ‖U∗ − U [0]‖α as small as possible. In fact, assuming that
U [0] is chosen in such a way that

‖u[0]
j − u(tj )‖α ≤ T OL0, 1 ≤ j ≤ k − 1, (24)

we prove below that

‖U∗ − U [0]‖α ≤ Chk+1−α‖g(k)‖∞ + T OL0, (25)

where C is a constant depending on k, α, L, ω, M and tk−1, and g(t) = f (t, u(t)),
0 ≤ t ≤ tk−1.

Thus, one possibility to initialize the k-step exponential method could be:
(a) To apply some suitable auxiliary time integrator to obtain approximations

u
[0]
j ∼ u(tj ), 1 ≤ j ≤ k − 1. For instance, in our numerical illustrations we use

the exponential Euler method for which T OL0 = O(h2).
(b) To use then the fixed point iteration (23) until ‖U [ν+1] − U [ν]‖α ≤ T OL,

with T OL = O(hk).
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To prove (25), we set Ũ = [u(t1), . . . , u(tk−1)]T ∈ Xk−1
α . Inserting Ũ in (22)

defines the defects dj ∈ Xα , 1 ≤ j ≤ k − 1, by

u(tj ) = ejhAu0 + h

∫ j

0
e(j−σ)hAP̂0,k−1(σh) dσ + dj , 1 ≤ j ≤ k − 1,

where again P̂0,k−1(t) is the Lagrange interpolation polynomial of degree k − 1
through the nodes {(tj , g(tj ))}k−1

j=0. Using (13), and proceeding as in the proof of
(14), we readily obtain

‖dj‖α ≤ c1Meω∗khhk+1−α‖g(k)‖∞.

This shows that

Ũ = N (Ũ) + D,

where D = [d1, . . . , dk−1]T ∈ Xk−1
α has α-norm bounded by

‖D‖α ≤ Chk+1−α‖g(k)‖∞,

with C = c1Meω∗kh. Therefore,

‖U∗ − Ũ‖α ≤ ‖N (U∗) − N (Ũ)‖α + ‖D‖α

≤ Lh1−α‖U∗ − Ũ‖α + ‖D‖α,

which results in

‖U∗ − Ũ‖α ≤ C

1 − Lh1−α
hk+1−α‖g(k)‖∞,

for small enough h. This estimate combined with (24), leads to (25).

5 Implementation issues

In this section we derive a recurrence for the evaluation of the entire functions
γj (k, λ), which allows us to evaluate γj (k, h�) in case � is a diagonalizable
matrix. Notice that this situation arises when the operator A itself is diagonalizable
or when the Krylov approach [4,8,9] can be used.

To this end we consider the generating function

G(z, k, λ) =
∞∑

j=0

γj (k, λ)zj .

Since for |z| < 1

(1 + z)σ =
∞∑

j=0

(
σ
j

)
zj ,
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it is clear that, for λ ∈ C and |z| < 1, we have

G(z, k, λ) =
∫ k

0
e(k−σ)λ


 ∞∑

j=0

(
σ
j

)
zj


 dσ

=
∫ k

0
e(k−σ)λ(1 + z)σ dσ

=
∫ k

0
e(k−σ)λ+σ log (1+z) dσ

= (1 + z)k − ekλ

log (1 + z) − λ
.

Therefore, comparing the coefficients in the power expansions

(log (1 + z) − λ)G(z, k, λ) = (1 + z)k − ekλ, (26)

we get the recursion

γ0(k, λ) = ekλ − 1

λ
,

γj (k, λ) =




j∑
m=1

(−1)m−1

m
γj−m(k, λ)


 −

(
k
j

)

λ
, 1 ≤ j ≤ k, (27)

γj (k, λ) =




j∑
m=1

(−1)m−1

m
γj−m(k, λ)




λ
, j > k.

Although (27) is meaningful as a recurrence among entire functions, it does not
provide a practical way of evaluating γj (k, 0) and might result in a loss of accu-
racy for very small |λ| (see e.g. [14]). It turns out that (26), with λ = 0, yields the
analogous recursion

γ0(k, 0) = k,

γj (k, 0) =
(

k
j + 1

)
−

j∑
m=1

(−1)m

m + 1
γj−m(k, 0), 1 ≤ j ≤ k − 1, (28)

γj (k, 0) = −
j∑

m=1

(−1)m

m + 1
γj−m(k, 0), j > k − 1.

