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Summary. Uniform lower and upper bounds for positive finite-element
approximations to semilinear elliptic equations in several space dimensions
subject to mixed Dirichlet-Neumann boundary conditions are derived. The
main feature is that the non-linearity may be non-monotone and unbounded.
The discrete minimum principle provides a positivity-preserving approxi-
mation if the discretization parameter is small enough and if some structure
conditions on the non-linearity and the triangulation are assumed. The dis-
crete maximum principle also holds for degenerate diffusion coefficients. The
proofs are based on Stampacchia’s truncation technique and on a variational
formulation. Both methods are settled on careful estimates on the truncation
operator.

Mathematics Subject Classification (2000): 65N30, 65N12

1 Introduction

In this paper uniform lower and upper bounds for finite-element discretiza-
tions of semi-linear elliptic boundary-value problems are derived. In short
the following type of PDEs is considered:

Lu = g(x, u) in �, u = uD on �D, uν = 0 on �N,(1)
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where L is the second-order differential operator

Lu = −
d∑

i,j=1

∂i(aij (x)∂ju) +
d∑

i=1

ai(x)∂iu,(2)

the function g(x, u) may be non-monotone, and uν is the normal derivative
of u associated to the operator L. The domain � ⊂ R

d (d ≥ 1) is bounded
with boundary �D ∪�N . The precise assumptions are to be found in the next
section.

The investigations are motivated by numerical approximations of the sta-
tionary quantum drift-diffusion model

δ2�
√

n = √
n(log(

√
n) + V − F),

div(n∇F) = 0,

−�V = n − C(x) in �,

for the electron density n, the quantum quasi-Fermi potential F , and the
electrostatic potential V . The parameter δ is the (scaled) Planck constant,
and the prescribed function C = C(x) is the concentration of fixed back-
ground charges [2,11]. The equations are supplemented by mixed Dirichlet-
Neumann boundary conditions. The model describes the distribution of
electrons in semiconductor devices whose performance relies on quantum-
mechanical effects. Typically this model is used to simulate inversion layers
in MOSFET devices [1] or to compute current-voltage characteristics of res-
onant tunneling diodes [12,18,20]. For δ = 0 the model equations reduce to
the classical drift-diffusion model [17].

In a Gummel-type iteration procedure [20] one has to solve for fixed F

and V the equation

δ2�u = g(x, u) := u(log u + f (x)), in �,(3)

where u = √
n ≥ 0 and f (x) = V (x) − F(x). Here the function g(x, u) is

not monotone. It is important for a numerical scheme solving (3) to have the
following two properties:

• The numerical approximation of the particle density n(x) has to be positive.
• Uniform estimates on the numerical solution should be independent of the

scaled Planck constant δ.

In this paper we prove that the linear finite-element approximation actually
has these properties. More precisely, the numerical method is positivity-pre-
serving and the upper bounds are independent of the parameter δ.

We remark that estimates independent of δ have been proved for the quan-
tum drift-diffusion model (3)–(3) in [19] in a one-dimensional setting.
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The peculiar non-linearity in (3) is the sum of a monotone and a bounded
function. A combination of discrete maximum principles for bounded [6,
Sec. 20] and monotone non-linearities [13] may be applied. However, the
validity of discrete minimum and maximum principles does not rely on this
specific structure.

There is a vast literature on discrete maximum principles, whereas much
less references can be found for uniform positive lower bounds [13].
Discrete maximum principles for (linear) finite-element approximations have
been first derived in [7] for linear elliptic equations. The method has been
extended in [9] for a special system of non-linear equations. Other techniques
are based on elliptic estimates [21] or matrix properties [10]. Stampacchia’s
method has been also applied to linear discrete variational inequalities [8].
It is well known that the validity of discrete maximum principles is closely
related to geometric properties of the finite-element meshes, see, e.g.,
[5,7,14,15]. Discrete maximum principles for convection-diffusion equa-
tions have been derived in [4]. They also have been studied for finite-volume
[3] and finite-difference schemes [16].

Let us check the paper’s main results in advance. Let uh be a (piecewise
linear) finite-element approximation of (1) and let g(x, u) be a Carathéodory
function (a precise definition will be given later on) such that g(x, u) ≤ g(x)

for x ∈ � and u ∈ R and g(x, u) ≥ g(x) for x ∈ � and u ≤ m0 for some
m0 ∈ R, where g(x) and g(x) are Lp functions. Then, under some assump-
tions on the differential operator and the triangulation, there exist positive
constants C1, C2, and α, independent of the maximal size h of the elements
of the finite-element triangulation of �, such that

min
�

uh ≥ min{m0, min
�D

uD,h} − C1‖g‖1/2
Lp(�) − C2h

α,(4)

where uD,h is an approximation of uD. Hence, for positive Dirichlet data,
positive m0, and sufficiently small g and h, the approximation uh is strictly
positive. Kerkhoven and Jerome [13] derived a similar result with α = 2,
however, only for monotone non-linearities. Our result applies to more gen-
eral non-linearities and to space dimensions d ≤ 5.

The proof is based on the Stampacchia truncation method. For a contin-
uous weak solution u of (1), this technique provides the estimate

inf
�

u ≥ min{m0, inf
�D

uD} − C0‖g‖Lp(�),(5)

where C0 > 0 is some constant. Estimate (5) will follow if one uses the
truncated function (−u + m)+ = max{0, −u + m} as a test function in the
weak formulation of (1) (see Section 3.1 for details). When setting h = 0 in
(4), we do not recover the estimate (5). This is because the truncated function
(−u + m)+ cannot be used as test function in the discretized version of (1).
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Instead of (−u+m)+ we use a projection of (−u+m)+ on the finite-element
space as test function. This yields extra terms which are carefully estimated
and (4) follows.

