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Summary. This paper studies a numerical method for second-order oscilla-
tory differential equations in which high-frequency oscillations are generated
by a linear time- and/or solution-dependent part. For constant linear part, it is
known that the method allows second-order error bounds independent of the
product of the step-size with the frequencies and is therefore a long-time-step
method. Most real-world problems are not of that kind and it is important
to study more general equations. The analysis in this paper shows that one
obtains second-order error bounds even in the case of a time- and/or solu-
tion-dependent linear part if the matrix is evaluated at averaged positions.
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1 Introduction

This paper deals with differential equations of type

y ′′ = −A(t, y)y + g(t, y), y(t0) = y0, y ′(t0) = y ′
0,(1)

where A(t, y) is a symmetric and positive semi-definite real matrix of an
arbitrarily large norm. The large norm of A(t, y) introduces an oscillatory
solution and therefore differential equations of this type are called oscillatory
or highly-oscillatory.

Oscillatory differential equations are currently a subject of high inter-
est (e.g. [1–3,6,7,10,12–14]). For a survey in connection with the results
presented here, one can refer to [7], chap. XIII.
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Oscillatory differential equations arise in many different applications. For
example in spatial discretisation of partial differential equations (as semi-
linear wave equations) and in N -body problems from classical molecular
dynamics. There,A(t, y) represents the Jacobian of the fast forces generated
by atoms in close proximity. In both applications A(t, y) is a real symmetric
matrix of large dimension but sparse and g(t, y) is often costly to evalu-
ate. Further the solution satisfies a finite-energy condition which bounds the
amplitudes of the high oscillations.

In the applications mentioned above scientists are more interested in long-
time solutions than in short-time calculations. But the nature of oscillatory
solutions is such that for accurate numerical solutions, one needs to imple-
ment standard methods with step-size h smaller than the square-root of the
inverse of ‖A‖. If g(t, y) is costly to evaluate, this leads to a long simulation
time for the desired result.

So the aim in this paper is to use step-sizes which are not restricted by
the frequencies of A (i.e. square roots of eigenvalues of A). Methods which
allow such time-steps are called long-time-step methods in [3]. To prove this
property, one has to prove error bounds independent of ‖A‖. This was already
known to Garcı́a-Archilla, Sanz-Serna and Skeel (cf. [3]), who proposed and
analysed a method for oscillatory differential equations, which they called
mollified impulse method. Their analysis is for the case of a differential equa-
tion of type (1) with a constant matrix.

Hochbruck and Lubich (cf. [10]) proposed and analysed a Gautschi-type
method for oscillatory differential equations with constant matrix. In the case
of solution dependent matrixA(y), they proposed to use a similar method with
the matrix evaluated at averaged positions (cf. [8]), but they did not exam-
ine whether this additional work is necessary. Aside from small changes this
method is studied here in detail.

Most real world problems are not of the kind where the differential equa-
tion can be transformed to (1) with constant matrix A. But it is well known
that many systems exist which have a nearly harmonic behaviour and can
be transformed to (1). It is therefore important to know methods that allow
larger time-steps for these more general systems.

The analysis in this paper and numerical experiments show that the Gaut-
schi-type method with the matrix evaluated at averaged positions is a long-
time step method for systems of type (1), and that averaging is necessary to
obtain non-smooth second-order error bounds. The analysis gives new insight
into the development of numerical methods for more general equations with
highly-oscillatory solutions.

This paper is organised as follows: In Section 2 the numerical method is
presented. Section 3 describes the main result, some conclusions and an out-
line of proof. Since the proof works with the variation-of-constants formula
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instead of Taylor series expansion, the proof is presented again in more detail
in section 4. The method considered in this paper requires the computation
of the product ψ(A)v of an analytic function ψ of a matrixAwith a vector v
in every time step. The known results for how this can be done efficiently are
briefly reviewed in Section 5, along with another note on implementation.
Lastly in section 6 a numerical experiment is presented.

2 The integration scheme

Using the variation-of-constants formula for (1) at time tn gives

y(tn + h) = cosh�ny(tn)+ h sinch�ny
′(tn)

+
∫ h

0
�−1
n sin(h− s)�ng(tn + s, y(tn + s)) ds,(2)

with �n = �(tn, y(tn)) := √
A(tn, y(tn)). Here, all signs following an ana-

lytic function up to and including the next matrix belong to the argument of
the analytic function. This way, a lot of brackets can be omitted. Note that
sinc(x) designates the function sin(x) divided by x.

