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1 Introduction

In the last twenty years there have been an increasing use of (Hadamard)
finite-part integrals (see [Ha52],[Mo94]) to formulate boundary value prob-
lems in terms of integral equations. These boundary integral equations are
called hypersingular since their kernels have singularities of order higher
than the dimension of the integrals. Several numerical approaches have been
proposed to evaluate the finite-part integrals that are required for these appli-
cations. Most of these methods are based on either transforming the inte-
gral, or subtracting out the singulatities, in such a way that quadrature rules
of Gaussian type may be applied. (See, for example, [ScWe92], [SaLa00],
[KiScWe92], [PeSc97], [GuGi90], and [GuKRR92].) Extrapolation meth-
ods, based on asymptotic expansions of the Euler-Maclaurin type, have, until
very recently, been confined to the numerical computation of integrals at
most weakly singular. Only recently (see [Ly78],[MoLy98]) this approach
has been extended to one-dimensional Cauchy and finite-part integrals.

In particular, in [MoLy98], using a technique based on Mellin transforms,
we derived a generalization of the one-dimensional Euler-Maclaurin expan-
sion for hypersingular integrals. Some of the results in that paper are listed
in Section 2.

In this paper we show that this method can be extended to a family of
two-dimensional finite-part integrals, whose integrands have singularities of
a more general type than those that occur in present applications of hypersin-
gular integral equations. We shall also establish that, in many cases, our finite
part integral is simply the continuation in the complex plane of the Mellin
Transform. This leads to a new definition of the finite-part integral, which
includes also line (hyper)singularities. However, we are not presently aware
of applications involving such singularities.

We treat the square [0, 1]2 with a real integrand having a full corner
singularity at the origin, that is, one that, in the unit square, takes the form
f (x1, x2)g(x1, x2) where g is smooth. For simplicity we treat g ∈ C∞[0, 1]2;
the “singular part” is

f (x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2),(1.1)

Here, rρ(x1, x2) is C∞ in [0, 1]2 except at (0, 0). In addition rρ is homoge-
neous of degree ρ; that is for all λ > 0 and (x1, x2) �= (0, 0), rρ(λx1, λx2) =
λρrρ(x1, x2).

We note that in the hypersingular case we may have α1 + α2 + ρ < −2
and αi < −1. (These parameter values are conventionally excluded because
they lead to divergent integrals.)

Several expansions for two-dimensional regular integrals on which extrap-
olation is based are mentioned briefly below. The purpose of the rest of this
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paper is to generalize some of these expansions to include two-dimensional
hypersingular integrals.

One classical approach to cubature for regular integrals over a square is
based on extrapolation. Let Q be any standard cubature rule over [0, 1)2, and
denote its m-copy version by Q(m). This is the rule obtained by partitioning
the square into m2 equal squares and applying a properly scaled version of
Q in each. When f (x, y) is Riemann integrable, Q(m)f is a discretization
of If , the integral over [0, 1)2, and If is the limit of Q(m)f as m becomes
infinite.

In some cases one may write Q(m)f as an expansion in m. For example,
when f is C(p)[0, ∞)2,we have

Q(m)f = If +
p−1∑

s=1

Bs/ms + Rp,(1.2)

where Bs is independent of m and Rp = O(m−p). This particular result is a
two-dimensional version of a simple variant of the classical Euler-Maclaurin
expansion, which is usually asymptotic.

When f (x1, x2) is simply a homogeneous function rρ(x1, x2) of degree
ρ having no singularity in [0, 1]2 other than at (0, 0), a different expansion
(see [Ly76]) is valid, namely,

Q(m)f = If + (Aρ+2 + Cρ+2 log m)/mρ+2 +
p−1∑

s=1

Bs/ms + Rp.(1.3)

In this case, as in (1.2), simple integral representations for the coefficients
Bs and Cs and for the remainder terms are known [Ly76]. (Cρ+2 = 0 unless
ρ + 2 is a nonnegative integer.)

The extension of this result to the full corner singularity [LydD93] pro-
duced an expansion that included additional terms, some of the form A

[i]
n+αi

m−n−αi with positive integer n. In general, simple integral representations
for these coefficients are not available.

The derivation of these expansions is not easy, and a separate long and
detailed proof is required for each ([Ly76],[Si83],[LydD93].

It is well known that almost any rule may be used as a basis for extrapo-
lation. Any such rule may be expressed as a linear combination of the offset
trapezoidal rules

S
m
(β1, β2)f = 1

m2

m−1∑

j1=0

m−1∑

j2=0

f

(
j1 + β1

m
,
j2 + β2

m

)
,(1.4)

with different parameters β1, β2. Thus, once an expansion for this offset trape-
zoidal rule (1.4) is available, the corresponding expansion for Q(m)f is readily
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obtained by linear superposition. In this paper we simply seek expansions for
this offset trapezoidal rule.

We require little in the way of restrictions on the rule Q. For convenience
only we insist that Qf = If when f is constant and we require the abscissas
satisfy (β1, β2) ∈ [0, 1]2. The theory may be readily modified to remove
these restrictions.

In 1993Verlinden ([Ve93],[VeHa93]) introduced a new uniform approach,
based on properties of the Mellin transform, for constructing these expan-
sions. He treated the s-dimensional region [0, ∞)s and all s-dimensional
monomial versions of our full corner singularity. He established that many
expansions of this nature exist. While complicated in detail, his method deals
with all these different cases in a uniform manner. The differences arise in a
technical way and depend on the nature of the poles of an integrand function
that depends, in turn, on the values of the parameters. In general, his treat-
ment was limited to cases where the integral is regular. In this paper, we have
followed his approach, but in the context of hypersingular integrals.

We approach the problem of divergent integrals from the following view-
point. Suppose the parameters in (1.1) are such that f (x, y) is a function
for which the integral over [0, 1)2 diverges. Then, while the quadrature rule
sum Q(m)f exists for any finite m, it becomes unbounded with increasing m.
In this paper, we show that, in many of these cases, there is still an expan-
sion that (not unlike the Laurent expansion) starts with a few isolated terms
involving positive powers of m and then continues with the familiar negative
powers. In some cases (later defined as generic cases) the constant coeffi-
cient (which here is not the leading coefficient) coincides with the value of
the Hadamard finite-part integral. But in other cases termed non-generic we
have not been able to relate this constant term to the Hadamard finite part
integral. Unfortunately, these cases, which we cannot handle, are of particu-
lar importance in boundary element methods. They include, for instance, the
case f (x1, x2) = r−2. These cases are currently under investigation.

We organize this paper as follows. In Section 2 we collect some of the
results of our previous one-dimensional investigation. In Sections 3.1 and
3.2 we define two-dimensional Mellin transforms and Hadamard finite-part
(HFP) integrals and note some of their elementary properties, including the
connection between them.

In general, the approach based on the Mellin transform requires an inte-
gration region [0, ∞)2. An integrand such as the basic full corner singularity
specified in (1.1) does not usually converge over this region. We deal with this
difficulty in Section 3, where we define allowable and acceptable functions
and introduce neutralizer functions to mitigate the decay rate for large xi . In
Section 3.4, we present information about poles and residues of some Mellin
transforms.



Asymptotic expansions for two-dimensional hypersingular integrals 297

In Section 4, we substitute the expression for f given by the two-
dimensional Mellin inversion formula (3.2) into the expression for the trap-
ezoidal rule (4.1). This gives the basic relation on which the entire theory is
based. This is a contour integral representation (4.3) of the trapezoidal rule,
which can be developed into an expansion by moving contours to the left and
including residues of those poles that are passed over. These residues depend
on m and on the parameters α1, α2 and ρ. For many sets of parameters, all
poles are simple; these are termed generic cases; see definition 4.1 and The-
orem 5.1. In Section 5, we confine ourselves to these cases. Our principal
result is Theorem 5.2, which gives the expansion for f , the pure full corner
singularity over [0, ∞)2. The extension to fg where g is a regular function
is effected in Section 6, where the form of the expansions for [0, ∞)2 and for
[0, 1)2 is given in Theorem 6.1 for generic integrands. The expansions for
[0, 1)2 are obtained by taking sums and differences of corresponding integrals
over appropriate infinite regions (see (6.5); in these, neutralizer functions do
not appear. In Section 6 we treat in more detail some special cases of the full
corner singularity, such as those with αi = 0 or with rρ = 1. We are able
to simplify the integral representations of the coefficients; in fact, some of
these coefficients turn out to be HFP integrals, even when the original inte-
gral is regular. A straightforward way of obtaining the form of the expansion
for nongeneric integrands is explained in Section 8. In Section 9 we remark
that the asymptotic expansions for the unit square easily extend to smooth
curved quadrangles. Section 10 is devoted to a few very simple numerical
examples; these merely illustrate how the above expansions may be exploited
numerically.

2 One-dimensional extrapolation for HFP integrals

Central to the one-dimensional theory treated in our earlier paper [MoLy98] is
the Mellin transform of a function f (x) together with the standard inversion
formula. These are defined by

Mx(f (x); p) = M(f ; p) =
∫ ∞

0
f (x)xp−1dx;

f (x) = 1

2πi

∫ c+i∞

c−i∞
M(f ; p)x−pdp.

(2.1)

The path of integration in the second integral is Re(p) = c, and c may take
any real value p for which the first integral exists. In the many cases in which
no confusion is likely to arise, we use the abbreviation M(f ; p). This is
analytic in p and is generally defined by analytic continuation from regions
where the integral representation is valid. The definition and properties of
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Mellin Transforms with a discussion of their analytic continuation are nicely
provided in [BlHa86].

In [MoLy98] we considered only functions f (x) = xαg(x), where g(x) ∈
C(m+1)[0, ∞) has a decay rate at infinity exceeding that of any inverse power
of x; that is,

∣∣∣∣
∫ ∞

0
g(κ)(x)xjdx

∣∣∣∣ < ∞, κ = 0, 1, . . . , m + 1,

for all j ≥ 0. The functions g(x) were termed “allowable” in C(m+1)[0, ∞).
For these functions we established Theorem 2.1, which specifies the simple
poles of M(f ; p).