The second main result is a discrete maximum principle for equilibrium
solutions which are minimizers of an energy functional associated with (1).
We give sufficient conditions such that discrete equilibrium solutions are
finite-element solutions. Furthermore, assuming (essentially) that there exists
a constant M0 ∈ R such that the primitive of g(x, ·) is strictly increasing on
(M0, ∞), we prove that any equilibrium solution uh of (1) satisfies

sup
�

uh ≤ max{M0, inf
�D

uD,h}.

This result also holds for degenerate diffusion matrices. Thus, when applied
to (3) the maximum principle holds for any value of the Planck constant
δ ≥ 0. We can even allow for diffusion coefficients vanishing on (parts of) �.
The proof of this result is based on estimates for the projected test function.

The paper is organized as follows. In the Section 2 we state our main
hypotheses and we prove some auxiliary results. Section 3 is devoted to the
discrete minimum principle. The discrete maximum principle is shown in
Section 4.

2 Main assumptions and auxiliary results

We impose the following assumptions:

(A1) � ⊂ R
d , d ∈ N, is a bounded polyhedral domain, �N is a measurable

open subset of ∂�, and �D = ∂� \ �N .
(A2) g : � × R → R is a Carathéodory function, i.e., g is measurable and

for all x ∈ �, the function g(x, ·) : R → R is continuous.
(A3) aij : � → R, i, j = 1, . . . , d, are bounded, measurable functions.

For each x ∈ � the matrix (aij (x))i,j=1,... ,d is symmetric and positive
semi-definite. The functions ai : � → R, i = 1, . . . , d, are bounded
and measurable.

(A4) uD ∈ H 1(�) ∩ L∞(�).

Let C∞
0 (�∪�N) be the set of restrictions of functions φ ∈ C∞

0 (Rd) to �

such that supp(φ) ∩ ∂� ⊂ �N . Furthermore, let H 1
0 (� ∪ �N) be the closure

of C∞
0 (� ∪ �N) in H 1(�) [23].

Each polyhedral domain has a Lipschitzian boundary. Thus the following
Poincaré-Sobolev inequality holds if measd−1(�D) > 0:

‖u‖Lr(�) ≤ Cs(r)‖∇u‖L2(�) ∀u ∈ H 1
0 (� ∪ �N),(6)

where r < ∞ (if d ≤ 2) and r = 2d/(d − 2) (if d ≥ 3).
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The finite-element approximation relies on a weak formulation of (1).
The bilinear form associated with L is a : H 1(�) × H 1(�) → R, defined
by

a(u, v) =
d∑

i,j=1

∫

�

aij (∂iu)(∂jv) dx +
d∑

i=1

∫

�

ai(∂iu)v dx.

Assumption (A3) implies the existence of a constant K > 0 such that

a(u, v) ≤ K‖∇u‖L2(�)‖v‖H 1(�) ∀u, v ∈ H 1(�).(7)

We introduce the functional F : H 1(�) × H 1
0 (� ∪ �N) → R ∪ {∞} by

F [u](v) =





∫

�

g(x, u)v dx if g(., u)v ∈ L1(�)

∞ if g(., u)v ∈ L1(�).

Then the weak formulation of (1) reads

a(u, φ) = F [u](φ) ∀φ ∈ H 1
0 (� ∪ �N), u − uD ∈ H 1

0 (� ∪ �N).(8)

For the finite-element discretization we assume:

(A5) Th is an admissible, regular triangulation of � in the sense of Ciarlet
[6], made up of d-simplices τ ∈ Th.

(A6) The edges of each simplex τ ∈ Th which are part of ∂� are entirely
contained either in �D or �N .

The involved finite-element spaces are

Xh := {vh ∈ C(�) : vh|τ is affine for all τ ∈ Th},
Vh := {vh ∈ Xh : vh = 0 on �D}.

Let xi (1 ≤ i ≤ N ), xi (N + 1 ≤ i ≤ N + NN ), and xi (N + NN + 1 ≤ i ≤
Nh := N + NN + ND) be the vertices of Th that belong to �, to �N , and to
�D, respectively. Furthermore, φi (1 ≤ i ≤ Nh) are functions of Xh defined
via

φi(xj ) = δij , 1 ≤ i, j ≤ Nh,

i.e., the functions φi (1 ≤ i ≤ N + NN ) and φi (1 ≤ i ≤ Nh) are a basis of
Vh or of Xh, respectively. The finite-element discretization of (8) is

a(uh, vh) = F [uh](vh) ∀vh ∈ Vh, uh − uD,h ∈ Vh,(9)

where uD,h ∈ Xh is an approximation of uD. Finally we assume

(A7) The matrix (a(φi, φj ))ij is an L0 matrix, i.e. a(φi, φj ) ≤ 0 for all i = j .
(A8) uD,h ∈ Xh.
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Assumption (A7) is a condition on the triangulation. As an example, for
L = Laplacian and d = 2, (A7) is satisfied if all angles of the triangles of Th

are not larger than π/2 [6, Thm. 20.2].
The starting point for the Stampacchia truncation method in the continu-

ous equation is to use the truncated function (u − M)+ = max{0, u − M} ∈
H 1

0 (� ∪ �N) with M ∈ R as test function in (8). However, (u − M)+ is usu-
ally not in Xh. As a consequence, we cannot use (u − M)+ as test function
in (9). Instead we test (9) with the projected function

[uh − M]± :=
N+NN∑

i=1

(uh(xi) − M)±φi,

where (u)+ := max{0, u} and (u)− := min{0, u}. We observe

Lemma 1. Let (A1)–(A3), (A5)–(A7) hold and let L be uniformly elliptic,
i.e., there is a constant k > 0 such that a(u, u) ≥ k‖u‖2

L2(�)
for all u ∈

H 1
0 (� ∪ �N). Furthermore, let vh ∈ Xh and let M ≥ sup�D

vh. Then

‖∇[vh − M]+‖L2(�) ≤ K0‖∇vh‖L2(�),

where K0 = (K/k)
√

Cs(2)2 + 1, and K and Cs(2) are defined in (7), (6),
respectively.