Approximating the integrand by �−1
n sin(h − s)g(tn, y(tn)) and adding

the formula (2) evaluated at −h to (2) delivers

y(tn + h)− 2 cosh�ny(tn)+ y(tn − h) ≈ h2 sinc2 h
2�n g(tn, y(tn)).(3)

This suggests the numerical integration scheme

yn+1 − 2 cosh�nyn + yn−1 = h2 sinc2 h
2�n gn,(4)

with �n = �(tn, yn) and gn = g(tn, y(tn)), for approximations yn to the
solution y(tn) at time tn = t0 + nh. However, like in [3] and [10], it turns
out to be favourable to take a modified argument in � and g. Numerical
experiments and the theory in this paper suggest to use

gn = g(tn, φ(h�n)yn) and �n = �(tn, φ(h�(tn, yn))yn),

where the filter function φ(x) is a suitably chosen real function depending
smoothly on x2, whose purpose is to filter out resonant frequencies. Further
assumptions on φ are

φ(0) = 1, φ(kπ) = 0, k = 1, 2, 3, . . . ,

and

|φ(x)| ≤ 1, |φ′(x)| ≤ 1, x ≥ 0.

The bound 1 is not necessary. It suffices that φ, φ′ are bounded by a small
constant. The choice
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φ(x) = sinc x (1 + 1
3 sin2 1

2x)(5)

was found to give particularly good accuracy in the case of a constant matrix
A in [10]. A simpler choice is

φ(x) = sinc x,(6)

proposed in [3].
A second starting value for the recursion (4) is obtained by

y1 = cosh�0y0 + h sinch�0y
′
0 + 1

2
h2 sinc2 h

2�0 g0.(7)

Analogously, the following approximation scheme for the velocities can be
derived

y ′
n+1 − y ′

n−1 = −2�n sin h�nyn + 2h sinch�ngn.(8)

3 Finite-time error analysis

The theorem stated in this section makes no smoothness assumptions about
the highly oscillatory solution. It is only required that the exact solution y of
(1) satisfies the finite-energy condition

H(t, y, y ′) = 1

2
‖y ′‖2 + 1

2
yT A(t, y)y ≤ 1

2
K2,(9)

where A(t, y) is symmetric and positive semi-definite.
The following theorem shows second-order convergence of yn in the

Euclidean norm. The Euclidean norm and induced norms are denoted by
‖ · ‖.

Theorem 1 In equation (1), let A be a symmetric and positive semi-definite
N × N matrix. Assume the solution satisfies the finite-energy condition (9)
for t0 ≤ t ≤ t0 + T . Then there is a h0 such that for all 0 < h < h0 by
application of the scheme (4), (8) with filter function φ on system (1), and
for all 0 ≤ nh ≤ T , it holds that

‖y(tn)− yn‖ ≤ h2 C �(n,N),

‖y ′(tn)− y ′
n‖ ≤ hC �(n,N).

Here, C and h0 depend on ‖y(t0)‖, T ,K , ‖g‖, ‖gy‖, ‖gyy‖, ‖gt‖, ‖gtt‖,
‖gty‖, ‖Ay‖, ‖Ayy‖, ‖At‖, ‖Att‖, ‖Aty‖ and φ. The term �(n,N) =
min{log(n+ 1) log(N + 1),

√
N} is slowly growing.

The most important thing to note here is that neither h0 nor C depend on
the norm of A. In fact ‖A‖ can be arbitrarily large without any effect on the
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error bounds, as long as the finite-energy condition holds. It is exactly this
property of the bounds that ensures the Gautschi-type exponential integrator
is a long-time-step method for systems of type (1).

Since the proof presented below is quite long, the main ideas are sum-
marised now. First of all, since no smoothness assumptions are used other
than the inherent finite-energy condition, the variation-of-constants formula
has to be used as a replacement for the Taylor series expansion to examine
the local defects of the scheme. After that, the main idea is to trace the proof
back to the known proof of the error bounds in the case of constant matrix
A. To do this, perturbation results of the form

‖φ(�)− φ(�̃)‖ ≤ Cφ‖A− Ã‖,(10)

for symmetric positive semi-definite matricesA, Ã and� := √
A, �̃ :=

√
Ã

have to be used. Such perturbation results hold for all even analytic functions
with a constant depending on

√
N (cf. [4]). Special filter functions allow a

perturbation result without dependence on
√
N (cf. lemma 6). It is interest-

ing to note that all filter functions proposed so far are of this kind. Strictly
speaking, the term �(n,N) has to be replaced by

√
N in the above theorem

if an arbitrary analytic filter function is to be used. By using the variation-
of-constants formula and the perturbation result, a recursion for the errors
is derived. To bound the accumulated local errors, the results from the case
for the constant matrix are used. At this point the analysis shows clearly that
the simpler scheme using �n = √

A(tn, yn) instead of the averaged version
�n = √

A(tn, φ(h�(yn))yn) does not lead to second-order error bounds due
to resonances at integer multiples ofπ . Finally, a discrete Gronwall inequality
is used to finish the proof.