Applying the conventional definition of the HFP integral (a one-dimen-
sional version of definition 3.2 below), we established that

∫ ∞

0
= f (x)dx = M(f ; 1)

in all cases in which f = gxα and g is allowable and M(f, p) has no singular-
ity at p = 1. This permitted us to derive several properties of the HFP integral
by developing the (more robust and better established) Mellin transform.

When M(f ; p) has no poles in Re(p) > 0, the analytic continuation of
M(f ; p) into Re(p) > −m − 1, excluding the nonpositive integers, may be
represented by

M(f ; p) =
∫ ∞

0
= f (x)xp−1dx

= (−1)i

p(p + 1) · · · (p + i)

∫ ∞

0
f (i+1)(x)xp+idx

(2.2)

for all integers i for which the final integral exists.

Theorem 2.1 When f (x) = xαg(x) and g(x) is an allowable function in
C(∞)[0, ∞), the analytic continuation M(f ; p) of the Mellin transform of
f (x) has simple poles at p = −α − n, n = 0, 1, 2, 3, . . . , and

Mt(t
αg(t); −α − n + ε) = g(n)(0)/n!

ε
+

∫ ∞

0
= g(x)x−n−1dx

+ε

∫ ∞

0
= g(x)(log x)x−n−1dx + O(ε2).

(2.3)

Using the standard Riemann zeta function expansion

ζ(p, x) =
∞∑

k=0

(x + k)−p, x ∈ (0, 1], p > 1,(2.4)
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together with the Mellin inversion Theorem (second member of (2.1)), we
derived a contour integral representation for the trapezoidal rule sum approx-
imation

Sm(β)f = 1

m

∞∑

j=0

f

(
j + β

m

)
.(2.5)

This is the expression on the left-hand side of (2.6). Applying (2.3), we estab-
lished the following (asymptotic) expansion.

Theorem 2.2 Let f (x) = xαg(x), let g(x) be allowable in C(N+1)[0, ∞),
and let α not be a negative integer. Then,

1

2πi

∫ c+i∞

c−i∞
M(f ; p)ζ(p, β)mp−1dp

= M(f ; 1) +
N∑

n=0

g(n)(0)

n!

ζ(−n − α, β)

mn+α+1

+ 1

2πi

∫ c′+i∞

c′−i∞
M(f ; p)ζ(p, β) × mp−1dp,

(2.6)

where N is a nonnegative integer, c > α−1, c′ ∈ (−N −α−2, −N −α−1),
and M(f ; p) is the (analytic continuation of the) Mellin transform of f (x)

(in the p-plane).

Since the first term on the right is an HFP integral, this expansion is a minor
generalization of the classical Euler-Maclaurin asymptotic expansion. We
note that this HFP integral is the constant term in an expansion that may
contain terms of both higher and lower order.

Remark 2.1 When α is a negative integer, a variant of this Theorem pertains.
The term in the summation having n = −α − 1 is indeterminate as written.
This term and with M(f ; 1) must be replaced by a pair of terms of the form
C0 log m + D0. Details are given in [MoLy98]. We note that the same phe-
nomenon, in a more complicated setting, occurs in the two-dimensional case.
We refer to the cases covered by the Theorem as generic cases and the cases
with negative integer α as nongeneric cases.

3 The two-dimensional mellin transform

This section is devoted to collecting together results about Mellin Transforms
and Hypersingular integrals. We introduce neutraliser functions, which we
use to partition the integrand function. This information is required in Sec-
tions 3 and 4, where we construct asymptotic expansions for cubature error
functionals.
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3.1 General definitions and properties

We define a double Mellin transform of f (x1, x2) in a natural way.
For values of p1 and p2 for which the integral exists, we define

Mx,y(f (x, y); p1, p2) = M(f ; p1, p2)

=
∫ ∞

0

∫ ∞

0
f (x1, x2)x

p1−1
1 x

p2−1
2 dx1dx2.

(3.1)

For other values of p1 and p2, the transform may be defined by using analytic
continuation. A double application of the one-dimensional inversion formula
(2.1) gives the corresponding two-dimensional inversion formula, namely,

f (x1, x2) = 1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
M(f ; p1, p2)x

−p1
1 x

−p2
2 dp1dp2.(3.2)

Here c1 and c2 may take any real values for which the double integral
M(f ; c1, c2) defined in (3.1) above exists in a regular sense.

We shall apply the Mellin transform only to functions that are acceptable
according to the following straightforward generalization of the one-dimen-
sional definition.

Definition 3.1 A functiong(x1, x2) is an allowable function inC(n)([0, ∞)2),

n ≥ 0, when it is a C(n) function in both variables and

|
∫ ∞

0

∫ ∞

0
g(i,j)(x1, x2)x

k
1xl

2dx1dx2| < ∞(3.3)

for all integers 0 ≤ i, j ≤ n, all k, l > 0.
An acceptable function is one of the form g(x1, x2)x

α1
1 x

α2
2 where g is

allowable.

When g is allowable, it is a simple matter to obtain a set of real inte-
gral representations for the Mellin transform, valid for all real noninteger
p1 and p2. We start with the definition (3.1), assigning values of p1 and p2

sufficiently large that the integral exists. Then we carry out the process of
integration by parts, i times in the x1 variable and j times in the x2 variable.
The contributions from the lower limits contain factors of the form xδ

i with
δ > 0 and so vanish; the decay rate of an allowable function ensures that the
contributions from the upper limits vanish also. We are left with the following
generalization of (2.2):

M(g; p1, p2) = (−1)i+j

p1(p1 + 1) · · · (p1 + i − 1)p2(p2 + 1) · · · (p2 + j − 1)

×
∫ ∞

0

∫ ∞

0
g(i,j)(x1, x2)x

p1+i−1
1 x

p2+j−1
2 dx1dx2.(3.4)



Asymptotic expansions for two-dimensional hypersingular integrals 301

The derivation of this relation is valid only for values of pi for which
integral representation (3.1) exists. But the right-hand side exists for a wider
range of pi and is analytic in pi . An elementary application of the principle
of analytic continuation produces the result

M(g; p1, p2) = (−1)i+j (p1 − 1)!(p2 − 1)!

(p1 + i − 1)!(p2 + j − 1)!
M(g(i,j); p1 + i, p2 + j),

(3.5)

valid for all allowable functions g, with all noninteger values of pi .
We close this subsection with some standard rules for manipulating the

two-dimensional Mellin transform.

Lemma 3.1 Let f , φ, and h be functions of two variables, and let p1 and
p2 be parameters such that the Mellin transform functions below exist. Then
we have the following:

(a) When φ(y1, y2) = f (y1y2, y2),

Mx,y(f (x, y); p1, p2) = Mx,y(φ(x, y); p1, p1 + p2).

(b) When φ(x1, x2) = x
γ1
1 x

γ2
2 h(x1, x2),

Mx,y(φ(x, y); p1, p2) = Mx,y(h(x, y); p1 + γ1, p2 + γ2).

(c) When f (x, y) = g(x)h(y),

Mx,y(f (x, y); p1, p2) = Mt(g(t); p1)Mt(h(t); p2)

(Bear in mind that x, y, t are dummy variables that may be renamed at will.)
These textbook results are direct consequences of the definitions.

3.2 Definition of HFP integral and relation with the mellin transform

We now define a two-dimensional HFP integral and show that, in many cir-
cumstances, it coincides with M(f ; 1, 1).

Definition 3.2 Let f be integrable over (ε, b)2, for all ε satisfying 0 < ε <

b ≤ ∞. Suppose there exists a strictly monotonic increasing sequence of
nonpositive real numbers α0 < α1 < α2 < · · · < αM ≤ 0 and a nonnegative
integer J such that an expansion of the form

∫ b

ε

∫ b

ε

f (x1, x2)dx1dx2 =
K∑

k=0

J∑

j=0

Ik,j (b)εαk logj ε + o(1)(3.6)
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exists. Then the corresponding finite-part integral may be defined as follows:

(3.7)

FP

∫ b

0

∫ b

0
f (x1, x2)dx1dx2 = Ii,0(b), when αi = 0 f orsome 0 ≤ i ≤ K

= 0 otherwise.

(This is the unique term in the summation that is independent of ε.)

Remark 3.1 Other definitions are possible. One more general definition uses
two independent parameters, say, ε1 and ε2, as lower limits in (3.6) together
with a correspondingly more sophisticated expansion. This can lead to differ-
ent results in some cases (see remark 3.2); however, the results in this paper
would be unaffected by this change. The choice ε1 = ε2 = ε used here
corresponds to a standard one adopted in hypersingular boundary integral
equations where f is of form (1.1) with α1 = α2 = 0 and ρ = −2.

To our knowledge, until now, definitions of finite-part integrals have been
given only with reference of integrand functions of type (1.1) with α1 =
α2 = 0, that is, with a hypersingularity at the origin but otherwise regular
(see [ScWe92]). In that case an expansion of form (3.6) may be obtained by
taking out a circular or square neighborhood of the origin of “size” ε. In our
definition, in order to allow line singularities along x1 = 0 and x2 = 0, we
delete also a neighborhood of these lines. This strategy has the added advan-
tage that we may readily exploit one-dimensional results about the Mellin
transform. Nevertheless, it is not difficult to verify that when we have only
a point singularity, that is, in (1.1) we have α1 = α2 = 0, our definition
generally coincides with the one that takes out a square neighborhood of the
origin. (We recall that the standard definition takes out a circular disc). The
reason is that, unless ρ = −2, the two extra strips we delete do not contribute
to the finite-part value. When ρ = −2, our transform may be obtained from
the one with the square cut by subtracting the quantity

∫ ∞

1

(∫ 1

0
rρ(x, y)dy

)
dx +

∫ 1

0

(∫ ∞

1
rρ(x, y)dx

)
dy, ρ = −2.(3.8)

In many applications, it is convenient to delete a circular disc, or to make
some other shaped excision. We need hardly remind the reader that, in those
applications, a finite contribution to the integral may well be generated by
the difference between these different infinitesimal excisions and has to be
taken into account. We now confine our attention to the finite-part integral

I [g; α1, α2] =: FP

∫ ∞

0

∫ ∞

0
g(x1, x2)x

α1
1 x

α2
2 dx1dx2,(3.9)
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where g(x1, x2) is integrable over ([0, ∞)2). Clearly, when α1 +1 and α2 +1
are both positive, this is a regular integral and coincides with a Mellin trans-
form (see definition (3.1)):

I [g; α1, α2] = M[g; α1 + 1, α2 + 1], αi > −1.(3.10)

In fact, when g(x1, x2) is an allowable function in C(n)([0, ∞)2) with n ≥ 0,

this relation is valid for many other choices of α1 and α2, as specified in The-
orem 3.3. The rest of this subsection is devoted to establishing this somewhat
pedestrian Theorem in a straightforward manner; to this end we need the next
two Theorems.