Remark 2. If L = Laplacian, it is not difficult to check that K0 = 1. In fact,
the above estimate holds for any bilinear form a(·, ·) of a differential operator
L provided the triangulation ensures that a(φi, φj ) is an L0 matrix.

Proof of Lemma 1. Since a(M, [vh − M]+) = 0 we deduce via (A7)

a(vh, [vh − M]+)

= a([vh − M]+, [vh − M]+) + a([vh − M]−, [vh − M]+)

≥ k‖∇[vh − M]+‖2
L2(�)

+
∑

i =j

(vh(xi) − M)−(vh(xj ) − M)+a(φi, φj )

≥ k‖∇[vh − M]+‖2
L2(�)

.(10)

Since [vh − M]+ ∈ H 1
0 (� ∪ �N) via (6), (7),

k‖∇[vh − M]+‖2
L2(�)

≤ a(vh, [vh − M]+)

≤ K‖∇vh‖L2(�)‖[vh − M]+‖H 1(�)

≤ K
√

Cs(2)2 + 1‖∇vh‖L2(�)‖∇[vh − M]+‖L2(�).

��
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Lemma 3. Let (A1)–(A3), (A5)–(A7) hold, let a1 = · · · = an = 0 and let
vh ∈ Xh, M ∈ R. Then

a([vh − M]−, [vh − M]−) ≤ a(vh, vh).

Proof. Via (A7),

a([vh −M]+, [vh −M]−) =
∑

i =j

(vh(xi)−M)+(vh(xj )−M)−a(φi, φj ) ≥ 0.

Since (a(φi, φj )ij is symmetric and positive semi-definite, we obtain

a(vh, vh) = a([vh − M]−, [vh − M]−) + 2a([vh − M]+, [vh − M]−)

+ a([vh − M]+, [vh − M]+)

≥ a([vh − M]−, [vh − M]−) + a([vh − M]+, [vh − M]+)

≥ a([vh − M]−, [vh − M]−).

��
Furthermore, we need an estimate for [v]+ − (v)+ for v ∈ Xh. Since [v]+

is the linear interpolation of (v)+, we can use the interpolation results of [6]:

Lemma 4. Let 1 ≤ s ≤ 2d/(d − 2) (s < ∞ if d ≤ 2) and let v ∈ Xh. Then

‖[v]+ − (v)+‖Ls(�) ≤ CIh
1+d/s−d/2‖∇([v]+ − (v)+)‖L2(�),

where CI > 0 is a constant depending on s and d.

Actually the proof in [6] needs the assumption H 1(�) ↪→ C0(�) which
holds only for d = 1. However, one easily verifies along the argumentation in
[6] that the estimate of Lemma 4 also holds for H 1(�)∩C0(�), in particular
for Xh.

The proof of the following technical lemma can be found in [6, p. 150]:

Lemma 5. Let r ∈ [1, ∞). Then there is a constant κr > 0 such that for
each d-simplex τ in R

d (with vertices x
(τ)
1 , . . . , x

(τ)
d+1) and for each affine,

non-negative function v : τ → R,

‖v‖r
Lr (τ ) ≥ κrmeas(τ )

d+1∑

i=1

v(x
(τ)
i )r .

Remark 6. The constant κr can explicitly be calculated by transforming τ to
a (reference) d-simplex σ in R

d with vertices x
(σ)
1 , . . . , x

(σ)
d+1. If v : σ → R is

affine and non-negative, then v(x) = ∑d+1
i=1 v(x

(σ)
i )φ

(σ)
i (x), where the bary-

centric coordinate functions φ
(σ)
i : σ → R, i = 1, . . . , d + 1, are affine,

non-negative with φ
(σ)
i (x

(σ)
j ) = δij , i, j = 1, . . . , d + 1, and it holds [6, p.

151]
κr = meas (σ )−1 min

i=1,... ,d+1
‖φ(σ)

i )‖r
Lr (σ ).

If d = 2, then we can choose σ to be the triangle with vertices (0, 0), (0, 1),
(1, 0) and we deduce κr = 2/(r + 1)(r + 2).
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3 A discrete minimum principle

We recall the minimum principle for the continuous case using the Stampac-
chia truncation technique. Then we prove the discrete minimum principle.

3.1 The continuous case

We assume:

(B1) measd−1(�D) > 0.
(B2) The operator L of (2) is uniformly elliptic, i.e., there exists k > 0 such

that a(u, u) ≥ k‖∇u‖L2(�) for all u ∈ H 1
0 (� ∪ �N).

(B3) There exist m0 ∈ R, p > max{1, d/2} and g ∈ Lp(�) such that

g(x, u) ≥ g(x) for x ∈ � and u ≤ m0.

Proposition 7. Let q, r > 1 be such that 1/p + 1/q + 1/r = 1. If d ≤ 2
we choose r > q, otherwise r = 2d/(d − 2). Furthermore, let u ∈ H 1

0 (� ∪
�N) + uD be a weak solution of (8). Then

inf
�

u ≥ min{m0, inf
�D

uD} − C0‖g‖Lp(�),(11)

where

C0 = 2r/(r−q)k−1Cs(r)
2meas (�)(r−q)/rq(12)

and Cs(r) is the Poincaré-Sobolev constant in (6).