On the other hand, for very small |λ|, we could use (27) replacing the right hand
sides by appropriate truncations of their Taylor expansions.

Finally, assuming that A generates a C0-semigroup, due to the fact that the
entire functions γj (k, λ) are the Laplace transforms of measures of bounded var-
iation, the operators γj (k, hA) can also be defined by means of the Hille-Phillips
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holomorphic calculus [7]. This means that the derived recursion (27) remain valid
at the operator level i.e. for λ = hA. Thus, in case ehAv, v ∈ Xα , is computable
and a linear solver for equations hAv = w, w ∈ Xα , is available, (27) provides a
practical way of computing γj (k, hA)v.

6 Numerical illustration

In this section we provide numerical results obtained with the k-step exponential
method (8) for k = 2, 3, 4. We have considered two different test problems.

The first one is the semilinear parabolic problem

∂u

∂t
(x, t) = ∂2u

∂x2 (x, t) +
(∫ 1

0
u(x, t) dx

)
∂u

∂x
(x, t) + �(x, t), (29)

for x ∈ [0, 1] and t ∈ [0, 1], subject to homogeneous Dirichlet boundary condi-
tions. The source term �(x, t) is chosen in such a way that u(x, t) = x(1 −x)et is
the exact solution of (29). This problem fits in our framework with X = C([0, 1]),
endowed with the maximum norm, α = 1/2 and ω = 0 (see e.g. Theorem 4.3.3 in
[26]).

For the spatial discretization of (29), given J = 512, we define the uniform
grid xj = j/J , 1 ≤ j ≤ J − 1. The spatial derivatives are approximated by using
the standard three-point finite differences and the integral has been aproximated
by using the composite Simpon’s rule. In this way, since the exact solution is a
polynomial of degree two in x, there are no spatial errors.

For the time integration we use (8) with k = 2, 3, 4, applied to the semidis-
cretization in space of (29). Then we have to compute γj (k, hA) for the matrix
A ∈ C(J−1)×(J−1),

A = J 2tridiag([1, −2, 1]).
This computation is made after diagonalizing matrix A by means of discrete Fou-
rier techniques and using then the recurrence equations (27) obtained in Section 5.
In Fig. 1 we plot errors against the step-sizes h = 2−l , 2 ≤ l ≤ 9. The errors
are measured at each time level tn, k ≤ n ≤ N , using the discrete α-norm with
α = 1/2. We observe that the slopes of the three lines are 2, 3 and 4, as expected.

The second test problem is the semilinear transport equation

∂u

∂t
(x, t) = −∂u

∂x
(x, t) + u(x, t) − u3(x, t) + �(x, t), (30)

for x ∈ [0, 1] and t ∈ [0, 1], subject to periodic boundary conditions. The source
term �(x, t) is such that u(x, t) = e−t sin2 (πx) + (1 − e−t ) is the exact solution
of (30). This problem fits in our framework with X = W 1,2([0, 1]), α = 0 and
ω = 0 [24].

Problem (30) is first approximated by a 512-point Fourier spectral discretiza-
tion in x. Then, the exponential k-step method (8), with k = 2, 3, 4, is used for the
resulting ODE system in CJ , with J = 512. The application of (8) to this system of
ODEs requires the evaluation of γj (k, hA), where A is the spectral discretization
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Fig. 1 Time error vs. step-size for example (29)

of −∂/∂x. In this example 0 is an eigenvalue of A. Thus, together with (27), we
also need to use the recurrences (28).

Since the periodicity of u in x guarantees that the spatial error is negligible,
we compute errors due to the time integration comparing with the exact solution u
of (30) at the grid points. As in the previous example, these errors are measured at
each time level tn, k ≤ n ≤ N , using the discrete counterpart of the W 1,2-norm.
In Fig. 2 again for h = 2−l , 2 ≤ l ≤ 9, we plot errors against the step-sizes. The
plot confirms the predicted orders.
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Fig. 2 Time error vs. step-size for example (30)
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