Theorem 3.1 Let g(x1, x2) be an allowable function in C(n)([0, ∞)2), n ≥
0; let neither α1 nor α2 be a negative integer, and let i and j be nonnegative
integers such that both α1 + i and α2 + j exceed −1. Then

∫ ∞

ε

∫ ∞

ε

g(x1, x2)x
α1
1 x

α2
2 dx1dx2 = T1,1 + T2,1(ε) + T1,2(ε) + T2,2(ε),

(3.11)

where

T1,1 = (−1)i+jα1!α2!

(α1 + i)!p(α2 + j)!

∫ ∞

0

∫ ∞

0
g(i,j)(x1, x2)x

α1+i
1 x

α2+j

2 dx1dx2

(3.12)

and

T2,1(ε) = εα1U2,1(ε); T1,2(ε) = εα2U1,2(ε); T2,2(ε) = εα1+α2U2,2(ε),

Um,n(ε) being convergent power series in ε.

The finite part integral (3.9) is the constant coefficient of ε on the right of
this equation. This is T1,1 provided α1 and α2 are chosen so the other terms
contain no constant terms. This leads to the following Theorem.

Theorem 3.2 When none of α1, α2, α1 + α2 are nonpositive integers and
when g(x1, x2) is an allowable function in C(n)([0, ∞)2), n ≥ 0,

FP

∫ ∞

0

∫ ∞

0
g(x1, x2)x

α1
1 x

α2
2 dx1dx2(3.13)

= (−1)i+jα1!α2!

(α1 + i)!p(α2 + j)!
FP

∫ ∞

0

∫ ∞

0
g(i,j)(x1, x2)x

α1+i
1 x

α2+j

2 dx1dx2

for all nonnegative integers i and j .

Naturally, the latter finite-part integral is regular when both α1 + i and α2 +j

exceed −1. Theorem 3.3 is readily established from this equation and (3.5 ) by
choosing i and j so that the finite-part integral is regular, setting pi = αi +1,
and applying (3.10).
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Theorem 3.3 When none of α1, α2, α1 + α2 are nonpositive integers, and
when g(x1, x2) is an allowable function in C(n)([0, ∞)2), n ≥ 0

FP

∫ ∞

0

∫ ∞

0
g(x1, x2)x

α1
1 x

α2
2 dx1dx2 = I [g; α1, α2](3.14)

= M[g; α1 + 1, α2 + 1]

Remark 3.2 If one were to adopt the more general definition of the finite part
integral mentioned in Remark 2.1 above, one would recover Theorems 3.2
and 3.3 without the restriction on α1 + α2.

3.3 Full corner singularity with neutraliser function

The general theory above requires that the integrand function take the form
g(x1, x2)x

α1
1 x

α2
2 , where g(x1, x2) is an allowable function in C(n)([0, ∞)2)

for some finite n ≥ 1. As written, our full corner singularity (1.1), namely
x

α1
1 x

α2
2 rρ(x1, x2), may fail on two counts. First, many choices of the param-

eters do not produce sufficient decay for large values of xi . Second, the
homogeneous function in general introduces a singularity at the origin that
gives rise to a nonintegrable function in a subsequent integration. In this
subsection, we address both counts by introducing a specially constructed
two-dimensional neutralizer function N(x1, x2), which we define in terms of
one-dimensional neutralizer functions in such a way that f N coincides with
the full corner singularity f in [0, 1)2 and may be expressed as the sum of
two independent acceptable functions.

The use of neutralizer functions for this purpose may seem to be artificial.
Indeed many choices of prolungation functions are possible. However they
all lead to the same result over the [0, 1]2 region, since their contributions
will later disappear. Our choice is one which simplifies the calculation

Definition 3.3 A neutralizer function ν(x, k1, k2) is a C∞ function of x,
defined for all real arguments satisfying k1 < k2, that satisfies

ν(x, k1, k2) = 1 for x ≤ k1,

= 0 for x ≥ k2.

Where no confusion is likely to arise, we abbreviate ν(x, k1, k2) as ν(x).

We now specify a neutralizer function

ν(x) = ν(x, k1, k2) with 1 < k1 < k2.

and construct a two dimensional neutraliser function

N(x1, x2) = ν(x1, k1, k2)ν(x2, k1, k2)(3.15)
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in terms of which we may define

f (x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2)N(x1, x2).(3.16)

This function is inconvenient to use when ρ �= 0 because certain integrals that
appear later do not converge. To continue, we need a second one-dimensional
neutralizer function

ν0(x) = ν0(x, k−1
0 , k0), with k0 > 1.

It follows from the definition that the function

ν̃0(x) = ν̃0(x, k−1
0 , k0) = 1 − ν0(x

−1, k−1
0 , k0)(3.17)

is also a neutralizer function. It is notationally convenient to choose ν0 so
that ν̃0(x) = ν0(x).

For reasons we discuss later, we express f (x1, x2) as the sum of two func-
tions, one of which is zero in a sector including the x1-axis and the other is zero
in a sector including the x2-axis. To this end, we define a two-dimensional
neutralizer function

N(x1, x2) = ν0

(
x1

x2
, k−1

0 , k0

)
ν(x2, k1, k2)

+
[

1 − ν0

(
x1

x2
, k−1

0 , k0

)]
ν(x1, k1, k2)

=: N [1](x1, x2) + N [2](x1, x2).

(3.18)

One may verify that N(x1, x2) = 1 for all (x1, x2) ∈ [0, 1]2, that N(x1, x2)

= 0 when either x1 or x2 exceeds k0k2, and that N ∈ C(∞)[0, ∞)2. This is a
two-dimensional neutralizer function.

We now reintroduce our full corner singularity (1.1) as the function

f (x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2)N(x1, x2).(3.19)

Here, rρ(x1, x2) is homogeneous about the origin of degree ρ and has no sin-
gularity in the first quadrant other than possibly at the origin. Because of this
singularity this function has a nonallowable component. We overcome this
difficulty by expressing f as the sum of two parts, each of which is separately
acceptable. These are

f [i](x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2)N

[i](x1, x2), i = 1, 2.(3.20)

Since rρ is homogeneous, we have by definition

rρ(λx1, λx2) = λρrρ(x1, x2), ∀λ > 0,(3.21)
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and we may reexpress rρ in various ways including

rρ(x1, x2) = x
ρ
2 rρ(x1/x2, 1)(3.22)

rρ(x1, x2) = x
ρ
1 rρ (1, x2/x1) .(3.23)

Clearly, integral representation (3.1) may be synthesized; thus

M(f ; p1, p2) = M(f [1]; p1, p2) + M(f [2]; p1, p2),(3.24)

where

f [1](x1, x2) = x
α1
1 x

α2+ρ
2 rρ(x1/x2, 1)N [1](x1, x2)(3.25)

and

f [2](x1, x2) = x
α1+ρ
1 x

α2
2 rρ(1, x2/x1)N

[2](x1, x2).(3.26)

We note that f [1](x1, x2) and f [2](x1, x2) become zero when x1 ≥ k0x2 and
when x1 ≤ k−1

0 x2, respectively. Taking this into account, one can readily
show that rρ(x1/x2, 1)N [1](x1, x2) and rρ(1, x2/x1)N

[2](x1, x2) are allow-
able functions. Thus both f [1] and f [2] are acceptable functions.

Applying in turn several results in this section, we readily establish the
following Theorem.

Theorem 3.4 When f (x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2)N(x1, x2) and none of

α1, α2, α1 + ρ, α2 + ρ, and α1 + α2 + ρ are negative integers,

FP

∫ ∞

0

∫ ∞

0
f (x1, x2)dx1dx2 = M(f ; 1, 1).(3.27)

Note: this extends the result in Theorem 3.3 so as to include the generally
nonallowable function g(x1, x2) = rρ(x1, x2)N(x1, x2).

Proof We treat the component f [1]. In view of definition (3.25) we have

FP

∫ ∞

0

∫ ∞

0
f [1](x1, x2)dx1dx2

= FP

∫ ∞

0

∫ ∞

0
x

α1
1 x

α2+ρ
2 g(x1, x2)dx1dx2,

(3.28)

where

g(x1, x2) = rρ(x1/x2, 1)N [1](x1, x2)(3.29)

is an allowable function. In view of this, so long as none of α1, α2 + ρ, and
α1 +α2 +ρ are negative integers, we may apply Theorem 3.3 to express this
integral as a Mellin transform M[g; α1 + 1, α2 + ρ + 1] which, in view of
Lemma 3.1(b), coincides with M[f [1]; 1, 1].

Treating the component f [2] in an analogous way and combining the
results for the two individual components, we obtain (3.28), establishing the
Theorem. �	
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The idea of the partition of f , which is not acceptable, into the two
functions f [1] +f [2], each of which is acceptable, is of key importance. This
was first used by Verlinden [Ve93] for regular integrals.