In particular, if m0 > 0, if inf�D
uD > 0 and if ‖g‖Lp(�) is small enough

then u ≥ c > 0 in � for some constant c.
The proof is a variant of Stampacchia’s maximum principle [22] and relies

on the following lemma which is proved, for instance, in [23, p. 105].

Lemma 8. Let H : [α, β) → [0, ∞) be a non-increasing function with
α < β ≤ ∞. Suppose there are positive constants κ , r , γ with γ > 1 and

H(µ) ≤ κr

(µ − m)r
H(m)γ for α < m < µ < β.

If M∗ = 2γ /(γ−1)κH(α)(γ−1)/r is such that α + M∗ < β, then

H(α + M∗) = 0.
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Proof of Proposition 7. We observe a(v−, v+) = 0 and therefore a(v, v+) =
a(v+, v+) for any v ∈ H 1

0 (� ∪ �N). Furthermore, the evaluation of a(u, v)

for u, v ∈ H 1
0 (� ∪ �N) only involves the first argument’s derivatives

∂1u, . . . , ∂du. Thus, a(−u + m, v) = a(−u, v) = −a(u, v) for any m ∈ R

and any u, v ∈ H 1
0 (� ∪ �N).

Let m < min{m0, inf�D
uD}. Then (−u + m)+ ∈ H 1

0 (� ∪ �N) can be used
as a test function in (8) and we obtain, by (B2), by the previously mentioned
properties of a and by (B3),

k‖∇(−u + m)+‖2
L2(�)

≤ a((−u + m)+, (−u + m)+)

= −a(u, (−u + m)+)

= −
∫

�

g(x, u) (−u + m)+dx

≤ −
∫

�

g(x) (−u + m)+dx

≤ ‖g‖Lp(�)‖(−u + m)+‖Lr(�)(meas (u < m))1/q

≤ ‖g‖Lp(�)Cs(r)‖
×∇(−u + m)+‖L2(�)(meas (u < m))1/q,(13)

where p, q, r are specified above, and in the last inequality we used the
Poincaré-Sobolev inequality (6). This estimate and the elementary inequality

‖(−u + m)+‖Lr(�) ≥ (m − ν)(meas (u < ν))1/r ∀ν < m

together imply via the Poincaré-Sobolev inequality (6)

(m − ν)(meas (u < ν))1/r ≤ Cs(r)‖∇(−u + m)+‖L2(�)

≤ Cs(r)
2k−1‖g‖Lp(�)(meas (u < m))1/q

and for all ν < m

meas (u < ν) ≤ Cs(r)
2rk−r‖g‖r

Lp(�)

(m − ν)r
(meas (u < m))r/q .

The assumptions on q and r imply γ := r/q > 1, because due to assump-
tion p > max{1, d/2}. We set α = − min{m0, inf�D

uD}, β = ∞, and
H(y) = meas (u < −y) for y ∈ [α, β). Hence, we can apply Lemma 8 with
κ = Cs(r)

2 k−1 ‖g‖Lp(�) to deduce

H
(
α + 2γ /(γ−1)κH(α)(γ−1)/r

) = 0.

In view of the estimate H(α) ≤ meas (�) we conclude

u ≥ min{m0, inf
�D

uD} − C0‖g‖Lp(�) in �,

where C0 is as above. ��
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3.2 The discrete case

We use the projected function [−uh + m]+ defined in Section 2 as a test
function. Replacing in Stampacchia’s argument the term (−uh + m)+ by
[−uh + m]+ yields extra terms which can be estimated under additional
assumptions on the non-linearity g(x, u). For this, let uh ∈ Xh + uD,h be a
solution of (9) such that

sup
�

uh ≤ M0, ‖∇uh‖L2(�) ≤ D0.(14)

Estimates for M0 and D0 are given in Section 3.3. We assume:

(B4) There exists g∗ ∈ Lp(�) with p > max{1, d/2} such that

g(x, u) ≥ g∗(x) for x ∈ �, m0 ≤ u ≤ M0,

where m0 is as in (B3) and M0 is defined in (14).
(B5) There exists g ∈ Lp(�) with p > max{1, d/2} such that

g(x, u) ≤ g(x) for x ∈ �, u ∈ R.

Theorem 9. Let (A1)–(A8), (B1)–(B4) and (14) hold. Moreover, assume d ≤
5 and p > max{1, 2d/(6 − d)}. Then

min
�

uh ≥ min{m0, inf
�D

uD,h} − C1‖g‖1/2
Lp(�) − C2h

α,(15)

where the positive constants α, C1 and C2 are defined as follows:

α = 1

2
+ d

2s
− d

4
,

C1,2 = 2r/(r−2q)(meas (�))(r−2q)/2rqCs(r)κ
−1/r
r (D0/k)1/2C∗

1,2,

where

C∗
1 =

√
Cs(s), C∗

2 =
√

CI (K0 + 1)(‖g‖Lp(�) + ‖g∗‖Lp(�)),

and r > 2q, s > p/(p − 1) if d ≤ 2, r = 2d/(d − 2), s ∈ (dp/(2p −
d), 2d/(d − 2)] if 3 ≤ d ≤ 5, and 1/q = 1 − 1/p − 1/s ∈ (0, 1). The
constant K0 is defined in Lemma 1.

Remark 10. (1) For monotone non-linearities, Kerkhoven et al. [13] proved
a similar discrete minimum principle with α = 2. In our case the exponent
α in Theorem 9 is always smaller than one.

