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Abstract In this paper we study the approximation power, the existence of a nor-
malized B-basis and the structure of a degree-raising process for spaces of the
form

span < 1, x, . . . , xn−2, u(x), v(x) >,

requiring suitable assumptions on the functions u and v. The results about degree
raising are detailed for special spaces of this form which have been recently intro-
duced in the area of CAGD.
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§1 Introduction and Preliminaries

Recently, in the area of CAGD the following spaces have been studied (see [2],
[11], [17] and references quoted therein)

span < 1, x, cos(x), sin(x) >, x ∈ [0, α], α < π, (1)
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span < 1, x, x2, cos(x), sin(x) >, x ∈ [0, α], α < π, (2)

and

span < 1, x, (1 − x)m0 , xm1 >, x ∈ [0, 1], 3 ≤ m0,m1 ∈ IN. (3)

These spaces provide interesting performances, mainly related to the possibility of
controlling the shape of their elements. The shape parameters are α for spaces (1)
and (2) and m0, m1 for the space (3). This fact motivates the present paper where
we study the approximation power, the existence of a normalized B-basis and the
structure of a degree-raising process for the space

Pn
u,v([a, b]) := span < 1, x, . . . , xn−2, u(x), v(x) >, x ∈ [a, b], 2 ≤ n ∈ IN.

(4)

We assume that u, v ∈ Cn+1([a, b]) and

dim
(Pn

u,v([a, b])
) = n+ 1, (5)

so that u(n−1) and v(n−1) are linearly independent.
All the results we will obtain are based on the properties of the zeros of the

derivative of order n − 1 of the elements of Pn
u,v([a, b]). Note that the elements

spanning spaces (1) and (2) form Extended Tchebycheff systems on [0, 1] (see
Definition 22) while those spanning the space (3) form only a Tchebycheff system
on the closed interval [0, 1] (unlessm0 = m1 = 3) (see Definition 17). This is due
to the existence of too many zeros at the endpoints of the interval.

The following two conditions will be central in this paper. Letψ be any element
of Pn

u,v([a, b]).

If ψ(n−1)(x1) = ψ(n−1)(x2) = 0, x1, x2 ∈ [a, b], x1 �= x2,

then ψ(n−1)(x) = 0, x ∈ [a, b]. (6)

If ψ(n−1)(x1) = ψ(n)(x1) = 0, x1 ∈ (a, b),
then ψ(n−1)(x) = 0, x ∈ [a, b]. (7)

We notice that, considering (5), (6) is the same as saying that {u(n−1), v(n−1)} is
a Tchebycheff system in [a, b] while (6) and (7) state that {u(n−1), v(n−1)} is an
Extended Tchebycheff system in (a, b).

The class of spaces Pn
u,v([a, b]) includes not only the spaces (3), and the spaces

(1), (2) and their generalization

span < 1, x, . . . , xn−2, cos(x), sin(x) >, x ∈ [0, α], 0 < α < π, (8)

introduced and analyzed1 in [4], but also the classical spaces

span < 1, x, . . . , xn−2, eρx, e−ρx >, ρ ∈ IR,

1 In [4] it is assumed that 0 ≤ α ≤ π. However, for α = π and n = 2 one of the elements of
the Bernstein basis will vanish everywhere so therefore we did not consider this case.
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which generate exponential splines of arbitrary degree (see for example [7], [8]
and references quoted therein).

Spaces of the form (4) with some additional restrictions on u, v have been also
studied in [9], where generalized B-splines with simple knots are constructed and
several properties of them established. However, in [9] it is explicitly assumed that
u(n−1), v(n−1) are monotonic in [a, b] and implicitly required (see [9] Lemma 4,
Theorem 7) that u(n−1), v(n−1) only have one zero in the same interval. Thus, the
class considered in [9] does not include the spaces (1) and (2) if α > π

2 , and (3) if
m0,m1 > 3.

We mention that the results of Section 4 have been already obtained in [15]
for spaces of the form span < 1, x, u(x) >, assuming u and its derivative strictly
increasing and imposing additional requests on u related to symmetry.

Finally, blossoming and existence of Bernstein like bases have been nicely
investigated in [5] (see also [12]) for a class of spaces which are not required to
be Extended Tchebycheff spaces and which include spaces of the form (3). Hence,
the results of our Section 4 can basically be found in [5]. However, here we present
a different approach simply based on elementary analytic properties of the consid-
ered spaces. Thus, the simplicity of the proofs and of the formulation of the needed
hypotheses make the mentioned section interesting.

The paper is divided into seven sections. In Section 2 we discuss zero properties
of elements of the space Pn

u,v([a, b]) and discuss Taylor and Hermite interpola-
tion. In the next section we analyze the approximation properties of the space
Pn
u,v([a, b]). The existence of a normalized B-basis for this space is discussed in

Section 4 while in Section 5 we situate the space Pn
u,v([a, b]) in the context of

Tchebycheff systems. Section 6 is devoted to the presentation of an integral recur-
rence relation for the obtained B-basis and of the related degree raising process.
Finally, in Section 7 we determine explicitly the coefficients for the degree-raising
process for spaces of the form (4) with u(x) = (1 − x)µ, v(x) = xµ, µ ∈ IR,
µ ≥ n. We also present a de Casteljau algorithm, and a geometric construction of
B-splines for this space in the cubic case.

§2 Hermite interpolation

In this section we consider Hermite interpolation in the space Pn
u,v([a, b]).