The resonances appearing in the analysis are not ‘theoretical artifacts’.
They can be observed numerically (cf. [4]). Therefore the given analysis de-
scribes the performance of the Gautschi-type exponential integrator closely.

4 Proof of the error bounds

The proof of theorem 1 is split up into a few lemmata. For simplicity the proof
is given only for the case of solution dependent A and without g since the
proof of the general case with g follows the proof given in [10]. A complete
proof can be found in [4].

Substituting the exact solution values y(tn) of (1) for yn in the numer-
ical scheme gives a correct equation despite the small defect dn due to the
approximation. The defects dn are defined by:

y(tn + h)− 2 cosh�(ȳh(tn))y(tn)+ y(tn − h) = dn,

with ȳh(tn) := φ(h�(y(tn)))y(tn).
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Lemma 1 The local defects dn are given by

dn = h3Ln�y(tn)+ h4ln,

with � := �(y(t0)),

‖Ln‖ ≤ C, and ‖ln‖ ≤ C.

Here, C depends on ‖y(t0)‖, T ,K , ‖Ay‖, ‖Ayy‖ and φ.

The equation of the numerical scheme reads:

yn+1 − 2 cosh�(ȳn)yn + yn−1 = 0,

with ȳn = φ(h�(yn))yn. By subtracting these two equations, the following
lemma is deduced. Therein H 1

n is a linear mapping and H 2
n is bilinear.

Lemma 2 The errors en = y(tn)− yn satisfy the recursion

en+1 − 2 cosh�(ȳh(tn))en + en−1 = h2H 1
n [en] + h2H 2

n [en, en] + dn,

with

‖H 1‖, ‖H 2‖ ≤ C.

Here, C depends on ‖y(t0)‖, T ,K , ‖Ay‖, ‖Ayy‖ and φ.

Lemma 3 With � := �(y(t0)) the errors satisfy the recursion

en+1 − 2 cosh�en + en−1 = h2H 1
n [en] + h2H 2

n [en, en] + dn,

where ‖H 1
n‖, ‖H 2

n‖ < C. Here, C depends on the same constants as in
lemma 2 above.

Verbatim as in [10] the following lemma can be proved:

Lemma 4 The errors satisfy

en+1 = −Wn−1e0 +Wne1 + h2
n∑
j=1

Wn−j (H 1
n [en] +H 2

n [en, en])

+
n∑
j=1

Wn−j dj ,

with Wn = sinc(n+ 1)h�.

Lemma 5 ∥∥∥∥∥∥
n∑
j=1

Wn−j dj

∥∥∥∥∥∥ ≤ h2C,

where C depends on ‖y(t0)‖, T ,K , ‖Ay‖, ‖Ayy‖ and φ.
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Proof (of theorem 1) To simplify matters let e0 = O(h3) and e1 = O(h3).
For example these bounds hold for unperturbed initial values and the starting
value given by (7). On the chosen interval I according to lemma 5 and because
of ‖Wn−1e0‖ ≤ h2T C and ‖Wne1‖ ≤ h2T C, the difference inequality below
holds:

‖en+1‖ ≤ h2C

n∑
j=1

(n− j + 1)(‖ej‖ + ‖ej‖2)+ h2D.

Since 0 ≤ nh ≤ T and because h(n− j + 1) ≤ T , the following inequality
is derived:

‖en+1‖ ≤ hC

n∑
j=1

(‖ej‖ + ‖ej‖2)+ h2D, n = 0, 1, . . .