(2) If we set h = 0 the bounds of Proposition 7 will not be recovered. This
is not surprising since in the proof of Proposition 7 we can divide by
‖∇(−u + m)+‖L2(�). This is not possible in the proof of Theorem 9.
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(3) The discrete solution uh corresponding to the problem

−�u = −u(log u + f (x)) in �, u = uD > 0 on �D, uν = 0 on �N,

with f0 ≤ f (x) ≤ f1 for x ∈ � and for some f0, f1 ∈ R satisfies, by
Theorem 9,

min
�

uh ≥ min{exp(−f1), inf
�D

uD,h} − C2h
α > 0,

if uD,h > 0 and if h > 0 is small enough.

Proof of Theorem 9. Let m < m1 = min{m0, inf�D
uD,h} and use [−uh +

m]+ ∈ Vh as test function in (9) to obtain

a(uh, [−uh + m]+) = F [uh]([−uh + m]+).(16)

The inequality (10) allows to estimate the left-hand side:

a(−uh, [−uh − (−m)]+) = −a(uh, [−uh + m]+)

≥ k‖∇[−uh + m]+‖2
L2(�)

.(17)

Concerning the right-hand side of (16) we introduce the set E(m) = {[−uh+
m]+ > 0} and employ (B3)–(B4) and the elementary inequality [−uh +
m]+ ≥ (−uh + m)+, yielding

−F [uh]([−uh + m]+)

= −
∫

E(m)

g(x, uh)(−uh + m)+dx

−
∫

E(m)∩{uh≤m0}
g(x, uh)

(
[−uh + m]+ − (−uh + m)+

)
dx

−
∫

E(m)∩{uh>m0}
g(x, uh)

(
[−uh + m]+ − (−uh + m)+

)
dx

≤ −
∫

E(m)

g(x)(−uh + m)+dx

−
∫

E(m)∩{uh≤m0}
g(x)

(
[−uh + m]+ − (−uh + m)+

)
dx

−
∫

E(m)∩{uh>m0}
g∗(x)

(
[−uh + m]+ − (−uh + m)+

)
dx.
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The choice of the parameters p, s and q allows the use of the Hölder
inequality:

−F [uh]([−uh + m]+) ≤ ‖g‖Lp(�)‖(−uh + m)+‖Ls(�)(meas E(m))1/q

+
(
‖g‖Lp(�) + ‖g∗‖Lp(�)

)
‖[−uh + m]+ − (−uh + m)+‖Ls(�)

×(meas E(m))1/q

≤ ‖g‖Lp(�)Cs(s)‖∇(−uh + m)+‖L2(�)(meas E(m))1/q

+
(
‖g‖Lp(�) + ‖g∗‖Lp(�)

)
CIh

1+d/s−d/2

×‖∇([−uh + m]+ − (−uh + m)+)‖L2(�)(meas E(m))1/q .

In the last inequality we used Lemma 4 which is possible since s ≤ 2d/(d−2)

(if d ≥ 3) and s < ∞ if d ≤ 2. By Lemma 1,

‖∇([−uh + m]+ − (−uh + m)+)‖L2(�)

≤ ‖∇[−uh + m]+‖L2(�) + ‖∇(−uh + m)+‖L2(�)

≤ (K0 + 1)‖∇uh‖L2(�),

and therefore, observing (14),

−F [uh]
(
[−uh + m]+

) ≤ D0(meas E(m))1/q
[
Cs(s)‖g‖Lp(�)

+ CI (K0+1)h1+d/s−d/2(‖g‖Lp(�)+‖g∗‖Lp(�))
]
.

Putting together (17) and the above estimate we deduce from the Poincaré-
Sobolev inequality (6) for r = 2d/(d − 2) (if d ≥ 3) or 2q < r < ∞ (if
d ≤ 2):

‖[−uh + m]+‖2
Lr(�) ≤ Cs(r)

2(D0/k)(meas E(m))1/q
[
Cs(s)‖g‖Lp(�)

+ CI (K0 + 1)h1+d/s−d/2(‖g‖Lp(�) + ‖g∗‖Lp(�))
]
.

We estimate the left-hand side from below. For this, let Th(ν) = {τ ∈
Th : τ has a vertex x

(τ)
j such that ν > uh(x

(τ)
j }. Then, by Lemma 5, for any

ν < m,
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‖[−uh + m]+‖r
Lr (�) =

∑

τ∈Th

‖[−uh + m]+‖r
Lr (τ )

≥ κr

∑

τ∈Th

meas(τ )

d+1∑

j=1

(
(−uh(x

(τ)
j ) + m)+

)r

= κr

∑

τ∈Th

meas(τ )
∑

j, m>uh(x
(τ)
j )

(−uh(x
(τ)
j ) + m)r

≥ κr

∑

τ∈Th(ν)

meas(τ )
∑

j, ν>uh(x
(τ)
j )

(−uh(x
(τ)
j ) + m)r

≥ κr

∑

τ∈Th(ν)

meas(τ )
∑

j, ν>uh(x
(τ)
j )

(−ν + m)r

≥ κr

∑

τ∈Th(ν)

meas(τ )(m−ν)r =κr(m−ν)rmeas(E(ν)).

Hence, if we set

K̄(s, r) = Cs(r)κ
−1/r
r (D0/k)1/2

[√
Cs(s)‖g‖Lp(�)

+ h1/2+d/2s−d/4
√

CI (K0 + 1)(‖g‖Lp(�) + ‖g∗‖Lp(�))
]
,

then for all ν < m,

meas (E(ν)) ≤ K̄(s, r)r

(m − ν)r
(meas (E(m))r/2q .

We introduce the function H : [α, ∞) → [0, ∞), where α = −m1, β = ∞,
by H(y) = meas(E(−y)). Then H is non-increasing and

H(y) ≤ K̄(r, s)r

(y − z)r
H(z)r/2q for α < z < y.