Lemma 1 Suppose ψ ∈ Pn
u,v([a, b]) has at least two distinct zeros in [a, b] and

at least n + 1 zeros in [a, b] counting multiplicities. If (6) holds then ψ = 0 on
[a, b].
Proof By Rolle’s theorem the first derivative ψ ′ has at least two distinct zeros in
[a, b] and at least n zeros in [a, b] counting multiplicities. Continuing we see that
ψ(n−1) has at least two distinct zeros in [a, b]. Nowψ(x) = p(x)+γuu(x)+γvv(x)
for some polynomial p of degree ≤ n− 2 and some numbers γu and γv . It follows
that ψ(n−1)(x) = γuu

(n−1)(x) + γvv
(n−1)(x). But (6) implies that γu = γv = 0

and then p = 0 since ψ has more than n− 2 zeros. It follows that ψ = 0. ��
We have a unique Hermite interpolant as long as we have at least two distinct

interpolation points in [a, b].
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Lemma 2 Let points a ≤ τ0 < τ1 < · · · < τr ≤ b and positive integers
µ0, µ1, . . . , µr be given and let fi,j ∈ IR, i = 0, . . . , r, j = 0, . . . , µi − 1
be prescribed. Suppose also r ≥ 1. Then there exists a unique ψ ∈ Pn

u,v([a, b]),
where n+ 1 = ∑r

i=0 µi , such that

ψ(j)(τi) = fi,j j = 0, . . . , µi − 1, i = 0, . . . , r. (9)

Proof By Lemma 1 the homogeneous system corresponding to (9) has only the
zero solution. ��

We also have a unique interpolant at one point as long as this point belongs to the
open interval (a, b). We call this interpolant the Taylor polynomial in Pn

u,v([a, b]).
Lemma 3 Let a point c ∈ (a, b) and an integer n≥ 2 be given and let fj ∈ IR,
j = 0, . . . , n be prescribed. If (7) holds there is a unique ψ ∈ Pn

u,v([a, b]) such
that

ψ(j)(c) = fj j = 0, . . . , n. (10)

Proof Letψ(x) = ∑n−2
i=0 γix

i+γuu(x)+γvv(x) be a solution of the homogeneous
system corresponding to (10). In particular ψ(n−1)(c) = ψ(n)(c) = 0 so from (7)
it follows that ψ(n−1)(x) = 0 for any x ∈ [a, b]. But then ψ(x) = ∑n−2

i=0 γix
i is

a polynomial of degree ≤ n− 2 which has a zero of multiplicity n+ 1 at c. Thus
ψ(x) = 0 on [a, b]. ��

We end this section with some remarks about the conditions (6) and (7). Setting

�nu,v(x1, x2) := det

(
u(n−1)(x1) v

(n−1)(x1)

u(n)(x2) v(n)(x2)

)
(11)

we notice that requiring

�nu,v(x1, x2) �= 0, x1, x2 ∈ (a, b) (12)

it is equivalent to say that if ψ ∈ Pn
u,v([a, b]) and ψ(n−1) does not vanish every-

where in [a, b], then either ψ(n−1) or ψ(n) is nonzero in (a, b). Thus (12) implies
(6)–(7) while in general the converse is not true. This can be seen considering the
spaces (1), (2). Indeed, these spaces verify (12) if α < π

2 and (6)–(7) if α < π.

§3 Approximation power

In this section we investigate in detail the Taylor expansion in the space Pn
u,v([a, b])

and use it to discuss for the spaces (1), (2), and (3), the contribution of the function
u, and v to the approximation power of the space Pn

u,v([a, b]). In this section we
only assume that (7) holds. This ensures that

�nu,v(x, x) = det

(
u(n−1)(x) v(n−1)(x)

u(n)(x) v(n)(x)

)
�= 0, x ∈ (a, b). (13)

We assume [c, d] is a nontrivial subinterval of (a, b) and consider first the space
Pn
u,v([c, d]).
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Lemma 4 If (13) holds then the space Pn
u,v([c, d]) is the nullspace of the differ-

ential operator Lnu,v : Cn+1[c, d] → C[c, d],
Lnu,v := Dn+1 − β(x)Dn − γ (x)Dn−1 (14)

where D0 = I , the identity,

D1 := D := d

dx
, Dn := DDn−1,

and

β(x) := u(n−1)(x)v(n+1)(x)− v(n−1)(x)u(n+1)(x)

�nu,v(x, x)
,

γ (x) := u(n+1)(x)v(n)(x)− v(n+1)(x)u(n)(x)

�nu,v(x, x)
. x ∈ [c, d].

(15)

Proof Clearly Lnu,v(x
j ) = 0, j = 0, . . . , n − 2. Moreover by a straightforward

calculation

�nu,v(x, x)L(u(x)) = [u(n−1)(x)v(n)(x)− u(n)(x)v(n−1)(x)]u(n+1)(x)

−[u(n−1)(x)v(n+1)(x)− u(n+1)(x)v(n−1)(x)]u(n)(x)
−[u(n+1)(x)v(n)(x)− u(n)(x)v(n+1)(x)]u(n−1)(x) = 0.

Similarly �nu,v(x, x)L(v(x)) = 0. ��
Lemma 5 If (13) holds then the Green’s function associated with Lnu,v is given by

Gnu,v(x, y) :=
{

0 if c ≤ x ≤ y,
φ(y)Rn(u, y)(x)+ δ(y)Rn(v, y)(x) if y ≤ x ≤ d,

(16)

where

φ(y) := − v(n−1)(y)

�nu,v(y, y)
, δ(y) := u(n−1)(y)

�nu,v(y, y)
, (17)

and

Rn(f, y)(x) := f (x)−
n−2∑

j=0

(x − y)j

j ! f (j)(y) =
x∫

y

(x − t)n−2

(n− 2)! f
(n−1)(t)dt.

Proof Fix y ∈ [c, d]. We need to show that

Gnu,v(x, y) = 0, x ∈ [c, y],
Lnu,v(G

n
u,v(x, y)) = 0, x ∈ [y, d], (18)

Dj (Gnu,v(x, y))|x=y = δj,n, j = 0, . . . , n.

The first two properties in (18) are obvious. Since DjRn(f, y)(x)|x=y = 0 for
j ≤ n− 2, we have DjGnu,v(x, y)|x=y = 0 for j ≤ n− 2. Moreover, from (17)
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Dn−1Gnu,v(x, y)|x=y = φ(y)u(n−1)(y)+ δ(y)v(n−1)(y) = 0,

DnGnu,v(x, y)(x)|x=y = φ(y)u(n)(y)+ δ(y)v(n)(y) = 1.