3.4 Development of M[f [1]; p1, p2]

We next examine the behavior of these individual Mellin transforms in their
domain of analyticity. We treat in detail only the first integrand; to reduce
this, we change variables in the corresponding Mellin transform (3.1) using

y1 = x1/x2; y2 = x2.(3.30)

(this is a Duffy Transformation.) To effect this coordinate transformation
(3.30), we apply part (a) of lemma 3.1 to the function f [1] in (3.25). This
gives M(f [1]; p1, p2) = M(φ; p1, p1 + p2) with

φ(y1, y2) = f [1](y1y2, y2) = (y1y2)
α1y

α2+ρ
2 rρ(y1, 1)N [1](y1y2, y2)

= y
α1
1 y

α1+α2+ρ
2 rρ(y1, 1)ν0(y1)ν(y2).

Since φ turns out to be a product function, we may apply part (c) of the same
lemma, giving the first part of the following Theorem.

Theorem 3.5 For the functions f [1] and f [2] defined by (3.20), or by (3.25)
and (3.26), we have

M(f [1]; p1, p2) = Mt(t
α1rρ(t, 1)ν0(t), p1)Mt(t

α1+α2+ρν(t), p1 + p2)

M(f [2]; p1, p2) = Mt(t
α2rρ(1, t)ν̃0(t), p2)Mt(t

α1+α2+ρν(t), p1 + p2).

The second part of this Theorem may be established in precisely the same
way.

This factorization of the two-dimensional Mellin Transform into the prod-
uct of two one-dimensional Mellin Transforms leads to major simplification
in the subsequent development of the theory. It is a direct consequence of the
particular form (3.18) of the two-dimensional neutralizer function N(x1, x2).
Other equally valid forms, some simpler, do not lead to this factorization.

To establish the asymptotic expansions in the next two sections, we require
expressions for the poles and residues of these functions. To this end we apply
Theorem 2.1 of the preceding section to the individual factors. Since for all
our one-dimensional neutralizer functions we have ν(0) = 1 and ν(n)(0) = 0
for all n > 0, this Theorem leads to the following two lemmas.

Lemma 3.2 Mt(t
α1rρ(t, 1)ν0(t), p1) has a sequence of simple poles located

at

p1 = −α1 − n1, n1 = 0, 1, . . . ,(3.31)
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with residues r(n1,0)
ρ (0, 1)/n1! respectively.The corresponding Laurent expan-

sion is

Mt(t
αrρ(t, 1)ν0(t), −α − n + ε)

= r(n,0)
ρ (0, 1)

εn!
+

∑

j=0

εj

j !
=
∫ ∞

0
rρ(t, 1)t−n−1ν0(t) logj t dt.

(3.32)

Lemma 3.3 Mt(t
γ ν(t, k1, k2), p) has only one pole. This is a simple pole

located at p = −γ with residue 1.

In fact there is a simple expression for this transform. When p > −γ ,
we may use the standard integral representation (2.1) . Remembering that
ν(t) = 1 for t < k1 and ν(t) = 0 for t > k2, we find

Mt(t
γ ν(t, k1, k2), p) = k

p+γ

1

p + γ
+

∫ k2

k1

tp+γ−1ν(t)dt.(3.33)

Analytic continuation extends this result to all p �= −γ .
Since k1 > 1, the Laurent expansion about this pole is

Mt(t
ν ν̄(t, k1, k2), −γ + ε) = 1

ε
+

∑

j=0

εj

j !

∫ k2

1
t−1ν̄(t, k1, k2) logj t dt.

(3.34)

Note that the location of the poles and their residues do not depend on the
details of the neutraliser functions.

4 Two-dimensional error expansion

After these preliminaries, we find an expansion for the double infinite sum

Sm(β1, β2)f
[1] = 1

m2

∞∑

j1=0

∞∑

j2=0

f [1]

(
j1 + β1

m
,
j2 + β2

m

)
.(4.1)

When this sum converges, it is clearly a discretization of the regular integral

M(f [1]; 1, 1) =
∫ ∞

0

∫ ∞

0
f [1](x1, x2)dx1dx2.(4.2)

Applying the two-dimensional Mellin inversion formula (3.2) to the func-
tion f [1] in (4.1) and simplifying by using the standard expansion (2.4) of
the Riemann zeta function, we obtain a contour integral representation of the
trapezoidal rule sum (4.1) of the form

Sm(β1, β2)f
[1] = 1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c2+i∞

c2−i∞
M(f [1]; p1, p2)ζ(p1, β1)

×ζ(p2, β2)m
p1+p2−2dp1dp2.

(4.3)
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We remark, at this stage, that this integrand has a pole (due to the zeta
functions) at p1 = p2 = 1. This pole has residue M(f [1]; 1, 1) that is, in
some cases, precisely the integral (4.2) to which the discretization (4.1) may
converge. This circumstance motivates the rest of this paper. It suggests that,
by moving the contours in (4.3), we may isolate the exact integral, leaving
a remainder term. In this section, we put this suggestion on a proper mathe-
matical footing. We find that, in many cases, other residues of the integrand
function in (4.3) correspond to other terms in the Euler-Maclaurin expansion
and, appropriately, in generalizations of this expansion.

In (4.3) the integration paths are along Re(p1) = c1 and Re(p2) = c2,
respectively; and c1 and c2 are real numbers for which M(f [1]; c1, c2) is given
by its standard integral representation of form (3.1). This implies that all poles
of M(f [1]; p1, p2), as a function of p1 with p2 fixed and of p2, with p1 fixed,
are on the left of the lines Re(p1) = c1 and Re(p2) = c2 respectively. The
locations of these poles (for both f [1] and f [2]) can be obtained from lemmas
3.2 and 3.3. We find these parameters need to satisfy

c1, c2 > 1; c1 > −α1; c2 > −α2; c1 + c2 > −(α1 + α2 + ρ).

(4.4)

To obtain an expansion, we employ precisely the technique used in
[MoLy98], Section 4, in a one-dimensional context to establish Theorem
2.2. Here, we keep c1 fixed and treat p1 as an incidental parameter; we iden-
tify the poles of the integrand function in (4.3) in the p2 plane. There are only
two. The zeta function has a simple pole with residue 1 located at p2 = 1.
And, in Lemma 3.3, we noted that the second factor in the Mellin transform
has a simple pole at p2 = −(p1 + α1 + α2 + ρ), again with residue 1. We
move the second contour to the left, passing over both these poles, including,
in each case, a term that comprises the residue of the integrand function at
that pole. Choosing c′

2 < min(1, −(p1 + α1 + α2 + ρ)), we find

(4.5)

1

2πi

∫ c2+i∞

c2−i∞
M(f [1]; p1, p2)ζ(p2, β2)m

p2−1dp2

=M(f [1];p1, 1)+ ζ(−(α1 + α2 + ρ + p1), β2)Mt(t
α1rρ(t, 1)ν0(t), p1)

m(α1+α2+ρ+p1)+1

+ 1

2πi

∫ c′
2+i∞

c′
2−i∞

M(f [1]; p1, p2)ζ(p2, β2)m
p2−1dp2.

Naturally, the derivation above is invalid when p1 is a pole of M(f [1];
p1, p2). Each term in (4.5) is an analytic function of p1, however, and this
fact is exploited below.
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It may be helpful to remark that, since we may choose c′
2 to be an arbi-

trarily large negative number, the final integral here vanishes (becomes part of
the unstated but implied remainder term) in the asymptotic expansion (5.10)
which is the result of these calculations. From this point on, the reader may
mentally discard all terms involving c′

2.
Substituting (4.5) into (4.3) gives

(4.6)

Sm(β1, β2)f
[1]

= 1

2πi

∫ c1+i∞

c1−i∞
M(f [1]; p1, 1)ζ(p1, β1)m

p1−1dp1 + 1

2πi

∫ c1+i∞

c1−i∞
ζ(p1, β1)

×ζ(−(α1 + α2 + ρ + p1), β2)Mt(t
α1rρ(t, 1)ν0(t), p1)

mα1+α2+ρ+2
dp1

+ 1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c′
2+i∞

c′
2−i∞

M(f [1]; p1, p2)ζ(p1, β1)

×ζ(p2, β2)m
p1+p2−2dp1dp2.

We note that in the second integrand the part depending on m has turned out
to be independent of p1 and therefore may be taken outside the integral. This
simplifying phenomenon allows us to set

A
[1,0]
α1+α2+ρ+2 = 1

2πi

∫ c1+i∞

c1−i∞
ζ(p1; β1)ζ(−(α1 + α2 + ρ + p1); β2)(4.7)

×Mt(t
α1rρ(t, 1)ν0(t), p1)dp1,

and (4.6) reduces to an expansion of the form

Sm(β1, β2)f
[1] = 1

2πi

∫ c1+i∞

c1−i∞
M(f [1]; p1, 1)ζ(p1; β1)m

p1−1dp1(4.8)

+A
[1,0]
α1+α2+ρ+2

mα1+α2+ρ+2
+ 1

(2πi)2

×
∫ c1+i∞

c1−i∞

∫ c′
2+i∞

c′
2−i∞

M(f [1]; p1, p2)ζ(p1; β1)

×ζ(p2; β2)m
p1+p2−2dp1dp2.

We treat the first term on the right in (4.8). We move the integration con-
tour Re p1 = c1 to the left to a new location Re p1 = c′

1 < c1. In doing so,
we have to addend the residue Ri of every pole Pi of the integrand function
�[1](p1) =: M(f [1]; p1, 1)ζ(p1; β1)m

p1−1, which, as a result of the transfer,
now appears to the right of the contour. Thus



Asymptotic expansions for two-dimensional hypersingular integrals 311

1

2πi

∫ c1+∞

c1−i∞
M(f [1]; p1, 1)ζ(p1, β1)m

p1−1dp1(4.9)

=
∑

Pi>c′
1

Ri + 1

2πi

∫ c′
1+i∞

c′
1−i∞

M(f [1]; p1, 1)ζ(p1, β1)m
p1−1dp1.