We claim that r/2q > 1. Indeed, if d ≥ 3 then

r

2q
= d

d − 2

(
1 − 1

p
− 1

s

)
>

d

d − 2

(
1 − 1

p
+ 1

p
− 2

d

)
= 1,

and if d ≤ 2, then r/2q > 1 by assumption. We deduce from Stampacchia’s
Lemma 8 that H(α+M∗) = 0, where M∗ = 2r/(r−2q)H(α)(r−2q)/2rqK̄(r, s),
such that in view of H(α) ≤ meas (�) the estimate

uh ≥ m1 − 2r/(r−2q)(meas (�))(r−2q)/2rqK̄(r, s)

follows. ��
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3.3 Estimates for uh and ∇uh

Theorem 9 involves upper estimates on uh and ‖∇uh‖L2(�). In this section
we give estimates for these quantities independent of h.

Proposition 11. Let (A1)–(A8) and (B1)–(B2), (B5) hold and let uh be a
weak solution of (9). Then

sup
�

uh ≤ sup
�D

uD,h + C3‖g‖Lp(�),

where
C3 = 2r/(r−q)k−1Cs(r)

2κ−1/r
r (meas (�))(r−q)/rq,

Cs(r) is the Poincaré-Sobolev constant in (6), and 1 < q < r are defined by
1/p + 1/q + 1/r = 1 and r < ∞ (if d ≤ 2), r = 2d/(d − 2) (if d > 2).

Proof. Let M ≥ sup�D
uD,h. Then [uh − M]+ is an admissible test function

in (9):
a(uh, [uh − M]+) = F [uh]([uh − M]+).

The estimate (10) again yields

a(uh, [uh − M]+) ≥ k‖∇[uh − M]+‖2
L2(�)

.(18)

For the estimate of F [uh]([uh − M]+) we introduce the set E(M) = {[uh −
M]+ > 0}. Then, using (B5),

F [uh]([uh − M]+) =
∫

E(M)

g(x, uh)[uh − M]+dx

≤
∫

E(M)

g(x)[uh − M]+dx

≤ ‖g‖Lp(�)‖[uh − M]+‖Lr(�)(meas E(M))1/q,

where p, q, r are specified above. We infer from the Poincaré-Sobolev
embedding (6):

F [uh]([uh − M]+) ≤ Cs(r)‖g‖Lp(�)‖∇[uh − M]+‖L2(�)(meas E(M))1/q .

Putting together the above estimates, we obtain

‖∇[uh − M]+‖L2(�) ≤ k−1Cs(r)‖g‖Lp(�)(meas E(M))1/q,

and, again with the Poincaré-Sobolev inequality,

‖[uh − M]+‖Lr(�) ≤ k−1Cs(r)
2‖g‖Lp(�)(meas E(M))1/q .

Proceeding as in the proof of Theorem 9 we deduce

‖[uh − M]+‖r
Lr (�) ≥ κr(µ − M)rmeas (E(µ))
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for all µ > M . Therefore, setting α = sup�D
uD,h and β = ∞, the function

H : [α, β) → [0, ∞), H(µ) = meas (E(µ)), is non-increasing and we infer
for all µ, M with α < M < µ < β the inequality

H(µ) ≤ Cs(r)
2r‖g‖r

Lp(�)

κrkr(µ − M)r
H(M)r/q .

By assumption, it holds r/q > 1. Hence we can apply Lemma 8 with κ =
Cs(r)

2‖g‖Lp(�)/κ
1/r
r k to deduce, taking into account H(α) ≤ meas (�),

uh ≤ sup
�D

uD,h + C3‖ḡ‖Lp(�) in �.

��
An estimate of ‖∇uh‖L2(�) clearly depends on the precise structure of the

non-linearity g(x, u). However, essentially under the assumptions (B3) and
(B5), we can prove the following result.

Proposition 12. Let (A1)–(A8) and (B1)–(B3), (B5) hold. Furthermore, we
assume that G1 = maxm≤u≤M |g(·, u)| ∈ Lp(�), where m =
min{m0, inf�D

uD,h} and M = sup�D
uD,h. Let uh be a weak solution of

(9). Then

‖∇uh‖L2(�) ≤ (KCs(2)/k + 1)‖∇uD,h‖L2(�) + C4,

where k is the coercitivity constant defined in (B2), K is defined in (7),

C4 = Cs(p/(p − 1))(‖g‖Lp(�) + ‖g‖Lp(�) + ‖G1‖Lp(�))/k,

and Cs(p/(p − 1)) is the Poincaré-Sobolev constant defined in (6).

Proof. With the test function uh − uD,h we estimate

k‖∇(uh − uD,h)‖2
L2(�)

≤ a(uh − uD,h, uh − uD,h)

=
∫

�

g(x, uh)(uh − uD,h)dx − a(uD,h, uh − uD,h)

≤
∫

{uh≤m}
g(x)(uh − uD,h)dx +

∫

{m<uh<M}
G1(x)|uh − uD,h|dx

+
∫

{uh≥M}
g(x)(uh − uD,h)dx

+ KCs(2)‖∇uD,h‖L2(�)‖∇(uh − uD,h)‖L2(�)

≤
(
‖g‖Lp(�) + ‖g‖Lp(�) + ‖G1‖Lp(�)

)
‖uh − uD,h‖Lq(�)

+ KCs(2)‖∇uD,h‖L2(�)‖∇(uh − uD,h)‖L2(�),
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where q = p/(p − 1). Since p > max{1, d/2} ≥ 2d/(d + 2) we have for
d ≥ 3, q ≤ 2d/(d − 2). Thus, with the Poincaré-Sobolev inequality (6),

‖∇(uh − uD,h)‖L2(�) ≤ k−1Cs(q)(‖g‖Lp(�) + ‖g‖Lp(�) + ‖G1‖Lp(�))

+ k−1KCs(2)‖∇uD,h‖L2(�),

from which the assertion follows. ��

4 A discrete maximum principle

In this section maximum principles for equilibrium solutions are considered.
In the first subsection equilibrium solutions are introduced. A correspond-
ing maximum principle is formulated. The second subsection deals with a
discrete version of this principle.