Then a discrete Gronwall lemma assures the first error bound. One proceeds
analogously to prove the second error bound. ��

Proof (of lemma 1) With ȳh(tn) = φ(h�(y(tn)))y(tn) the exact solution
satisfies:

y(tn + h)− 2 cosh�(ȳh(tn))y(tn)+ y(tn − h)

=
∫ h

0
�(ȳh(tn))

−1 sin(h− s)�(ȳh(tn))

·
(
A(ȳh(tn))− A(y(tn + s))

)
y(tn + s) ds(11)

+
∫ h

0
�(ȳh(tn))

−1 sin(h− s)�(ȳh(tn))

·
(
A(ȳh(tn))− A(y(tn − s))

)
y(tn − s) ds.(12)

The last two terms are estimated first. Using� = �(y(t0)), (11) can be split
as follows:

−h
∫ 1

0
�−1 sin h(1 − s)�

·
(
A(y(tn + hs)− A(ȳh(tn))

)
y(tn + hs) ds(13)

−h
∫ 1

0

(
�(ȳh(tn))

−1 sin h(1 − s)�(ȳh(tn))−�−1 sin h(1 − s)�
)

·
(
A(y(tn + hs)− A(ȳh(tn))

)
y(tn + hs) ds.(14)
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By using lemma 6, the last term (14) can be transformed to:

h5
∫ 1

0
(1 − s)3

∫ 1

0
u(1 − u) sinch(1 − u)(1 − s)�

·
(
A(ȳh(tn))− A(y(t0))

)
sinchu(1 − s)�(ȳh(tn)) du

·1

h

(
A(y(tn + hs)− A(ȳh(tn))

)
y(tn + hs) ds := h5rn,A.

Since

A(ȳh(tn))− A(y(t0))

=
∫ 1

0
Ay(y(t0)+ u(ȳh(tn)− y(t0))) du [ȳh(tn)− y(t0)],

the finite-energy condition gives

‖A(ȳh(tn))− A(y(t0))‖ ≤ ‖Ay‖ ‖φ(h�(y(tn)))y(tn)− y(t0)‖
≤ TK ‖Ay‖

(
1 + max

x≥0

∣∣∣∣φ(x)− 1

x

∣∣∣∣
)
,

where the second estimate follows from

φ(h�(y(tn)))y(tn)− y(t0)

= h
φ(h�(y(tn)))y(tn)− I

h�(y(tn))
�(y(tn))y(tn)+

∫ tn

t0

y ′(s) ds

and the finite-energy condition. Furthermore using

1

h

(
A(y(tn + hs))− A(ȳh(tn))

)

=
∫ 1

0
Ay(ȳh(tn)+ u(y(tn + hs)− ȳh(tn))) du

·
[

1

h
(y(tn + hs)− ȳh(tn))

]

and

1

h
(y(tn + hs)− ȳh(tn))

= 1

h

(
y(tn + hs)− y(tn)+ y(tn)− φ(h�(y(tn)))y(tn)

)

= s

∫ 1

0
y ′(tn + hsu) du− φ(h�(y(tn)))− I

h�(y(tn))
�(y(tn))y(tn),
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it follows at last that for s ∈ [0, 1]:

‖1

h

(
A(y(tn + hs))− A(ȳh(tn))

)
‖ ≤ ‖Ay‖

(
s + max

x≥0

∣∣∣∣φ(x)− 1

x

∣∣∣∣
)
K

≤ ‖Ay‖
(

1 + max
x≥0

∣∣∣∣φ(x)− 1

x

∣∣∣∣
)
K.

With this, the rough estimate

‖rn,A‖ ≤ T ‖Ay‖2
(

1 + max
x≥0

∣∣∣∣φ(x)− 1

x

∣∣∣∣
)2
K2(‖y(t0)‖ + TK)

follows. Since

h� rn,A =
∫ 1

0
(1 − s)2

∫ 1

0
u sin h(1 − u)(1 − s)�

(
A(y(tn))− A(y(t0))

)

· sinchu(1 − s)�(ȳh(tn)) du

·1

h

(
A(y(tn + hs)− A(ȳh(tn))

)
y(tn + hs) ds,

then

‖h� rA,n‖ ≤ T ‖Ay‖2
(

1 + max
x≥0

∣∣∣∣φ(x)− 1

x

∣∣∣∣
)2
K2(‖y(t0)‖ + TK).

Hence (14) is of order O(h4). If an O-term appears here or anywhere in the
paper, it is always meant that the bound in the O-term only depends on the
constants given in theorem 1 and that h� times the expression is of the same
order, too. This is always done as for rn,A above and not presented in the
following.