To proceed, we need to locate these poles and find expressions for their
residues. In view of Theorem 3.5, this integrand function may be written in
the form

�[1](p1) = Mt(t
α1rρ(t, 1)ν0(t), p1)(4.10)

×Mt(t
α1+α2+ρν(t), p1 + 1)ζ(p1; β1)m

p1−1.

The zeta function has a simple pole with residue 1 at

p1 = p
(0)
1 = 1.(4.11)

the individual Mellin Transforms in this integrand have been treated in lem-
mas 3.3 and 3.2. The first Mellin Transform has a sequence of simple poles
at

p1 = p
(1)
1 (n1) = −α1 − n1, n1 = 0, 1, . . . ,(4.12)

with residues r(n1,0)
ρ (0, 1)/n1! respectively, while the second has a simple

pole with residue 1 at

p1 = p
(2)
1 = −(α1 + α2 + ρ + 1).(4.13)

The poles of each of the three factors of the integrand function (4.10) are
simple. But, for some values of the parameters, a pole of one factor may coin-
cide with a pole of another factor, giving rise to a multiple pole of �[1](p1).
The expression for the residue Ri depends on the multiplicity of the pole Pi .

Definition 4.1 The set of parameters α1, α2 and ρ are termed generic when
all the poles of �[1] are simple and all the poles of �[2] are simple.

Here �[2] is the integrand function in (4.10) when f [2] is treated in place of
f [1]. We note that a pole of �[1] may coincide with a pole of �[2]. In several
important cases, there are multiple poles. We discuss these nongeneric cases
briefly in Section 7.

5 The two-dimensional error expansion in the generic case

So long as the locations of all the poles p
(j)

1 given in (4.11), (4.12), and (4.13)
are distinct, the poles Pi of the integrand function �[1] are simple. This fact,
together with the corresponding remark concerning �[2], allows us to state a
sufficient condition for a generic case.



312 J.N. Lyness, G. Monegato

Theorem 5.1 When none of the following five conditions are satisfied, a
generic case occurs.

(1) α1 + α2 + ρ = −2
(2) α2 + ρ + 2 = positive integer = m1.

(3) α1 = negative integer = −m2.

(4) α1 + ρ + 2 = positive integer = m′
1.

(5) α2 = negative integer = −m′
2.

Proof The reader may verify that the first of these five conditions reflects
the coincidence of poles at p

(0)
1 and p

(2)
1 above. The second and third con-

ditions reflect the coincidence of one of the poles p
(n)
1 with p

(0)
1 and with

p
(2)
1 , respectively. The fourth and fifth conditions arise from a corresponding

inspection of f [2]. �	
We note that generic cases do occur, even when one or more of these con-

ditions pertain. Such an occurrence arises when one of the simple poles listed
above disappears as a result of a particular choice of parameters. The symp-
tom is that the residue vanishes. (For example, when α1 = α2 = ρ/2 = 0,
the poles p

(1)
1 (n1) = −α1 − n1 disappear, except when n1 = 0. None of the

remaining poles coincide. This is a generic case, items (2) and (4) notwith-
standing.)

We have given above the residues at p
(i)
1 of the individual components

of the integrand function. We need the residues of the complete integrand
function. In this generic case, the residue of the integrand function (4.10)
at p1 = p

(0)
1 = 1 is simply Mt(t

α1rρ(t, 1)ν0(t), 1)× Mt(t
α1+α2+ρν(t), 2),

which, in view of (3.31), reduces to M(f [1]; 1, 1).
The other residues are calculated in the standard way for simple poles.

Collecting these terms, we find the specialization of (4.9) in the generic case
to be

(5.1)
1

2πi

∫ c1+∞

c1−i∞
M(f [1]; p1, 1)ζ(p1, β1)m

p1−1dp1

= M(f [1]; 1, 1) +
N1∑

n1=0

A
[1,1]
α1+n1+1/mα1+n1+1 + A

[1,2]
α1+α2+ρ+2/mα1+α2+ρ+2

+ 1

2πi

∫ c′
1+i∞

c′
1−i∞

M(f [1]; p1, 1)ζ(p1, β1)m
p1−1dp1,

where

A
[1,1]
α1+n1+1 = 1

n1!
r(n1,0)
ρ (0, 1)Mt(t

α1+α2+ρν(t); −α1 − n1 + 1)

×ζ(−α1 − n1, β1),(5.2)
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A
[1,2]
α1+α2+ρ+2 = Mt(t

α1rρ(t, 1)ν0(t); −α1 − α2 − ρ − 1)

×ζ(−α1 − α2 − ρ − 1, β1).(5.3)

Here, N1 is the number of poles to the right of the contour Re(p1) = c1. Thus

c1 ∈ (α1 − N1 − 2, α1 − N1 − 1).

Substituting the right-hand side of (5.1) into (4.8), we obtain

(5.4)

Sm(β1, β2)f
[1] = M(f [1]; 1, 1) + A

[1]
α1+α2+ρ+2

mα1+α2+ρ+2
+

N1∑

n1=0

A
[1,1]
n1+α1+1

mn1+α1+1

+ 1

2πi

∫ c′
1+i∞

c′
1−i∞

M(f [1]; p1, 1)ζ(p1, β1)m
p1−1dp1

+ 1

(2πi)2

∫ c1+i∞

c1−i∞

∫ c′
2+i∞

c′
2−i∞

M(f [1]; p1, p2)ζ(p1; β1)

×ζ(p2; β2)m
p1+p2−2dp1dp2,

with

A
[1]
γ+2 = A

[1,0]
γ+2 + A

[1,2]
γ+2 .(5.5)

Here, M(f [1]; 1, 1) is the (double) analytic continuation of (4.2) with f =
f [1](x1, x2). If no continuation is necessary,

M(f [1]; 1, 1) =
∫ ∞

0

∫ ∞

0
f [1](x1, x2)dx1dx2.(5.6)

Naturally, the sufficient conditions in Theorem 5.1 for this to be a generic
case coincide with the condition that each term in the expansion (5.4) involves
a distinct power of m. Further examination of the coefficients reveals that,
when the conditions of that Theorem are violated, and two terms appear hav-
ing the same power of m, the expressions as written for the coefficients may
become indeterminate. For example, when condition (3) is violated, and α1

is the negative integer −m2, the zeta function in (5.2) is indeterminate when
n1 = m2 − 1. However, if that particular term does not occur, for example
when r(n1,0)

ρ = 0, the expansion is not affected. This fact reconfirms that
condition (3) is only a sufficient condition for a nongeneric case and not a
necessary one.

Condition (1) of the Theorem can be connected with the zeta function
factor in (5.3) in the same way, while condition (2) is related to a pole of the
Mellin transform factor in the same equation.
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In the nongeneric cases one or more of these conditions are violated. The
consequent modifications to the expansions required are treated briefly in
Section 8. At this point, we rewrite (5.4) as an asymptotic expansion

Sm(β1, β2)f
[1] ∼ M(f [1]; 1, 1) + A

[1]
α1+α2+ρ+2

mα1+α2+ρ+2
+

∑

n1=0

A
[1,1]
n1+α1+1

mn1+α1+1
(5.7)

for f [1], where

f [1](x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2)N

[1](x1, x2).(5.8)

This function coincides with f (x1, x2) in a region adjacent to the x2-axis but
tapers away and coincides with zero in a region adjacent to the x1-axis. To
obtain an expansion for Sm(β1, β2)f , we require the corresponding expan-
sion for the function

f [2](x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2)N

[2](x1, x2).

This was introduced at the same time as f [1] in Section 3.3; we recall that
f = f [1] + f [2]. The derivation of the expansion for Sm(β1, β2)f

[2] corre-
sponds in every respect to that for Sm(β1, β2)f

[1] as described above. One
obtains

Sm(β1, β2)f
[2] ∼ M(f [2]; 1, 1) + A

[2]
α1+α2+ρ+2

mα1+α2+ρ+2
+

∑

n2=0

A
[2,1]
n2+α2+1

mn2+α2+1
.(5.9)

The major result of this paper is obtained by adding these expansions
together, giving the following Theorem.

Theorem 5.2 Let α1, α2 and ρ be a generic set of parameters, as specified
in definition 4.1. Let Sm(β1, β2)f be the offset trapeziodal rule approxima-
tion (4.1) to the full corner singularity function f (x1, x2) = x

α1
1 x

α2
2 rρ(x1, x2)

×N(x1, x2) as given in (3.19). Then there exists an asymptotic expansion of
the form

Sm(β1, β2)f ∼ M(f ; 1, 1) + A
(0)
α1+α2+ρ+2

mα1+α2+ρ+2
+

∑

n1=0

A
[1,1]
n1+α1+1

mn1+α1+1

+
∑

n2=0

A
[2,1]
n2+α2+1

mn2+α2+1
.(5.10)

Here, we have set

M(f ; 1, 1) = M(f [1]; 1, 1) + M(f [2]; 1, 1)

and

A
(0)
γ+2 = A

[1]
γ+2 + A

[2]
γ+2 = A

[1,0]
γ+2 + A

[1,2]
γ+2 + A

[2,0]
γ+2 + A

[2,2]
γ+2 .(5.11)
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(Coefficients having superscript 1 are defined explicitly in (5.5), (4.7),
(5.2), and (5.3).) As mentioned above, in the conventional case, the integral
is regular and

M(f ; 1, 1) =
∫ ∞

0

∫ ∞

0
f (x1, x2)dx1dx2.(5.12)

In general, when this does not exist, it is the analytic continuation of

M(f ; p1, p2) =
∫ ∞

0

∫ ∞

0
f (x1, x2)x

p1−1
1 x

p2−1
2 dx1dx2(5.13)

to p1 = p2 = 1. Since this is the generic case in which this meromorphic
function has no poles at p1 = 1 or p2 = 1, the integral (5.13) does exist
for some p1 and p2, and its continuation coincides with our definition of the
Hadamard finite-part integral. Note that, in view of Theorem 3.3, there need
be no relation of this kind if any one of α1, α2 and α1 + α2 is a nonpositive
integer.