4.1 The continuous case

In the sequel let

G : � × R → R, G(x, s) =
∫ s

0
g(x, σ )dσ.

We assume

(C1) For all i = 1, . . . , d: ai = 0. We write a0(u, v) instead of a(u, v).
(C2) For all s ∈ R: G(·, s) ∈ L1(�).
(C3) There is a number M0 ∈ R such that for all x ∈ � the function G(x, ·)

strictly decreases on (M0, ∞).

Differently from the assumptions of the previous sections, the pure
Neumann boundary case � = �N and the case of degenerate diffusion matri-
ces are included.Assumption (C3) is satisfied if, for instance, there is M0 ∈ R

such that for x ∈ � and s > M0 it holds g(x, s) < 0.
We introduce the functional

E : C → R, E(v) = 1

2
a0(v, v) −

∫

�

G(x, v)dx,(19)

where
C = {v ∈ uD + H 1

0 (� ∪ �N) : G(·, v) ∈ L1(�)}.
Definition 13. Let (A1)–(A8) and (C1)–(C3) hold. Then the function u ∈ C
is an equilibrium solution iff u minimizes the functional E:

E(u) = inf
v∈C

E(v).
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Here we do not discuss the existence or uniqueness of equilibrium solu-
tions and whether or not equilibrium solutions are weak solutions of (8).
Instead we are interested in the following maximum principle.

Proposition 14. Let (A1)–(A8) and (C1)–(C3) hold and let u be an equilib-
rium solution of (8). Then

sup
�

u ≤ max{sup
�D

uD, M0},

with the convention sup�D
uD = −∞ whenever �D has zero measure.

Proof. Indirect. We assume sup� u > K := max{sup�D
uD, M0}. Then there

exists ε > 0 such that �ε := {u > K + ε} has non-zero measure. We intro-
duce uε(x) := u(x) − (u(x) − (K + ε))+ = min{u(x), K + ε} for x ∈ �.
Then uε = u on �\�ε and uε = K + ε < u on �ε.

We claim that uε ∈ C. Clearly, uε ∈ uD + H 1
0 (� ∪ �D). Since u ∈ C,

G(·, u) ∈ L1(�). Moreover, by assumption (C2), G(·, K + ε) ∈ L1(�).
Therefore −G(·, uε) = min{−G(·, u), −G(·, K+ε)} ∈ L1(�). Thus uε ∈ C
and E(u) ≤ E(uε).

Now we calculate

E(uε) − E(u) = 1

2

d∑

i,j=1

∫

�ε

aij ((∂iuε)(∂juε) − (∂iu)(∂ju))dx

−
∫

�ε

(G(x, uε) − G(x, u))dx

= −1

2

d∑

i,j=1

∫

�ε

aij (∂iu)(∂ju) dx

−
∫

�ε

(G(x, K + ε) − G(x, u))dx

< 0,

since (aij (x)) is positive semi-definite and G(x, ·) is strictly decreasing on
(K + ε, ∞). ��

We illustrate Proposition 14 by two examples.

Example 15. Consider the equation (3) with (for the sake of simplicity)
homogeneous Dirichlet boundary conditions:

−δ2�u = −u(log u + f (x)) in �, u = 0 on �D, uν = 0 on �N.

It can be seen that this problem has an equilibrium solution u minimizing the
function

E1(v) = δ2

2

∫

�

|∇v|2dx + 1

4

∫

�

(v+)2(2 log(v+) − 1 + 2f (x))dx
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in the set

C1 = {v ∈ H 1
0 (�) : (v+)2(log(v+) − 1 + 2f ∈ L1(�)} = H 1

0 (�).

Since g(x, s) := −(s)+(log(s)+ + f (x)) < 0 for x ∈ � and s > exp
(− inf� f ), we deduce from Proposition 14:

sup
�

u ≤ exp(− inf
�

f ).

This result can be also obtained from standard Stampacchia estimates for
weak solutions (using (u − M)+ for appropriate M ∈ R as a test function in
the weak formulation).

Example 16. A rather extreme case concerns the choice aij = 0 for all i, j .
Proposition 14 also applies in this situation. The crucial point, however, is
the existence of equilibrium solutions. Let us consider

0 = exp(u) − 1

1 + x2
, u ∈ H 1

0 (0, 1),(20)

with corresponding energy functional

E2(v) = 1

2

∫ 1

0

(
exp(v(x)) − 1 − v(x)

1 + x2

)
dx,

to be minimized in C2 = H 1
0 (0, 1). E2 has no minimizer in C2, because each

minimizer has to satisfy (20), i.e. u(x) = − log(1 + x2), which does not
belong to H 1

0 (0, 1). Hence Proposition 14 does not yield any information in
this situation.

However, if we consider the problem

0 = exp(u) − 1

1 + x2
, u + x log 2 ∈ H 1

0 (0, 1)

then E2 remains to be the corresponding energy functional but now to be
minimized in

C ′
2 = uD + H 1

0 (0, 1), uD(x) = −x log 2.