The leading term (13) can be split further to give

−h
∫ 1

0
�−1 sin h(1 − s)�

·
(
A(y(tn + hs))− A(ȳh(tn))

)
y(tn) ds(15)

−h
∫ 1

0
�−1 sin h(1 − s)�

(
A(y(tn + hs))− A(ȳh(tn))

)

·
(
y(tn + hs)− y(tn)

)
ds.(16)

The second term (16) can be displayed as

−h4
∫ 1

0
(1 − s) sinch(1 − s)�

1

h

(
A(y(tn + hs))− A(ȳh(tn))

)

·1

h

(
y(tn + hs)− y(tn)

)
ds := h4rn,A,
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with

‖rn,A‖ ≤ ‖Ay‖
(

1 + max
x≥0

∣∣∣∣φ(x)− 1

x

∣∣∣∣
)
K2,

and is therefore of order O(h4). Finally, the term (15) has to be examined. It
can be written as

−h
∫ 1

0
�−1 sin h(1 − s)�Ay(ȳh(tn))

·
(
y(tn + hs)− ȳh(tn)

)
ds y(tn)(17)

−h
∫ 1

0
�−1 sin h(1 − s)�

·
∫ 1

0
(1 − u)Ayy(ȳh(tn)+ u(y(tn + hs)− ȳh(tn))) du

· [y(tn + hs)− ȳh(tn)]
2 y(tn) ds.(18)

The second term (18) is of order O(h4). This can be seen with the same
techniques as before.

Since (cf. (10))

‖φ(h�)− φ(h�(y(tn)))‖ ≤ h2C�‖A(y(tn))− A(y(t0))‖
≤ h2C�‖Ay‖TK,

one can rewrite (17), up to O(h4), as

−h
∫ 1

0
�−1 sin h(1 − s)�Ay(ȳh(tn))

·
(
y(tn + hs)− φ(h�)y(tn)

)
ds y(tn).(19)

By using the representation

y(tn + hs)− φ(h�)y(tn)

= (
coshs�− φ(h�)

)
y(tn)+�−1 sin hs�y ′(tn)

+hs
∫ 1

0
�−1 sin hs(1 − u)�

·
(
(A(y(t0))− A(y(tn + hsu)))y(tn + hsu)

)
du

= O((sh)2)+ (
coshs�− φ(h�)

)
y(tn)+�−1 sin hs�y ′(tn),(20)

(19) can be rewritten as

−h
∫ 1

0
�−1 sin h(1 − s)�Ay(ȳh(tn))

·
((

coshs�− φ(h�)
)
y(tn)+�−1 sin hs�y ′(tn)

)
ds y(tn),(21)
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aside from a term of order O(h4). Because of

‖Ay(ȳh(tn))− Ay(y(tn))‖ ≤ ‖Ayy‖ ‖ȳh(tn)− y(tn)‖
≤ ‖Ayy‖ max

x≥0

∣∣∣∣φ(x)− 1

x

∣∣∣∣Kh,
(11) is at long last seen to be

O(h4)− h

∫ 1

0
�−1 sin h(1 − s)�Ay(y(tn))

·
((

coshs�− φ(h�)
)
y(tn)+�−1 sin hs�y ′(tn)

)
ds y(tn).(22)

The same computation with −h instead of h delivers

(11)+ (12) = O(h4)− 2h
∫ 1

0
�−1 sin h(1 − s)�

·Ay(y(tn))
[(

coshs�− φ(h�)
)
y(tn)

]
ds y(tn)

= O(h4)− 2h3
∫ 1

0
(h�)−1 sin h(1 − s)�

·Ay(y(tn))
[
y(tn),

(
coshs�− φ(h�)

)
(h�)−1�y(tn)

]
ds.

The boundedness of ‖�y(tn)‖ can be seen easily by using the variation-of-
constants formula. By using the abbreviation

GA(t)[·] := Ay(y(t))[y(t), ·],(23)

(11)+ (12) can be written, up to harmless O(h4)-terms, as

−2h3
∫ 1

0
(h�)−1 sin h(1 − s)�

·GA(tn)
(

coshs�− φ(h�)
)
(h�)−1 ds�y(tn)(24)

with

G′
A(t) = Ayy(y(tn))[y

′(t), y(t)] + Ay(y(tn))[y
′(t)](25)

and therefore

‖G′
A(t)‖ ≤ ‖Ayy‖K(‖y(t0)‖ +KT )+ ‖Ay‖K.