Remark 5.1 When αi is a nonnegative integer, the term x
αi

i plays no signifi-
cant independent role in the theory, which can be rearranged to omit such
factors with a consequent simplification. (In fact, with no loss in generality
we can restrict the theory to the case αi �= nonnegative integer.) No such sim-
plification occurs in general for special values of ρ. For example, a possible
integrand is arctan(x1/x2), which is a function of form rρ(x1, x2) with ρ = 0
and certainly gives rise to a corresponding term in the expansion.

Remark 5.2 Examination of the contour integral representation (4.7) of A
[1,0]
γ+2

shows that the integrand function has a pole at p1 = −1 − γ whose residue

turns out to be precisely −A
[1,2]
γ+2 as defined in (5.3). This implies that A

[1]
γ+2

in (5.5) has a contour integral representation having this same integrand, but
a different contour. Thus

A
[1]
α1+α2+ρ+2 = 1

2πi

∫

C1

ζ(p1; β1)ζ(−(α1 + α2 + ρ + p1); β2)

×Mt(t
α1rρ(t, 1)ν0(t), p1)dp1,(5.14)

where C1 is a modification of the contour Re(p) = c1; this modified contour
passes to the left of the pole at p = −1 − γ but to the right of all the other
poles. When α1 > −1 and γ + 2 > 0, the contour C1 may be taken to be the
line Re(p1) = 1, indented to pass to the right of the pole at p1 = 1.

6 The form of related expansions

Up to this point, the theory has been devoted to the asymptotic expansion of
the trapezoidal rule sum approximation Sm(β1, β2)f (introduced in (4.1)) of
the basic integrand function
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f (x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2)N(x1, x2)(6.1)

over the first quadrant [0, ∞)2. In this section we deal with the form of the
corresponding expansions when the integration region is replaced by [0, 1]2

and when the integrand function is generalized to fg with g regular in the inte-
gration region. We provide a simple framework for handling the somewhat
tedious extensions to the theory required to obtain these variant expansions.

We denote various integration regions as follows:

H 0,0 = [0, 1)2; Hp,q = [p, ∞) × [q, ∞); p, q = 0, 1.(6.2)

Specifically

H0,0 = [0, ∞)2; H0,1 = [0, ∞) × [1, ∞); H1,0 = [1, ∞) × [0, ∞);
H1,1 = [1, ∞)2.

We suppress dependence on β1 and β2 and denote by Sm(H0,0)f the quantity
Sm(β1, β2)f defined in (4.1). The trapezoidal rule approximations corre-
sponding to the regions specified above are denoted by

Sm(Hp,q)f = 1

m2

∞∑

j1=mp

∞∑

j2=mq

f

(
j1 + β1

m
,
j2 + β2

m

)
, p, q = 0, 1,

(6.3)

and by

Sm(H 0,0)f = 1

m2

m−1∑

j1=0

m−1∑

j2=0

f

(
j1 + β1

m
,
j2 + β2

m

)
.(6.4)

The sum over H 0,0 can be expressed as

Sm(H 0,0)f = Sm(H0,0)f − Sm(H0,1)f − Sm(H1,0)f + Sm(H1,1)f,

(6.5)

and the expansion for H 0,0 may be obtained as the sum of the four expan-
sions, a different one for each region. The appropriate expansion in these
different regions may differ from one another, depending on the extent (if
any) to which the singularities of f penetrate that region.

In none of the theory or examples treated in this paper are there any inte-
grand singularities in H1,1, and the integral exists. Thus the standard Euler
Maclaurin expansion may be applied.

The result of carrying out this process for the full singularity of Theorem
5.2, namely,

f (x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2)N(x1, x2),(6.6)
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is an asymptotic expansion including exclusively terms of the form Aγ /mγ ,
where γ may take any value specified in items (1), (2), (3), and (4) of Theorem
6.1, together with γ = α1 + α2 + ρ + 2.

In the application to numerical quadrature, however, one needs an expan-
sion for the more general function fg where g(x1, x2) is a regular function.
The standard approach is straightforward. One expands g(x1, x2) as a Taylor
expansion and applies corresponding results for each separate term and to
the remainder term. The effect is to introduce for each γ already present a
sequence γ + j with j = 1, 2, 3, .. . If, as in the final summation on the right
of (5.10), γ already belongs to such a sequence, the form of the expansion is
not altered. On the other hand, the first term on the right of (5.10) is replaced
by a sequence (5) below.

The second major result of this paper is an umbrella result for all expan-
sions involving full singularities over these regions when the integrand func-
tion is generic.

Theorem 6.1 Let α1, α2 and ρ be a generic set of parameters, as specified in
definition 4.1. Let Sm(H 0,0)fg and Sm(H0,0)fg be the offset trapeziodal rule
approximations (6.4) and (6.3) to the integral over [0, 1)2 and over [0, ∞)2,
respectively, of fg, where f (x1, x2) is the full corner singularity function
as given in (6.6) and g(x1, x2) is a regular function. Then there exists an
asymptotic expansion for Smfg in powers of m containing exclusively terms
of the form Aγ /mγ for some or all of the following values of γ :

(1) γ = 0;
(2) γ = s; s = 1, 2, 3, ....

(3) γ = α2 + 1 + n1; n1 = 0, 1, 2, 3, ....

(4) γ = α1 + 1 + n2; n2 = 0, 1, 2, 3, ....

(5) γ = α1 + α2 + ρ + 2 + n; n = 0, 1, 2, 3, ....

This large number of terms in the expansion is disappointing, if not unex-
pected.All expansions contain item (1), which is simply the (Hadamard finite-
part) integral. The classical Euler-Maclaurin expansion includes additionally
only sequence (2). The basic expansion (5.10) may include two sequences,
however, and when g is included, this becomes three sequences.

7 Expressions for individual coefficients

While the form of the expansions derived in previous sections is relatively
simple, some of the expressions for coefficients are forbiddingly complex.
In many cases, these have a simple representation in special cases when one
or two of the parameters do not appear. In this section we collect together
several results of that nature.
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7.1 The classical Euler-Maclaurin expansion

It is convenient to note the form of the classical Euler-Maclaurin expansion
applied to [0, ∞)2, of which (5.10) is a variant.

Theorem 7.1 Let f (x1, x2) be allowable and Cp[0, ∞)2. Let Sm(β1, β2)f

be the off-set trapeziodal rule approximation (4.1) to this integral. Then there
exists an asymptotic expansion of the form

Sm(β1, β2)f = M(f ; 1, 1) +
p−1∑

s=1

Bs

ms
+ Rp,(7.1)

where Bs is independent of m and Rp = O(m−p).

Here, of course, M(f ; 1, 1) is a regular integral.
This form may be obtained from (1.2) by summing the corresponding

result for the square [K, K + 1) × [L, L + 1) over all nonnegative integers
K and L. We find that the coefficients Bs take the form

Bs =
s∑

k=0

ck(β1)cs−k(β2)

∫ ∞

0

∫ ∞

0
f (k,s−k)(x1, x2)dx1dx2.(7.2)

The coefficients here take the forms

ck(β) = −ζ(−k + 1, β)/(k − 1)! = Bk(β)/k!(7.3)

where Bk(β) is the Bernoulli polynomial. In view of the high-order continuity
of f , expression (7.2) can be reduced to

Bs = −cs(β1)

∫ ∞

0
f (s−1,0)(0, x2)dx2(7.4)

−cs(β2)

∫ ∞

0
f (0,s−1)(x1, 0)dx1

+
s−1∑

k=1

ck(β1)cs−k(βk)f
(k−1,s−k−1)(0, 0).

Thus, when f (x1, x2) is allowable and C(p)[0, ∞)2, the coefficients Bs (1 ≤
s ≤ p) depend only on the nature of f (x1, x2) on the axes x1 = 0 and x2 = 0.

7.2 A simpler neutraliser function

This result can be used to simplify marginally some of the previous results
by simplifying the dependence on neutralizer functions. The integrand func-
tions of Sections 2 and 3 all involved a neutralizer function N(x1, x2) given in
(3.18). Examination of this function shows that it coincides with the simpler
neutralizer function
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N(x1, x2) = ν(x1, k1, k2)ν(x2, k1, k2)(7.5)

for all 0 ≤ x1 ≤ k1k
−1
0 , 0 ≤ x2 ≤ k1k

−1
0 . Consequently, the distinct full

corner singularity functions

f (x1, x2) = x
α1
1 x

α2
2 rp(x1, x2)g(x1, x2)N(x1, x2)(7.6)

and

f (x1, x2) = x
α1
1 x

α2
2 rp(x1, x2)g(x1, x2)N(x1, x2)(7.7)

coincide in a strip along the axes and are by definition C∞[k1k
−1
0 , ∞)2. The

function (f (x1, x2) − f (x1, x2)) is then C∞[0, ∞)2 and so is one to which
Theorem 7.1 applies, and examination of (7.4) shows that the coefficients Bs

for this difference vanish. This gives immediately the following Theorem.

Theorem 7.2 Theorem 4.2 is valid as it stands when N(x1, x2) is replaced
by N(x1, x2) in the definition of f .

Naturally, S(m)f and M(f ; 1, 1) change when N is replaced by N . The
other coefficients, however, are identical. The expressions given for A

[j,1]
γ are

already independent of ν0. However, the expression given for A(0)
γ includes

several terms, some of which depend on ν0. This dependence is in fact spu-
rious.