��
Since Gnu,v is the Green’s function for the initial value problem

Lnu,vψ(x) = 0, x ∈ (c, d),
ψ(j)(c) = fj , j = 0, . . . , n,

we obtain the Taylor expansion with integral remainder in Pn
u,v([c, d]) (cf. Theo-

rems 10.7 and 10.8 in [16]).

Lemma 6 Let f ∈ Cn+1[c, d]. If (13) holds then

f (x) = ψ(x)+
d∫

c

Gnu,v(x, y)L
n
u,vf (y)dy

where Lnu,v, G
n
u,v are defined in Lemmas 4 and 5 and ψ is the unique element in

Pn
u,v([a, b]) such that

ψ(j)(c) = f (j)(c), j = 0, . . . , n.

��
In order to obtain a bound for the error term in the Taylor expansion we consider
the following

Lemma 7 If (13) holds then

|Gnu,v(x, y)| ≤ (x − y)n

n!
maxy≤z≤x |�nu,v(y, z)|

|�nu,v(y, y)|
, c ≤ y < x ≤ d.

Proof From Lemma 5 for c ≤ y ≤ x ≤ d

Gnu,v(x, y) = φ(y)Rn(u, y)(x)+ δ(y)Rn(v, y)(x)

=
x∫

y

(x − t)n−2[u(n−1)(y)v(n−1)(t)− v(n−1)(y)u(n−1)(t)]
(n− 2)!�nu,v(y, y)

dt

=
x∫

y

(x − t)n−2

(n− 2)!
∫ t

y

�nu,v(y, z)

�nu,v(y, y)
dz dt.

��
Finally, from the previous lemmas we immediately have the main result of this
section
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Theorem 8 Assume that (13) holds. Let f ∈ Cn+1[a, b] and ψ ∈ Pn
u,v([a, b])

satisfy

ψ(j)(c) = f (j)(c), j = 0, . . . , n, c ∈ (a, b),
Then for c ≤ x < b

|f (x)− ψ(x)| ≤ max
c≤y≤z≤x

|�nu,v(y, z)|
|�nu,v(y, y)|

(x − c)n+1

(n+ 1)! ‖Lnu,vf ‖∞,[c,x].

��
Example 9 Consider the trigonometric case where u(x) = cos(x) and v(x) =
sin(x) for x ∈ [c, d] with d − c < π . From (11) it is easy to see that

�nu,v(y, z) = cos (y − z), c ≤ y ≤ z ≤ d and n ≥ 2.

Thus for [c, d] ⊆ [0, α] with α < π we obtain from Theorem 8

|f (x)− ψ(x)| ≤ (x − c)n+1

(n+ 1)! ‖Lnu,vf ‖∞,[c,x], c ≤ x ≤ α,

where Lnu,v = Dn−1(D2 + 1). Thus letting c → 0 and d → α we find

|f (x)− ψ(x)| ≤ αn+1

(n+ 1)! ‖Dn−1(D2 + 1)f ‖∞,[0,α], 0 ≤ x ≤ α.

Example 10 Consider the case where u(x) = (1 − x/h)µ and v(x) = (x/h)µ,
n ≤ µ ∈ IR, on [a, b] = [0, h] for some h > 0 and let 0 < c < d < h. We find

|�nu,v(y, z)|
|�nu,v(y, y)|

=(1 − y/h)

(
z

y

)µ−n
+ (y/h)

(
1 − z/h

1 − y/h

)µ−n
=:g(z), y ≤ z ≤ x.

By convexity g achieves its maximum at one of the endpoints of the interval [y, x],
and since 0 ≤ y/h ≤ 1, we obtain for c ≤ y ≤ z ≤ x ≤ d

g(z) ≤ max

{

1, (1 − y/h)

(
x

y

)µ−n
+ (y/h)

(
1 − x/h

1 − y/h

)µ−n}

≤ max

{

1,

(
x

y

)µ−n
,

(
1 − x/h

1 − y/h

)µ−n}
≤

(
x

y

)µ−n
≤

(x
c

)µ−n
.

From Theorem 8 we obtain the upper bound

|f (x)− ψ(x)| ≤
(x
c

)µ−n (x − c)n+1

(n+ 1)! ‖Lnu,vf ‖∞,[c,x], 0 < c ≤ x ≤ d < h.

(19)

If µ = n, then Pn
u,v([a, b]) reduces to the space of polynomials of degree ≤ n,

Lnu,v = Dn+1, and (19) gives the classical result for Taylor expansion in this space.
On the other hand, if µ > n the bound (19) is not very good for small values of c.
It turns out that functions like u and v in this example have nice shape preserving
properties, but are not very useful for approximating smooth functions, at least not
when µ is large. Indeed, it can be seen that the error in the best approximation of
the constant 1 by the functions u(n−1) and v(n−1) on the interval [0, h] is given by
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(2µ−n − 1)/(2µ−n + 1),

and this is very close to 1 when µ− n is large. Thus, for large values of µ− n the
approximation power of the system (4) for these u and v is essentially determined
by how well the function f in question can be approximated by polynomials of
degree ≤ n− 2. On the contrary, if µ− n → 0 with a given rate, then the error in
the best approximation of the constant 1 by the functions u(n−1) and v(n−1) on the
interval [0, h] approaches zero at the same rate.

§4 Constructing a Normalized B-basis

In this section we construct a basis of Pn
u,v([a, b]) which is normalized and totally

positive and we prove that it is the normalized B-basis for this space. Since this
basis has classical properties of the Bernstein basis for polynomials we will refer
to it as the Bernstein basis for the space Pn

u,v([a, b]). Throughout this section we
only assume that condition (6) holds.