Now the lemma with Ln defined as

2
∫ 1

0
(h�)−1 sin h(1 − s)� (−GA(tn))

coshs�− φ(h�)

h�
ds

is proved. ��
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Proof (of lemma 2) By subtracting the numerical and exact solution, it is
deduced that

en+1 − (2 cosh�(ȳh(tn))y(tn)− 2 cosh�(ȳn)yn)+ en−1 = dn.(26)

Since the difference below appears several times, a simpler representation of
it is deduced at first.

ȳh(tn)− ȳn = φ(h�(y(tn)))y(tn)− φ(h�(yn))yn

= (φ(h�(y(tn)))− φ(h�(yn))) y(tn)+ φ(h�(yn))en.

The estimate presented here works for general φ. Most filter functions allow
better estimates which do not increase like

√
N . This can be seen by using

lemma 6. Defining φ̃(x) = φ(
√
x) it follows that

ȳh(tn)− ȳn =
(
φ̃(h2A(y(tn)))− φ̃(h2A(yn))

)
y(tn)+ φ(h�(yn))en

= Mn[en],(27)

with

Mn[ · ] := h2
∫ 1

0

dφ̃

dA

(
h2(A(yn)+ u(A(y(tn))− A(yn)))

)

·
[∫ 1

0
Ay(yn + ven)[ · ] dv

]
du y(tn)+ φ(h�(yn))[ · ]

and

‖Mn‖ ≤ T 2C�‖Ay‖(‖y(t0)‖ + TK)+ max
x≥0

|φ(x)|.

Further it holds that

cosh�(ȳn)yn − cosh�(ȳh(tn))y(tn)

= (cosh�(ȳn)− cosh�(ȳh(tn)))yn + cosh�(ȳh(tn))(yn − y(tn))

= (cosh�(ȳn)−cosh�(ȳh(tn)))(y(tn)+yn − y(tn))−cosh�(ȳh(tn))en

= (cosh�(ȳn)− cosh�(ȳh(tn)))y(tn)

−(cosh�(ȳn)− cosh�(ȳh(tn)))en − cosh�(ȳh(tn))en(28)



On error bounds for the Gautschi-type exponential integrator 83

and

cosh�(ȳn)− cosh�(ȳh(tn))

= h2
∫ 1

0
(1 − s) sinch(1 − s)�(ȳh(tn))

·(A(ȳh(tn))− A(ȳn)
)

coshs�(ȳn)) ds

= h2
∫ 1

0
(1 − s) sinch(1 − s)�(ȳh(tn)) ·

·
∫ 1

0
Ay(ȳn + u(ȳh(tn)− ȳn))[ȳh(tn)− ȳn)] du

· coshs�(ȳn)) ds.(29)

The expression

GA,1
n [ · ] :=

∫ 1

0
(1 − s) sinch(1 − s)�(ȳh(tn))

·
∫ 1

0
Ay(ȳn + u(ȳh(tn)− ȳn))[ · ] du coshs�(ȳn)) ds y(tn)(30)

can be bounded by

‖GA,1
n ‖ ≤ 1

2
‖Ay‖(‖y(t0)‖ +KT ),

and the expression

GA,2
n [ · , · ] := −

∫ 1

0
(1 − s) sinch(1 − s)�(ȳh(tn)) ·

·
∫ 1

0
Ay(ȳn + u(ȳh(tn)− ȳn))[ · ] du coshs�(ȳn)) ds [ · ],(31)

can be bounded by

‖GA,2
n ‖ ≤ 1

2
‖Ay‖.

After defining

H̃ 1
n [ · ] := GA,1

n [Mn[ · ] ]

H̃ 2
n [ · , · ] := GA,2

n [Mn[ · ], · ] ,

it is deduced that

−(2 cosh�(ȳh(tn))y(tn)− 2 cosh�(ȳn)yn)

= −2 cosh�(ȳh(tn))en + 2h2 H̃ 1
n [en] + 2h2 H̃ 2

n [en, en].(32)
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The finite difference equation can now be written as

en+1 − 2 cosh�(y(tn))en + en−1 = h2
(
−2H̃ 1

n [en] − 2H̃ 2
n [en, en]

)
+ dn

=: h2H 1
n [en] + h2H 2

n [en, en] + dn.

��
Proof (of lemma 3) The new recursion is deduced from the fact that

2(cosh�(ȳh(tn))− cosh�) = 2h2
∫ 1

0
(1 − s) sinch(1 − s)�

·
∫ 1

0
Ay(ȳh(tn)+ u(y(t0)− ȳh(tn)) du

· [y(t0)− φ(h�(y(tn)))y(tn)] coshs�(ȳn(tn)) ds

=: h2Fn

with

‖Fn‖ ≤ 2 TK‖Ay‖
(

1 + max
x≥0

∣∣∣∣φ(x)− 1

x

∣∣∣∣
)
.