7.3 The coefficient A[1,1]
γ , general case

The coefficient A[1,1]
α1+n1+1 is given by (5.2) which involves the neutralizer func-

tion N . In view of Theorem 7.2, we may replace N by N . This replacement
allows a simple reexpression in terms of the cofactor function of x

α1
1 in f ,

defined by

h1(x1, x2) = x
−α1
1 f (x1, x2) = rρ(x1, x2)x

α2
2 ν(x1)ν(x2).(7.8)

Lemma 7.1 The n1th derivative of this cofactor function satisfies

h
(n1,0)
1 (0, x2) = r(n1,0)

ρ (0, x2)x
α2
2 ν(x2)(7.9)

= r(n1,0)
ρ (0, 1)x

α2+ρ−n1
2 ν(x2).(7.10)

Proof This is straightforward. Differentiating the right-hand side of (7.8) n1

times with respect to x1 using the Leibniz expansion leaves n1 + 1 terms.
Since ν(s)(0) = 0 for all s > 0, when we set x1 = 0, only one of these
terms remains, this being the right-hand side of (7.9). The final equation is
established by noting that the factor r(n1,0)

ρ (0, x2) is homogeneous in x2 of
degree ρ −n1 and so can be reexpressed as required to establish the result. �	

Minor rearrangement of (5.2) together with an application of this lemma
give successively
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A
[1,1]
α1+n1+1 = ζ(−α1 − n1, β1)

n1!
Mt(r

(n1,0)
ρ (0, 1)tα2+ρ−n1ν(t); 1)(7.11)

= ζ(−α1 − n1, β1)

n1!
Mt(h

(n1,0)
1 (0, t); 1).(7.12)

The final term here is a regular integral when ρ+α2−n1 > −1 Otherwise
it is a one-dimensional HFP integral, except when ρ + α2 − n1 is a negative
integer.

7.4 The coefficient A[1,1]
γ , special case rρ = 1

We treat the special case

f (x1, x2) = x
α1
1 x

α2
2 ν(x1)ν(x2).(7.13)

Here, we may set rρ(x1, x2) = 1 and set ρ = 0 in any previously stated
result. The set of poles in (4.12) may be replaced by a single pole p

(1)
1 (0).

Consequently all the terms other than the initial term in the sums over n1 and
n2 in (5.10) vanish, and only four individual terms remain on the right of
(5.10). The set of five sufficient conditions for a generic case reduce to:

α1 �= −1; α2 �= −1; α1 + α2 �= −2.(7.14)

We then have the following Theorem.

Theorem 7.3 Let S(m)(β1, β2)f be the offset trapezoidal rule approximation
(4.1) to the corner singularity function (7.13) with parameters αi satisfying
(7.14). Then there exists an asymptotic expansion

S(m)(β1, β2)f = M(f ; 1, 1) + A
(0)
α1+α2+2

mα1+α2+2
+ A

[1,1]
α1+1

mα1+1
+ A

[2,1]
α2+1

mα2+1
+ O(m−p)

(7.15)

for all p.

Here

A
[1,1]
α1+1 = Mt(t

α2ν(t); 1))ζ(−α1, β1); A
[1,2]
α2+1 = Mt(t

α1ν(t); 1))ζ(−α2, β2).

(7.16)

It is shown below that

A
(0)
α1+α2+2 = ζ(−α1, β1)ζ(−α2, β2).(7.17)

This special case may be treated without resort to the coordinate transforma-
tion of Section 3.3. Instead, we may exploit the circumstance that f in (7.13)
is a product function, say f = φ1φ2. We apply Theorem 2.2 to the function
φ1(x1), with g(x1) = ν(x1), to obtain for the one-dimensional discretization
(2.5)
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S(m)(β1)φ1 = M(φ1, 1) + ζ(−α1, β1)/mα1+1 + O(m−p),(7.18)

valid so long as α1 �= 1. Since S(m)(β1, β2)φ1φ2 = Sm(β1)φ1S
(m)(β2)φ2,

we may take the product of two versions of asymptotic expansions (7.18),
obtaining an independent proof of Theorem 7.3 that provides the expression
for A

(0)
α1+α2+2 given above.

7.5 The coefficient A[1,1]
γ , special case α1 = α2 = 0

We treat the special case

f (x1, x2) = rρ(x1, x2)ν(x1)ν(x2).(7.19)

For this to be a generic case, we require that ρ + 2 not be a nonnegative
integer, allowing us to apply (5.10) to obtain

Sm(β1, β2)f ∼ M(f ; 1, 1) + A
(0)
ρ+2

mρ+2
+

∑

s=1

Bs

ms
,(7.20)

where

Bs = A[1,1]
s + A[2,1]

s(7.21)

= ζ(−s + 1, β1)

(s − 1)!
Mt(f

(s−1,0)(0, t); 1)

+ζ(−s + 1, β2)

(s − 1)!
Mt(f

0,(s−1)(t, 0); 1)(7.22)

= −cs(β1)FP

∫ ∞

0
f (s−1,0)(0, x2)dx2

−cs(β2)FP

∫ ∞

0
f (0,s−1)(x1, 0)dx1.(7.23)

These coefficients resemble closely the corresponding coefficients for the
regular function given in (7.4). The only differences are that those integrals
that, with the new integrand, do not converge, are replaced by HFP integrals
and the final summation in (7.4) (the terms of which in this case are either zero
or indeterminate) is omitted. The reduction of form (7.21) to one resembling
(7.2) is not immediate. One requires the following lemma.

Lemma 7.2 Let f be given by (7.19), and let t1, t2 and s be positive integers,
and ρ − s �= − 2. Then

FP

∫ ∞

0

∫ ∞

0
f (t1,t2)(x1, x2)dx1dx2 = 0(7.24)

FP

∫ ∞

0

∫ ∞

0
f (0,s)(x1, x2)dx1dx2 = FP

∫ ∞

0
f (0,s−1)(x1, 0)dx1.(7.25)
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We omit our somewhat pedestrian proof of this elegant result.
In view of this, we may reexpress this coefficient as

Bs =
s∑

k=0

ck(β1)cs−k(β2)FP

∫ ∞

0

∫ ∞

0
f (k,s−k)(x1, x2)dx1dx2.(7.26)

This is precisely the same form as the corresponding (7.2) except that regular
integrals are consistently replaced by HFP integrals.

The expansion (7.20) bears a close resemblance to the corresponding
expansion for a regular function described by Theorem 7.1. Apart from a
single additional term A

(0)
ρ+2/mρ+2, the only differences are those required to

modify integrals that would otherwise diverge to HFP integrals and to remove
indeterminate quantities.

7.6 Special case α1 = α2 = 0, region [0, 1)2

Here, the integrand function coincides with the integrand function treated in
the previous subsection. We express the region H 0,0 = [0, 1)2 as a linear
combination of four regions Hp,q as set out in Section 5 above. For H0,0 we
may employ (6.19) with Bs given by (6.25). Within the other three regions,
H0,1, H1,0 and H1,1 this integrand is regular and the standard Euler-Maclaurin
expansion (7.1) may be used. The result is the following.

Theorem 7.4 When ρ + 2 is not a nonnegative integer,

Sm(H 0,0)f ∼ M(f ; 1, 1) + A
(0)
ρ+2

mρ+2
+

∑

s=1

Bs

ms
,(7.27)

where

Bs =
s∑

k=0

ck(β1)cs−k(β2)FP

∫ 1

0

∫ 1

0
f (k,s−k)(x1, x2)dx1dx2.(7.28)

Note that A
(0)
ρ+2 in this expansion is identical with the same coefficient in

expansion (7.20).

8 The two-dimensional nongeneric expansions

In the preceding section, we developed (4.9) by finding expressions for the
residues Ri in the case that all the poles Pi of �[1](p) are simple poles. In that
case expressions for the residues are readily available, reducing (4.9) to (5.1)
with accompanying expressions for the coefficients. These terms, together
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with terms arising from a corresponding development of f [2], appear in the
final Theorem 5.2.

In a nongeneric case, some of the poles Pi are not simple; for these, a
different residue calculation is required.

If we treat only f [1], to obtain a nongeneric case, two or more of the
poles p

(j)

1 given in (4.11), (4.12), and (4.13) must coincide. This situation
can happen in relatively few ways:

(1) p(0) = p(2) = p(1)(n1) for some nonnegative integer n1

(2) p(0) = p(2) �= p(1)(n) for all nonnegative integers n

(3) p(0) = p(1)(n3) �= p(2) for some nonnegative integer n3

(4) p(2) = p(1)(n4) �= p(0) for some nonnegative integer n4

Case (1) is a triple pole. In this case all other poles of �[1] are simple.
Case (2) is a double pole. In this case all other poles of �[1] are simple.
Cases (3) and (4) are also double poles. They may both occur in the same

expansion with n3 �= n4, or possibly only one may occur. In either situation,
all other poles of �[1] are simple.

We note that p(0) = 1. This pole gives rise to the term M[f [1]; 1, 1] in
the expansion.

In all these cases, the form of the expansion can be readily obtained. The
integrand function (4.10) is of the form �[1](p) = G(p)mp−1, where G(p)

contains the poles at p = Pi . Since there is no pole of G(p) of order higher
than 3, the Laurent expansion of G(p) about any pole P can be written in
the form

G(p) = c−3(p − P)−3 + c−2(p − P)−2 + c−1(p − P)−1 + c0 + · · ·
(8.1)

When P is a double pole, c−3 = 0. When P is a simple pole, c−3 = c−2 = 0.
The factor of �[1](p) involving m may be expanded in the form

mp−1 = mP−1exp((p − P) log m)

= mP−1(1 + (p − P) log m + ((p − P) log m)2/2 + · · · ).(8.2)

The residue of �[1](p) = G(p)mp−1 at the pole p = P is simply the coeffi-
cient of (p − P)−1 in the product of these two expansions. This is

R = (c−3(log m)2/2 + c−2(log m) + c−1)/m1−P .(8.3)

Naturally, the principal Theorem of the preceding section 5, Theorem 5.2,
requires modification before it may be applied to these nongeneric cases. This
modification is minor, however. When P is a double pole of �[1](p), two of its
factors have poles at p = P . If the residues are mistakenly calculated on the
basis of this being a simple pole, the result contains an indeterminate factor.
Thus, in the expansion (5.10) of that Theorem as written, when P is in fact a
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double pole, the two terms of the form A1−P /m1−P are both indeterminate.
The proper residue to use in this case is of the form (8.3) with c−3 = 0; the
two indeterminate terms should be replaced by a two-parameter term of the
form (C1−P logm + D1−P )/m1−P .