§4.1 Constructing a Normalized Positive Basis

For each l = 0, . . . , n− 1 it follows from Lemma 2 that the Hermite interpolation
problem

B̃
(i)
l (a) = 0, i = 0, . . . , l − 1,

B̃
(l)
l (a) = 1, (20)

B̃
(i)
l (b) = 0, i = 0, . . . , n− l − 1,

has a unique solution B̃l ∈ Pn
u,v([a, b]). Similarly for l = n the Hermite interpo-

lation problem

B̃(i)n (a) = 0, i = 0, . . . , n− 1,

B̃n(b) = 1,
(21)

has a unique solution B̃n ∈ Pn
u,v([a, b]). Since B̃l is continuous and positive near

a for l = 0, . . . , n− 1 and near b for l = n it follows that

B̃l(x) > 0, x ∈ (a, b), l = 0, . . . , n. (22)

In fact, if there exists xl ∈ (a, b) such that B̃l(xl) = 0 then Bl has at least two
distinct zeros in [a, b] and at least n+ 1 zeros in [a, b] counting multiplicities. By
Lemma 1 Bl = 0, a contradiction.

It is immediate to verify that B̃l, � = 0, . . . , n are linearly independent so that
the set

{B̃0, . . . , B̃n} (23)

provides a basis for Pn
u,v([a, b]).By a suitable scaling of the functions B̃l we obtain

a positive partition of unity.
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Theorem 11 Let B̃l ∈ Pn
u,v([a, b]), � = 0, . . . , n, be constructed according to

(20) and (21). Then there exist scalars bl, l = 0, . . . , n such that, setting

Bl := blB̃l (24)

then

1 ≡
n∑

l=0

Bl. (25)

Moreover,

Bl(x) > 0, x ∈ (a, b), l = 0, . . . , n.

Proof Since the constant function 1 belongs to the space Pn
u,v([a, b]), it is pos-

sible to express it in a unique way as a linear combination of the elements of the
basis (23). Thus, according to (22), it suffices to prove that it is possible to select
bl > 0, l = 0, . . . , n such that (25) holds.

Since B̃l(a) = δ0l and B̃l(b) = δnl we immediately obtain b0 = bn = 1 by
evaluating (25) at x = a and x = b. Fix 1 ≤ l ≤ n− 1. By (20) we have

B̃(l)r (a) = 0, r = l + 1, . . . , n.

Thus differentiating the equation 1 =
n∑

r=0
brB̃r (x), by (20) we find

0 =
n∑

r=0

brB̃
(l)
r (a) =

l∑

r=0

brB̃
(l)
r (a) = ψ

(l)
l (a)+ bl,

where

ψl(x) :=
l−1∑

r=0

brB̃r (x).

Thus bl > 0 if and only if ψ(l)l (a) < 0. Now by (20)

ψl(a) = 1

ψ
(j)
l (a) = 0, j = 1, . . . , l − 1,

ψ
(j)
l (b) = 0, j = 0, . . . , n− l,

so that ψl is a nonzero element of Pn
u,v([a, b]) and it is not a constant. Moreover,

ψ
(1)
l has n − 1 zeros at the endpoints of [a, b]. Hence, ψ(n−1)

l is not the zero

function and, from Rolle’s Theorem ψ
(l)
l has at least n− l zeros in (a, b].

If ψ(l)l (a) = 0 then ψ(l)l has at least n − l + 1 zeros in [a, b] and at least two
distinct zeros in [a, b]. By Rolle’s Theorem this contradicts (6).

If ψ(l)l (a) > 0 then, from the Taylor expansion at x = a, we have ψl(x) > 1
if x ∈ (a, b) and x is close enough to a. Then, there exists xl ∈ (a, b) such that
ψl(xl) = 1. Thus, from Rolle’s Theorem, there exists x(1)l ∈ (a, xl) such that

ψ
(1)
l (x

(1)
l ) = 0. Thus, ψ(1)l has n zeros in [a, b] and, by Rolle’s Theorem, there

exist x1,l ∈ (a, b), x2,l ∈ [a, b], x1,l �= x2,l , such that
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ψ
(n−1)
l (x1,l) = 0, ψ(n−1)

l (x2,l) = 0,

which contradicts (6). ��
Remark 12 The previous results ensure that, if the scalars bl are selected in order
to fulfill (25) then the set

{B0, . . . , Bn} (26)

is a normalized positive basis for Pn
u,v([a, b]). In the following we will call this the

Bernstein basis of Pn
u,v([a, b]) and we will use sometimes the notationBi,n instead

of Bi, i = 0, . . . , n.

§4.2 Total Positivity

In this subsection we show that the Bernstein basis (26) is totally positive.
We recall that the basis (26) is (strictly) totally positive in a given interval I if

any collocation matrix

M

(
B0 , . . . , Bn
t0 , . . . , tn

)
:=






B0(t0) . . . Bn(t0)
...

...
B0(tn) . . . Bn(tn)




 (27)

with

t0 < t1 < · · · < tn, ti ∈ I, i = 0, . . . , n

is (strictly) totally positive, that is all its sub-determinants are (positive) nonnega-
tive.

As a first step we show the following lemma.

Lemma 13 For i = 0, . . . , n and l = 0, . . . , n− i, any nonzero element in

span < Bi, Bi+1, . . . , Bi+l >, (28)

has at most l zeros in (a,b) including multiplicities.

Proof Let wi,l be an element of (28) which has l + 1 zeros in (a, b). By (20) and
(21) wi,l has a zero at a of multiplicity i and a zero at b of multiplicity n− i − l.
This is a total of n+1 zeros, Lemma 1 implies thatwi,l = 0 and we conclude that a
nonzero element in (28) can have at most l zeros in (a, b) counting multiplicities.��

The following lemma will be useful for our main result.

Lemma 14 Let ti < ti+1 < · · · < ti+l be given points in (a, b). For i = 0, . . . , n
and l = 0, . . . , n− i, there exists a unique

zi,l ∈ span < Bi, Bi+1, . . . , Bi+l >,

such that

zi,l(tr ) = δi,r , r = i, . . . , i + l. (29)
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Moreover zi,l(x) = ∑i+l
j=i ζjBj (x) with

ζi > 0. (30)

Proof From Lemma 13 we immediately have existence and uniqueness of zi,l .
Now, let us examine the sign of ζi . Since zi,l has at least l zeros in (a, b) and

is not the zero function, from Lemma 13

zi,l �∈ span < Bi+1, . . . , Bi+l >

thus, ζi �= 0.
Since Bn(x) > 0 for any x ∈ (a, b),we see that (30) holds for i = n. If i < n,

assume that ζi < 0. Then, from (20), (21) and (24)

z
(j)
i,l (a) = 0, j = 0, . . . , i − 1

z
(i)
i,l (a) = ζibi < 0.