��
Proof (of lemma 5) By using lemma 1, one can show that

n∑
j=1

Wn−j dj = h3
n∑
j=1

Wn−jLj�y(tj )+ h4
n∑
j=1

Wn−j lj

holds. Because of ‖Wn‖ ≤ n+ 1, it is directly deduced that∥∥∥∥∥∥h
4

n∑
j=1

Wn−j lj

∥∥∥∥∥∥ ≤ h2 T 2C.

To bound the first sum, one proceeds analogously to [10]. By using the vari-
ation-of-constants formula, the first sum can be transformed to

h3
n∑
j=1

Wn−jLj�y(tj ) = h2(an + bn)

with

an := 2h
n∑
j=1

Wn−j
∫ 1

0

sin h(1 − s)�

h�

·(−GA(tj ))
coshs�− φ(h�)

h�
ds

·
(

cos(tj − t0)��y(t0)+ sin(tj − t0)� y
′(t0)

)
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and

bn := 2h
n∑
j=1

Wn−j
∫ 1

0

sin h(1 − s)�

h�

·(−GA(tj ))
coshs�− φ(h�)

h�
ds

·
∫ tj

t0

sin(tj − s)�
(
(A(y(t0))− A(y(s)))y(s)+ g(y(s))

)
ds.

Partial summation is used to bound an and bn. One proceeds as in [10] to
finish the proof. Without a filter function in A, the term

coshs�− I

h�
(33)

instead of
coshs�− φ(h�)

h�

would appear. Applying partial summation with (33) as in [10] shows that an
and bn cannot be bounded due to resonances at integer multiples of π . ��
The lemma below can be proved by applying the variation-of-constants for-
mula to a second-order matrix differential equation (cf. [4]).

Lemma 6 Let A, Ã be real symmetric and positive semi-definite N × N

matrices, � = √
A and �̃ =

√
Ã. Then the representations below hold for

h > 0:

sin h�

h�
− sin h�̃

h�̃
= h2

∫ 1

0
(1 − s)

(
h(1 − s)�̃

)−1
sin h(1 − s)�̃

·(Ã− A) s
(
hs�

)−1
sin hs�ds(34)

and therefore the estimate∥∥∥∥∥
sin h�

h�
− sin h�̃

h�̃

∥∥∥∥∥ ≤ h2

6

∥∥∥Ã− A

∥∥∥ ,
holds, as does the representation

cosh�− cosh�̃(35)

= h2
∫ 1

0
(1 − s)

(
h(1 − s)�̃

)−1
sin h(1 − s)�̃ (Ã− A) coshs�ds

and therefore the estimate
∥∥∥cosh�− cosh�̃

∥∥∥ ≤ h2

2

∥∥∥Ã− A

∥∥∥ .
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5 Notes on implementation

To apply method (4), terms of the type

ϕ(h�)v,

with a function ϕ(x), smoothly dependent on x2, and a vector v have to
be computed. Since � = √

A is not known in most cases, the function
ψ(x) := ϕ(

√
x) is used to compute ϕ(h�)v as

ψ(h2A)v.

These terms are approximated by Krylov-techniques as described in [11]. In
comparison to other alternatives, this method appears to be the most favour-
able in the present context (cf. [9]).

The Krylov subspace approximation is of the form

ψ(h2A)v ≈ Vmψ(h
2Tm)e1‖v‖,

where Vm = [v1, . . . , vm] is the matrix containing the orthonormal Lanczos
basis of themth Krylov subspace with respect toA and v, and Tm = V Tm AVm
is a symmetric tridiagonal matrix. Further e1 is the first m-dimensional unit
vector. Since the iteration number m is typically very small compared with
the dimension of the matrix A, ψ(h2Tm)e1 can be computed quite cheaply
by diagonalizing Tm = QT

mDmQm, with diagonal matrix Dm:

ψ(h2A)v ≈ Vmψ(h
2Tm)e1‖v‖ = VmQ

T
mψ(h

2Dm)Qme1‖v‖.
Now the method reads

yn+1 − 2ψ1(h
2An)yn + yn−1 = h2 ψ2(h

2An) g(ψ3(h
2An)yn)

with

ψ1(x) := cos(
√
x), ψ2(x) := sinc2( 1

2

√
x), ψ3(x) := φ(

√
x).