In the triple pole case, which occurs only when P = 1, one replaces three
terms, each apparently constants in the expansion, by a three-parameter term
of form

R = C ′
0(log m)2 + C0 log m + D0.(8.4)

The derivation given above refers only to the terms in the final expansion
arising from the component f [1]. A similar treatment of f [2] is also required.
This gives results of a precisely corresponding nature.

Thus it is straightforward to write down the form of the expansion in
nongeneric cases. But formulas for the coefficients are cumbersome. The
principal application is to numerical quadrature by extrapolation. There,
expressions for the coefficients are needed only when the value of the integral
is involved. In the generic case, this is the constant coefficient M(f ; 1, 1). In
cases where there is a multiple pole at p = 1, we now have the terms in (8.4).

9 Application to curved quadrangles

The effects of a change of variables has been examined only in the special
case where α1 = α2 = 0. This case occurs in many current boundary ele-
ment method applications. The modification introduced by a smooth change
of variable is known (see [Ki91]). However the sum over all boundary ele-
ments remains unchanged, as long as the hypersingularity is inside the global
domain of integration. The reader should notice that in (1.1) we do not require
rρ(x1, x2) to have the form (x2

1 +x2
2)ρ/2. It merely need to be homogeneous of

degree ρ. This assumption plays a key role when we have to extend the asymp-
totic expansions we have obtained, to include any smooth curved quadrangle.
Indeed, if the integration region is a curved quadrangle, given by an analytic
parametric representation defined on the unit square, the original kernel of
the boundary integral equation, after having introduced this representation,
is no longer homogeneous.

Nevertheless, the transformed kernel can be decomposed in the following
form (see [ScWe92a])

N∑

j=0

rρ+jfj (θ) + RN(x1, x2), x1, x2 ∈ [0, 1]2(9.1)

where r =
√

x2
1 + x2

2 and θ = atan(x2/x1). The functions fj (θ) are analytic
in [0, π

2 ], while the remainder term RN(x1, x2) can be made arbitrarily smooth
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by taking N sufficiently large. Since rρ+jfj (atan(x2/x1)) is homogeneous
of degree ρ + j , our theory applies to each such term. All that is needed
is the knowledge of the degree of homogeneity of rρ . We do not require,
as in [KiScWe92] for example, the explicit determination of the functions
fj (θ) in (9.1). It follows that the expansions we have derived equally apply
to finite-part integrals defined on curved quadrangles.

10 Numerical examples

Up to this point, this paper has been concerned exclusively with obtain-
ing the proper error functional expansion for various cubature problems. In
applications it is vital to use the appropriate expansion. But the choices of
cubature rule and of mesh ratio sequence are important. Besides economy in
cost, considerations concerning noise amplification and termination criteria
may be critical. In the context of two-dimensional regular integrals, some of
these problems are discussed in [Ly76a]. The examples in this section are not
addressed to these issues. They should be taken only as illustrations of how
extrapolation can be made to work in simple cases.

In these examples we integrate over (0, 1)2 using the product mid point
rule (β1 = β2 = 1/2) and a sequence of mesh ratios m1, m2, m3, ..., mk.
The cost, in terms of function values, does not exceed the quantity

∑
ν =

m2
1 + m2

2 + · · · + m2
k , where ν denotes m2

i .
The numerical entries in the tables have been rounded. The noise level in

function values used in these calculations is roughly 10−14. We have noted
in the tables the condition number associated with the final entry of each
column.

Example 1 f (x1, x2) = (x1x2)
−3/2

We used the mesh ratio sequence mj = 4, 7, 10, 13, ...., 28 and did the
problem twice, using two different expansions. The first is the one provided
by direct application of the umbrella Theorem 6.1, namely

Q(m)f ∼ A−1m + A−1/2m
1/2 + A0 +

∑

j=1

Aj/2

mj/2
.(10.1)

This sequence would be required if treating a function (x1, x2)
−3/2g(x1, x2).

In our special case, g(x1, x2) = 1 so many coefficients vanish, leaving

Q(m)f ∼ A−1m + A−1/2m
1/2 + A0 +

∑

k=1

(
A2k−1/2

m2k−1/2
+ A2k

m2k

)
.(10.2)

The results, based on the same input, but using this expansion, are also shown.
The fourth column of the Table 1 shows the data on which the results are based,
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Table 1. Numerical results for Example 1

m ν
∑

ν Q(m)f A0(9.1) A0(9.2)

4 16 16 57.10
7 49 65 113.18

10 100 165 171.75 0.4279947E+01 0.4279947E+01
13 169 334 231.72 0.3643213E+01 0.4027182E+01
16 256 590 292.62 0.4048171E+01 0.3998226E+01
19 361 951 354.21 0.4062080E+01 0.3999871E+01
22 484 1435 416.32 0.3991173E+01 0.4000007E+01
25 629 2064 478.85 0.4000613E+01 0.4000001E+01
28 784 2848 541.73 0.4000711E+01 0.4000000E+01
Condition number of final entry 5.3E+05 3.6E+07

namely, Q(m)f for various values of m. The fifth gives the result of extrap-
olation using (10.1) and the final column the corresponding results using
(10.2). In carrying out these calculations, the linear equation solver obtained
approximations to

A−1 = (ζ(3/2, 1/2))2 and A−1/2 = 4ζ(3/2, 1/2).(10.3)

Each of these appeared to be consistently more accurate than the correspond-
ing approximation to A0 = If = 4 by roughly four and two decimal places,
respectively.

Example 2 f (x1, x2) = r−2

This is not a generic case. Reference to Section 8 indicates that the proper
expansion is

Q(m)f ∼ C0 log m + A0 +
∑

j=1

Aj/mj .

Here C0 = π/2 for all β1, β2, but A0 depends on β1 and β2 and we know of no
simple relation connecting A0 with the Hadamard integral If . Nevertheless,
as illustrated in Table 2, extrapolation provides an unambiguous result for
A0. There is no warning in the course of the calculation, that this is not the
result being sought.

We remark that the same situation prevails in the nongeneric case
f (x1, x2) = r−3x1.

Example 3 f (x1, x2) = r−3

This happens to be a generic case. The expansion is

Q(m)f ∼ A−1m + A0 +
∑

j=1

Aj/mj .
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Here,

A0 = If = −
√

2.

Again, using extrapolation, one obtains excellent approximations to A0. How-
ever, this result is of virtually no practical value. If the integrand is modified
to r−3g(x1, x2), then it becomes a nongeneric case. We have remarked above,
near the end of Example 2, that in the case r−3x1, extrapolation gives a result
that does not coincide with If . It follows that extrapolation could be used
generally for a function r−3g(x1, x2) only if g(1,0)(0, 0) = g(0,1)(0, 0) = 0.

Table 2. Numerical Results for Examples 2 and 3

Example 2 Example 3

m ν
∑

ν Q(m)f A0 Q(m)f A0

1 1 1 2.00 2.83
2 4 5 3.02 2.000000 6.88 −1.221442
3 9 14 3.65 1.916538 10.99 −1.397090
4 16 30 4.09 1.908571 15.11 −1.412839
5 25 55 4.44 1.907900 19.24 −1.414188
6 36 91 4.73 1.907868 23.37 −1.414208
7 49 140 4.97 1.907866 27.50 −1.414213

Condition Number of Final 9.35 × 102 3.61 × 102

Entry

11 Concluding remarks

We are interested in integration over [0, 1)2 and [0, ∞)2. We have treated
integrand functions having a full corner singularity. These are of the form

f (x1, x2) = x
α1
1 x

α2
2 rρ(x1, x2)g(x1, x2),(11.1)

where rρ is homogeneous of degree ρ (see (3.21)) and has no singularity in
[0, 1)2 other than at (0, 0), where g(x1, x2) is C(∞)[0, ∞)2 and where f is
acceptable, that is, its decay rate for large x1, x2 is sufficient for the integral
to converge there.

The overall result is this. For all values of the parameters α1, α2 and ρ

there exists an asymptotic expansion of the offset trapezoidal rule of the form

S(m)f ∼
∑

i=0

(Aγi
+ Cγi

log m + Dγi
(log m)2)/mγi .(11.2)

Here, the elements γi are distinct; only a finite number are nonpositive. For
convenience we take γi in increasing order. In cases in which the integral
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converges (that is, α1 + α2 + ρ > −2), this result can be gleaned from sev-
eral papers [Ly76], [LydD93], [VeHa93]. In this case γi ≥ 0, A0 = If , and
D0 = C0 = 0.

The focus of our investigation has been on cases in which the integral
does not converge. In the development of the theory, it became necessary to
evaluate the residues at the poles of a function that depends on the param-
eters. In the cases in which all poles are simple, we have termed the set of
parameters generic.

In generic cases, Cγi
= Dγi

= 0 for all γi , and A0 = If , where If is the
Hadamard finite part integral. The expansion reduces to

S(m)f ∼
∑

γi<0

Aγi
/mγi + If +

∑

γi>0

Aγi
/mγi .(11.3)

the required values of γi being given in Theorem 5.2. The first summation is
finite, including only the negative values of γ (that is, positive powers of m).
In the extrapolation context in the hypersingular cases, one seeks the constant
term If , which is not the leading term. A list of conditions on the parame-
ters that ensure a generic case is given in Theorem 5.1; however, these are
only sufficient conditions. A generic case may occur, even if some of these
conditions are violated. It is quite permissible to treat, in the first instance, a
generic case as if it were nongeneric. One simply lengthens the calculation
by introducing additional terms unnecessarily.

In the nongeneric cases, in which coefficients C0 and D0 exist, the integral
is not given by A0. In the corresponding one-dimensional case [Ly94], it is
possible to extract If from the values of A0 and C0. In the two-dimensional
case, expressions for A0, C0, and D0 are much more complicated. At present,
we have no evidence to the effect that one can extract If from these. This is
under investigation.
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