Thus, from Taylor expansion at x = a, zi,l(x) < 0 for x ∈ (a, b) if x is close
enough to a. Since zi,l(ti) > 0 there exists xi,l ∈ (a, ti) such that zi,l(xi,l) = 0 and
zi,l has at least l + 1 zeros in (a, b). This contradicts Lemma 13. ��

Now, we are ready to show the main result of this section

Theorem 15 The basis (26) is strictly totally positive in (a, b) and totally positive
in [a, b].

Proof First we prove that any collocation matrix in (a, b) is strictly totally positive.
By a determinant identity on Page 8 in [6] (see also Theorem 2.5 in [1]) it is

well known that a matrix is strictly totally positive provided that all minors with
consecutive columns are positive.

Let a < t0 < · · · < tn < b be a sequence of collocation points.
For i = 0, . . . , n and l = 0, . . . , n − i let Mi,l be the sub-matrix of order

l + 1 of the matrix (27) consisting of the rows and of the columns with indices
i + 1, . . . , i + l + 1 that is the sub-matrix corresponding to the basis elements

Bi, . . . , Bi+l

evaluated at the collocation points

ti , . . . , ti+l .

To prove that the basis (26) is strictly totally positive in (a, b) it suffices to show
that Mi,l has positive determinant. We will show this by induction on l.

If l = 0 the result follows from the positivity of Bi .
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Now, assume thatMi+1,l−1 has positive determinant. Let zi,l be as in Lemma 14.
Thus, its coefficients are the solution of the linear system

Mi,l







ζi
ζi+1
...
ζi+l





 =







1
0
...
0





 .

So, from Cramer’s rule,

ζi = det(Mi+1,l−1)

det(Mi,l)
.

The assertion follows from the induction hypothesis and from (30).
Total positivity of the basis (26) in [a, b] follows from the strict total positivity

by continuity arguments. ��
Finally we remark that the Bernstein basis in Pn

u,v([a, b]) is a B-basis in the
sense of [14]. Recall that a totally positive basis {u0, . . . , un} of a space U of con-
tinuous functions on an interval [a, b] is a B-basis if for any other totally positive
basis {v0, . . . , vn} of U the matrix K of change of basis

{v0, . . . , vn} = K{u0, . . . , un}
is totally positive. It is shown in Theorem 3.2 of Chapter 4 in [14] that a totaly
positive basis is a B-basis if for 0 ≤ j < k ≤ n the relations

lim
x→a+

uk(x)

uj (x)
= lim
x→b−

uj (x)

uk(x)
= 0

holds. By Theorem 15, (20) and (21) it follows that the Bernstein basis is the
normalized B-basis for Pn

u,v([a, b]).
Remark 16 Whether hypothesis (6) is necessary and/or sufficient for the space (4)
having a normalized B-basis depends both on n and on the choice of the functions
u and v. For example, the space span < 1, cos(x), sin(x) > admits a normalized
B-basis only if x varies in an interval of length less than π (see [3] and Corol-
lary 3.2 in [13]), so hypothesis (6) is necessary in order to ensure the existence of
a normalized B-basis in this case. On the other hand, the space

span < 1, x, , . . . , xn−2, cos(x), sin(x) >

admits a normalized B-basis on intervals of length greater than 2π if n ≥ 5
(see [3]), so (6) is only sufficient for general values of n.

§5 Connection with Tchebycheff Systems

In this section we explicitly state some properties of the Bernstein basis for the
space Pn

u,v([a, b]) in connection with the theory of Tchebycheff systems. These
properties are consequences of the results of the previous section.

For the sake of clarity we recall some definitions (see [16], Chapter 2).



On a class of weak Tchebycheff systems 345

Definition 17 The Bernstein basis is a Tchebycheff (T)-system in I provided

det M

(
B0, . . . , Bn
t0 , . . . , tn

)
> 0 for all t0 < t1 < · · · < tn ∈ I.

Definition 18 The Bernstein basis is a weak Tchebycheff (WT)-system in I pro-
vided

det M

(
B0, . . . , Bn
t0 , · · · , tn

)
≥ 0 for all t0 < t1 < · · · < tn ∈ I.

Definition 19 The Bernstein basis is an Order Complete Tchebycheff (OCT)-
system in I provided

{Bi0 , Bi1, . . . , Bik } is a T − system for all i0 < i1 < · · · < ik, k = 0, . . . , n.

Definition 20 The Bernstein basis is an Order Complete Weak Tchebycheff
(OCWT)-system in I provided

{Bi0 , Bi1, . . . , Bik } is a WT − system for all i0 < i1 < · · · < ik, k = 0, . . . , n.

By strict total positivity we immediately have

Theorem 21 The Bernstein basis is an (OCT)-system in (a, b) and an (OCWT)-
system in [a, b].

Next let us consider the case of collocation matrices with derivatives. Let points

τ0 < τ1 < · · · < τr ∈ I, 0 ≤ r ≤ n

and integers

ν0, ν1, . . . , νr

be given, with

νi ≥ 0, i = 0, . . . , r,
r∑

i=0

νi = n+ 1.

We consider the points t0, . . . , tn given by

t0 = t1 = · · · = tν0−1 = τ0 < tν0 = · · · = tν0+ν1−1 = τ1 < · · · < tn = τr (31)

and define the matrix

M̄

(
B0, · · · , Bn
t0 , . . . , tn

)
:= M̄






B0(τ0) · · · Bn(τ0)

B
(1)
0 (τ0) · · · B

(1)
n (τ0)

...
...

B
(ν0−1)
0 (τ0) · · · B(ν0−1)

n (τ0)
B0(τ1) · · · Bn(τ1)
...