Or, after a small computation

yn+1 − 2yn + yn−1 = h2 ψ2(h
2An)

(
g(ψ3(h

2An)yn)− Anyn
)
.

The costs to computeψ1(h
2An) in the first variant are negligible since a Kry-

lov-space with respect to An and vector yn is computed anyway to evaluate
the filter function ψ3.

In some applications the differential equations have to be transformed to
an equation of type (1). For example in molecular dynamics a splitting

y ′′ = f1(y)+ f2(y),
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is often known where the first part f1 produces high frequencies, the second
not. Then one could use the Jacobian of the first equation, i.e with A(y) =
−∂f1/∂y and g(y) = f1(y) + f2(y) − A(y)y the system is transformed
to type (1). It is known that A(y) has a few negative eigenvalues of small
absolute value besides the large positive eigenvalues. To deal with these, one
has to look at the original derivation of the method. For a symmetric matrix
A one can find a matrix � with �2 = A. This matrix is not uniquely deter-
mined in the presence of negative eigenvalues, but that does not matter. With
any matrix satisfying �2 = A scheme (4) remains valid. No change of the
derivation is necessary. This can be added to our method without difficulties.
If the diagonalisation of A delivers negative eigenvalues, the use of complex
values can be avoided. For example, one could use the relation

cos(
√
λ) = cos(i

√−λ) = cosh(
√−λ)

for negative λ when computing ψ1(h
2Dn). This is the only addition to the

method. Analogously, the other analytic functions are computed.

Remark The last considerations show that the method can be applied for
differential equations of type (1) with an arbitrary symmetric matrix. But
it is important to note that the application of this method with matrices A
containing negative eigenvalues of large absolute value makes no sense. It is
only mentioned to avoid shifting the matrix A in the algorithm by a constant
factor for matrices with some negative eigenvalues of small absolute value
in addition to the large positive ones.

6 Numerical experiment

The simplified model of a protein, as described in [5], is used to test the Gaut-
schi-type exponential integrator. The model is sufficiently small to allow fast
computation. It contains most of the terms common in molecular dynamics
and is therefore a suitable test problem.

The test simulates a chain of 100 mass points with forces similar to the
one appearing in classical molecular dynamics simulations. The potential
energies used are

U bond =
∑
bonds

1

2
KB(rij − r0)

2

U angle =
∑

angles

1

2
Kθ(θ − θ0)

2

U Lennard-Jones =
∑

pairs (i,j)

(
A

r12
ij

− B

r6
ij

)
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U electrostatic =
∑

pairs (i,j)

qiqj e
2

rij
,

with data m = 14u, r0 = 1.52Å, KB = 255 kcal mol−1 Å
−2

, Kθ = 45 kcal
mol−1 rad−2, θ0 = 110 Grad, A = 6.8 · 103 kJ mol−1Å

12
and B = 1705 kJ

mol−1Å
6
. rij describes the distance between mass point i and j .

The potentials can be split in potential energies leading to fast forces and
slow forces. Here the used splitting is

U fast = U fast, bond + U fast, nonbond

U fast, bond = U angle + U bond

U fast, nonbond = U fast, elect + U fast, Lennard-Jones

U fast,elect = U electrostaticsw(rij )

U fast, Lennard-Jones = U Lennard-Jonessw(rij )

U slow = (1 − sw(rij ))U
electrostatic + (1 − sw(rij ))U

Lennard-Jones

with the help of a function sw, which drops smoothly from 1 to 0 in a pre-
scribed interval.

After a transformation near an equilibrium point, with the fast forces intro-
duced by the fast potential energies, the method is applied as described in
section 5. The numerically computed eigenvalues of A(y) range from −10
to 500. In Figure 1 the Verlet-scheme, most popular in molecular dynamics,

10
4

10
3

10
2

10
1

10
0

10
1

10
0

10
1

10
2

gc
n

error

Gautschi
Verlet

Fig. 1. Error
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is compared to the Gautschi-type method. The work is plotted versus the
global error for a very short interval of time, where the work is measured
as function evaluations of g, which is the computationally expensive part in
realistic molecular dynamics simulations. The Gautschi-type method can be
used with more than ten times the step-size of the Verlet scheme giving still
sufficient accuracy. This leads to a remarkable speed-up in large molecular
dynamics simulations.

Acknowledgements. I am grateful to Marlis Hochbruck and Christian Lubich for helpful
discussions on the subject.
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