...

B
(νr−1)
0 (τr ) · · · B(νr−1)

n (τr )






.

We recall the following definitions (see [16], Chapter 2)
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Definition 22 The Bernstein basis is an Extended Tchebycheff (ET)-system in I
provided

det M̄

(
B0, · · · , Bn
t0 , · · · , tn

)
> 0 for all t0 ≤ t1 ≤ · · · ≤ tn ∈ I.

Definition 23 The Bernstein basis is an ExtendedWeak Tchebycheff (EWT)-system
in I provided

det M̄

(
B0, · · · , Bn
t0 , · · · , tn

)
≥ 0 for all t0 ≤ t1 ≤ · · · ≤ tn ∈ I.

Definition 24 The Bernstein basis is an Order Complete Extended Tchebycheff
(OCET)-system in I provided

{Bi0 , Bi1, . . . , Bik } is an ET − system for all i0<i1< · · · < ik, k = 0, . . . , n.

Definition 25 The Bernstein basis is an Order Complete Extended Weak Tcheby-
cheff (OCEWT)-system in I provided

{Bi0 , Bi1, . . . , Bik } is an EWT − system for all i0 < i1< · · · <ik, k=0, . . . , n.

Using the same arguments as in Lemma 14, the results of Theorem 15, and
standard continuity arguments we have the following

Theorem 26 The Bernstein basis is an OCET-system in (a, b) and, if (7) holds, an
OCEWT system in [a,b].

§6 Additional properties of the Bernstein basis

In this section we briefly describe a recurrence integral relation to construct the ele-
ments of the basis (26) and a corresponding degree-raising algorithm. The results
of this section are direct extensions of those presented in [4] for the space (8).

In this section we only assume that (6) holds.

§6.1 An integral recurrence relation

From (6) we have that there exist unique elements,U0,1,n, U1,1,n in span < u(n−1)

(x), vn−1(x) > such that

U0,1,n(a) = 1, U0,1,n(b) = 0,
U1,1,n(a) = 0, U1,1,n(b) = 1.

(32)

Moreover, from (6),

U0,1,n(x), U1,1,n(x) > 0, x ∈ (a, b). (33)

For k = 2, . . . , n let us define

U0,k,n(x) := 1 − V0,k−1,n(x),

Ui,k,n(x) := Vi−1,k−1,n(x)− Vi,k−1,n(x), i = 1, . . . , k − 1 (34)

Uk,k,n(x) := Vk−1,k−1,n(x),
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where for i = 0, . . . , k, k = 1, . . . , n− 1

Vi,k,n(x) :=
x∫

a

Ui,k,n(t)dt/di,k,n

and

di,k,n :=
b∫

a

Ui,k,n(t)dt.

From, (32) and (34) by induction on k it can immediately be proved that, for
i = 0, . . . , k

U
(j)
i,k,n(a) = 0, j = 0, . . . , i − 1,

U
(j)
i,k,n(b) = 0, j = 0, . . . , k − i − 1.

(35)

In addition, the functions

{U0,k,n, . . . , Uk,k,n} (36)

belong to the space

span < 1, x, . . . , xk−2, u(n−k)(x), v(n−k)(x) >, (37)

and
∑k
i=0 Ui,k,n(x) ≡ 1 for k ≥ 2 so that, from (20), (21) and (25) we have that

the set of functions (36) coincides with the Bernstein basis, (26), for the space (37).
In particular, Ui,k,n(x) > 0, x ∈ (a, b), i = 0, . . . , k, k = 1, . . . , n, so that the
recurrence relations (34) are well defined.

Moreover, for k ≥ 3 we have

x − a

b − a
=

k∑

i=0

ξi,k,nUi,k,n(x)

for some numbers ξi,k,n. Evaluating at x = a and x = b and using (35) we see that
ξ0,k,n = 0 and ξk,k,n = 1 which together with (34) leads to

x − a

b − a
=

k∑

i=0

Vi,k−1,n(x)
(
ξi+1,k,n − ξi,k,n

)
.

By differentiation

1

b − a
=

k−1∑

i=0

Ui,k−1,n(x)
ξi+1,k,n − ξi,k,n

di,k−1,n
. (38)

It follows that

ξi+1,k,n − ξi,k,n = di,k−1,n

b − a
, i = 0, 1, . . . , k − 1. (39)
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In particular, we obtain

ξ0,k,n = 0, ξ1,k,n = d0,k−1,n

b − a
, ξk−1,k,n = 1 − dk−1,k−1,n

b − a
, ξk,k,n = 1.

Summarizing, (34) provide a recurrence relation for constructing the Bernstein
basis of Pn

u,v([a, b]) and gives information about how to represent linear functions
in terms of this basis.

Moreover, setting

ξi,n := (b − a)ξi,n,n + a, i = 0, . . . , n,

by (39) a = ξ0,n < ξ1,n < · · · < ξn,n = b and, for any ψ = ∑n
i=0 biBi, the

piecewise linear function connecting the points (ξ0,n, b0), . . . , (ξn,n, bn), has the
geometric meaning of the classical control polygon.

§6.2 Degree raising

In order to stress the dependence on the parameter n, in this subsection it is useful to
use the notation Bi,n, i = 0, . . . , n for the Bernstein basis of Pn

u,v([a, b]) defined
in (26).

Obviously, Pn
u,v([a, b]) ⊂ Pn+1

u,v ([a, b]) and a degree-raising algorithm exists,
in the sense that any Bernstein basis function Bi,n can be expressed as a linear
combination of B0,n+1, . . . , Bn+1,n+1. We have the following result.

Theorem 27 For n ≥ 2 there exist a sequence {θ0,n, θ1,n, . . . , θn+1,n},
θ0,n = 1, θn+1,n = 0, 0 ≤ θi,n ≤ 1, i = 1, . . . , n,

such that

Bi,n = θi,nBi,n+1 + (1 − θi+1,n)Bi+1,n+1, i = 0, 1, . . . , n. (40)

Moreover,

θi,n = B
(i)
i,n(a)

B
(i)
i,n+1(a)

= di−1,n,n+1 . . . d0,n+1−i,n+1

di−1,n−1,n . . . d0,n−i,n
, i = 1, . . . , n. (41)

Proof From Theorem 11 we know that, for k = n, n+ 1

B
(i)
l,k (a) = 0, i = 0, . . . , l − 1,

B
(l)
l,k(a) > 0, (42)

B
(i)
l,k (b) = 0, i = 0, . . . , k − l − 1,

and therefore the relation between the bases of degree n and n+ 1 has the form

Bi,n = pi,nBi,n+1 + qi+1,nBi+1,n+1,

because additional terms would introduce extraneous non-zero derivatives at end
points. We also know, from Subsection 4.1, that the basis functions must be positive
for any x ∈ (a, b) and therefore, again in virtue of (42), pi,n, qi+1,n ≥ 0. Since
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1 ≡
n∑

i=0

Bi,n =
n∑

i=0

(
pi,nBi,n+1 + qi+1,nBi+1,n+1

) =
n+1∑

i=0

Bi,n+1 ,

we have p0,n = qn+1,n = 1 and pi,n + qi,n = 1 for i = 1, . . . , n. Setting
θi,n := pi,n we have (40). From (34), (40) and (42) we obtain (41). ��

§7 A Special Case

In this section we derive a degree raising formula for the Bernstein basis
Bi,n, i = 0, . . . , n of the space

Pn
u,v([0, 1]) = span < 1, x, . . . , xn−2, (1 − x)µ, xµ > ,

µ ∈ IR, µ ≥ n ; x ∈ [0, 1], 2 ≤ n ∈ IN , (43)

The Bernstein basis of Pn
u,v([a, b]) is defined in (26). From Theorem 11,

B0,n(x) = (1 − x)µ, Bn,n(x) = xµ.

By the remark after (37), U0,n−1,n(x) = (1 − x)µ−1. Therefore, by (39)

ξ1,n =
1∫

0

U0,n−1,n(t)dt =
1∫

0

(1 − t)µ−1dt = 1

µ
. (44)

Similarly,

ξn−1,n = 1 − 1

µ
. (45)

Consider now formula (40). Ifµ ≥ n+1, then θ1 = 1, θn = 0. A more precise
characterization for the θi is given in the following theorem.

Theorem 28 If µ ≥ n + 1, for the degree-raising process (40) we have the
parameters

θ0,n = 1 ; θi,n = n− i

n− 1
, i = 1, . . . , n ; θn+1,n = 0 . (46)

Proof In the case µ ∈ IN, the following explicit formula for the elements of the
basis (26) of Pn

u,v([0, 1]) is provided in Corollary 4.2 in [5], in terms of the classical
Bernstein basis, {B0,µ, . . . ,Bµ,µ}, of the space of polynomials of degree less than
or equal to µ :

B0,n(x) = B0,µ(x) = (1 − x)µ, Bn,n(x) = Bµ,µ(x) = xµ

Bi,n(x) =
i+µ−n∑

l=i
αl,i,nBl,µ(x), i = 1, . . . , n− 1, (47)
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where

αl,j,k =
(
l−1
j−1

)(
µ−l−1
k−j−1

)

(
µ−2
k−2

) j = 1, . . . , k − 1, (48)

if l ≥ j , µ− l ≥ k − j , k ≥ j + 1 ≥ 2, and αl,j,k = 0 otherwise.
Now

Bi,n − θi,nBi,n+1 − (1 − θi+1,n)Bi+1,n+1

= Bi,n − n− i

n− 1
Bi,n+1 − i

n− 1
Bi+1,n+1

=
i+µ−n∑

l=i

(
αl,i,n − n− i

n− 1
αl,i,n+1 − i

n− 1
αl,i+1,n+1

)Bl,µ = 0.

To show the last equality we note that since k
(
m
k

) = (m−k+1)
(
m
k−1

)
for 1 ≤ k ≤ m

we have n−i
n−1αl,i,n+1 = µ−l−n+i

µ−n αl,i,n and i
n−1αl,i+1,n+1 = l−i

µ−nαl,i,n and hence
each coefficient of Bl,µ in the sum vanishes.

In the general case µ ∈ IR we observe that from (41) and from the character-
ization of the elements of the basis (26) the function

f (µ) := θi,n − n− i

n− 1
, µ ≥ n+ 1

is a rational function of µwhich vanishes at any µ ∈ IN, µ ≥ n+1. So f (µ) ≡ 0,
that is (46) holds. ��

We note that the values θ1,n, . . . , θn,n given by (46) are (with an index shift)
exactly those given by the usual degree elevation process of the classical Bernstein
polynomial of degree n− 2. Since

Pn
u,v([0, 1]) = span < B0,n−2, . . . ,Bn−2,n−2, (1 − x)µ, xµ >,

where Bi,n−2 denotes the ordinary Bernstein polynomials of degree n− 2, an intu-
itive justification of (46) relies on the fact that (40) can be obtained applying the
classical degree raising process to the polynomial part of Bi,n.

Now, let

x =
n∑

i=0

ξi,nBi,n(x);

where, by (39), ξi+1,n > ξi,n, i = 0, . . . , n− 1 and (see (44), (45))

ξ0,n = 0, ξ1,n = 1

µ
, ξn−1,n = 1 − 1

µ
, ξn,n = 1. (49)

A trivial consequence of (40) and (46) is that if x = ∑n+1
i=0 ξi,n+1Bi,n+1(x),

then, starting with n = 3 in (49),

ξ0,n+1 = ξ0,n , ξn+1,n+1 = ξn,n;
ξi,n+1 = i − 1

n− 1
ξi−1,n + n− i

n− 1
ξi,n , i = 1, . . . , n.

Fig. 1 shows some examples of the basis functions and their control polygon (see
Subsection 6.1).
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Fig. 1 The Bernstein bases and their control polygons for (from left to right): n = 4,
µ = 7.13; n = 4, µ = 10 + π ; n = 5, µ = 10 + π ; n = 6, µ = 10 + π.

§7.1 The cubic space

Let us consider the space

P3
u,v([0, 1]) = span < 1, x, (1 − x)µ, xµ > x ∈ [0, 1], µ ≥ 3. (50)

In this case it is possible to explicitly compute the Bernstein basis in the form





B0,3
B1,3
B2,3
B3,3




 = T BC






1 − x
x

(1 − x)µ

xµ




 ,

where T BC is the transformation matrix which maps the “canonical” basis into the
Bernstein one. Instead of repeating the process described in Theorem 11 we prefer
to use Lemma 2 and use the equation T BC = T BH · T HC , where T BH and T HC denote,
respectively, the transformation matrices from the canonical to Hermite and from
Hermite to Bernstein bases. The following theorem is obtained by straightforward
computations, which are omitted for the sake of brevity.

Theorem 29 We have





B0,3
B1,3
B2,3
B3,3




 = T BC






1 − x
x

(1 − x)µ

xµ




 ,
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where

T BC = 1

µ(µ− 2)






0 0 µ(µ− 2) 0
µ(µ− 1) −µ −µ(µ− 1) µ

−µ µ(µ− 1) µ −µ(µ− 1)
0 0 0 µ(µ− 2)




 .

��
It is well known that for the cubic polynomial case given by µ = 3 we can

evaluate ψ(x) using the de Casteljau algorithm, which, in matrix form, can be
expressed as

ψ(x) = (
1 − x x

) (
1 − x x 0

0 1 − x x

) 


1 − x x 0 0

0 1 − x x 0
0 0 1 − x x










b0
b1
b2
b3




 .

For the general “cubic” case it is simple to check the following result.

Theorem 30 Let µ ∈ IR, µ ≥ 3 and let ψ = ∑3
j=0 bjBj,3 ∈ P3

u,v([0, 1]) as in
(50). Then

ψ(x) = (
1 − x x

) (
1 − x x 0

0 1 − x x

)
Mµ






b0
b1
b2
b3




 , (51)

where, setting λ := µ− 2,

Mµ:=



(1 − x)λ λ+1

λ

(
1 − (1 − x)λ

) − x − 1
λ

(
1 − (1 − x)λ

) + x 0
0 1 − x x 0
0 − 1

λ

(
1 − xλ

) + (1 − x) λ+1
λ

(
1 − xλ

) − (1 − x) xλ



 . (52)

��
From (51) we obtain a recursive de Casteljau like algorithm for evaluating

ψ ∈ P3
u,v([0, 1]).

By using a computer algebra system we easily obtain the following result.

Theorem 31 The matrix Mµ defined in (52) is stochastic and totally positive. ��
The previous theorem ensures that each step in the de Casteljau like algorithm

involves only convex combinations of previous quantities. Thus, ψ inherits the
geometric properties of its control polygon.

The question that naturally arises is whether it is possible to develop a “cubic”
spline theory, similarly to that developed in [2] for the case of integer exponents.
More precisely, given a sequence of extended knots

x−3 < x−2 < . . . < xn+2 < xn+3,

and a sequence of real numbers

µµµµµµµµµ = {µ−3, µ−2, . . . , µn+2}, µi ≥ 3, i = −3, . . . , n+ 2,
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we set hi := xi+1 − xi, i = −3, · · · , n + 2 and we consider, for each interval
[xi, xi+1], the pair of functions (see (4))

ui(t) := (1 − t)µi , vi(t) = tµi , t := (x − xi)/hi.

We wish to study the generalized cubic spline space

S3
µµµµµµµµµ := {s ∈ C2[x0, xn] s.t. for x ∈ [xi, xi+1], i = 0, . . . , n− 1

s(x) = ψi(t); ψi ∈ P3
ui ,vi

([0, 1]); t = (x − xi)/hi}.
Obviously, any piece ψi can be expressed as

ψi(x) =
3∑

j=0

bi,jBj,3((x − xi)/hi). (53)

It turns out that the Bézier coefficients, bi,j , can be computed using the analogous
of the “geometric construction” (see, e.g., [10] for the classical cubic case and [2]
for integer exponents), applying a repeated corner cutting process to the polygonal
line connecting the B-splines coefficients d−1, . . . , dn+1. Formally we have the
following result.

Theorem 32 The Bézier coefficients bi,0, bi,1, bi,2, bi,3 of the ith piece (53) depend
only on the four B-spline coefficients di−1, di, di+1, di+2. They are given by

bi,1 = (1 − ζi)di + ζidi+1 ; bi,2 = ηidi + (1 − ηi)di+1 ;
bi,0 = bi−1,3 = ωibi−1,2 + (1 − ωi)bi,1 , (54)

where

ζi := ρi

ρi + τi + σi
; ηi := σi

ρi + τi + σi
; ωi := hi/µi

hi−1/µi−1 + hi/µi
.

and

ρi :=
(
hi−1
µi−1

+ hi
µi

)
hi−1

µi−1−1

hi−1
µi−1−1 + hi

µi−1

; σi :=
(
hi
µi

+ hi+1
µi+1

)
hi+1

µi+1−1

hi
µi−1 + hi+1

µi+1−1

; τi :=
(
hi − 2

hi

µi

)
.

��
The proof simply consists of straightforward analytic computations which show

that ψi−1 and ψi , with Bézier coefficients given by (54), agree up to the second
derivative at the knot xi .

Following the approach of [2], Theorem 1, we obtain a basis of B-splines for
the space S3

µµµµµµµµµ.

Theorem 33 For i = −1, 0, . . . , n+ 1 let Ni be given by (53) with Bézier coeffi-
cients computed according to (54) with dj = δi,j ; j = −1, . . . , n+ 1. Then
a) Ni(x) > 0 for x ∈ (xi−2, xi+2);
b) Ni(x) = 0 for x �∈ (xi−2, xi+2);
c)

∑n+1
i=−1Ni(x) = 1 for x ∈ [x0, xn];

d) Ni(x) ∈ S3
µµµµµµµµµ. ��
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