In this case, u(x) = − log
(
1 + x2

)
is the unique minimizer of E2 in C ′

2 and
we obtain u ≤ 0 from Proposition 14.
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4.2 The discrete case

In this subsection we are concerned with a discrete version of the maximum
principle for equilibrium solutions. We assume in addition to (C1)–(C3) of
the previous subsection:

(C4) There is a function g0 ∈ C0(R) with primitive G0 such that g(x, s) ≤
−g0(s) for x ∈ � and s ∈ R, G0(M0) = sups<M0

G0(s), and G0 is
strictly increasing on (M0, ∞), where M0 is defined in (C3).

(C5) For each A > 0 there is a function gA ∈ L1(�) such that |g(x, s)| ≤
gA(x) for x ∈ � and −A ≤ s ≤ A.

If g0(s) is positive for all s > M0, then (C4) is satisfied. Assumption (C5)
is needed in order to apply Lebesgue’s dominated convergence theorem.

Now we introduce the discrete analogue of equilibrium solutions.

Definition 17. Let (A1)–(A8) and (C1)–(C3) hold and let E be as in (19).
We set

Ch := {vh ∈ uD,h + Vh : G(x, vh) ∈ L1(�)}.
Then uh is an Xh-equilibrium solution of (1) iff

uh ∈ Ch and E(uh) = inf
vh∈Ch

E(vh).

Under the condition (C5) each Xh-equilibrium solution is a finite-element
solution:

Proposition 18. Let (A1)–(A8) and (C1)–(C3), (C5) hold. Then each Xh-
equilibrium solution uh of (1) is a solution of (9).

Proof. Since uh ∈ Ch, we have uh − uD,h ∈ Vh. It remains to be proved that
uh satisfies the equation in (9). Since uh is a minimizer of E, E(uh + εvh) −
E(uh) ≥ 0 for all vh ∈ Ch and ε > 0 and therefore

0 ≤ lim inf
ε→0

1

ε
(E(uh + εvh) − E(uh))

= a0(uh, vh) − lim sup
ε→0

1

ε

∫

�

(G(x, uh + εvh) − G(x, uh))dx.

Since

lim
ε→0

1

ε
(G(x, uh(x) + εvh(x)) − G(x, uh(x))) = g(x, uh(x))vh(x)

and due to (C5),
∣∣∣∣
1

ε
(G(x, uh(x) + εvh(x)) − G(x, uh(x)))

∣∣∣∣ = |g(x, uh(x)+εθ(ε, x)vh(x))|

≤ gA(x) ∈ L1(�),
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for some θ(x, ε) ∈ (0, 1). Thus Lebesgue’s dominated convergence Theorem
applies and we deduce

0 ≤ a0(vh, vh) −
∫

�

g(x, uh(x))vh(x)dx.

This inequality will also hold if we replace vh by −vh. Thus uh solves (9).��
Theorem 19. Let (A1)–(A8) and (C1)–(C4) hold and let uh be a Xh-equi-
librium solution of (1). Then

max
�

uh ≤ max{M0, max
�D

uD,h}.

Proof. Indirect. We assume max� uh > K := max{M0, max�D
uD,h}. Simi-

lar to the proof of Proposition 14 we consider for fixed ε ∈ (0, max� uh −K)

the projected function

uε
h := uh − [uh − (K + ε)]+.

We shall prove E(uε
h) < E(uh).

For this, we introduce

T ∗
h = {τ ∈ Th : max

x∈τ
uh(x) > K + ε}, �ε =

⋃

τ∈T ∗
h

τ.

Clearly, T ∗
h = ∅. Since uε

h = uh on �\�ε, we obtain

E(uε
h) − E(uh) = 1

2

(
a0(u

ε
h, u

ε
h) − a0(uh, uh)

)

−
∑

τ∈T ∗
h

∫

τ

(
G(x, uε

h) − G(x, uh)
)
dx.

From assumption (C1) and Lemma 3 we deduce via a0(K +ε, ·) = a0(·, K +
ε) = 0,

a0(u
ε
h, u

ε
h)

= a0(uh − (K + ε) − [uh − (K + ε]+, uh − (K + ε) − [uh − (K + ε]+)

= a0([uh − (K + ε)]−, [uh − (K + ε)]−)

≤ a0(uh, uh).

Therefore

E(uε
h) − E(uh) ≤ −

∑

τ∈T ∗
h

∫

τ

(
G(x, uε

h) − G(x, uh)
)
dx,
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and we shall prove for all τ ∈ T ∗
h ,

∫

τ

G(x, uε
h(x))dx >

∫

τ

G(x, uh(x))dx.(21)

We write

uh|τ =
d+1∑

j=1

m
(τ)
j φ

(τ)
j ,

where uh|τ is the restriction of uh to τ , x
(τ)
1 , . . . , x

(τ)
d+1 are the vertices of τ ,

and φ
(τ)
1 , . . . , φ

(τ)
d+1 are the finite-element basis elements restricted to τ (see

Section 2). Then

uε
h|τ =

d+1∑

j=1

[m(τ)
j ]φ(τ)

j ,

where [m(τ)
j ] = min{m(τ)

j , K + ε}. We set

J+ = {j ∈ {1, . . . , d + 1} : m
(τ)
j > K + ε}.

For τ ∈ T ∗
h , J+ is non-empty. Let x ∈ τ . We calculate, using (C4) and

uε
h(x) ≤ uh(x),

G(x, uε
h(x)) − G(x, uh(x)) = −

∫ uh(x)

uε
h(x)

g(x, s)ds ≥
∫ uh(x)

uε
h(x)

g0(s)ds

= G0(uh(x)) − G0(u
ε
h(x)).

It remains to prove
∫
τ
G0(u

ε
h)dx <

∫
τ
G0(uh)dx. For this, we introduce the

auxiliary function

H0 : R
d+1 → R, H0(c1, . . . , cd+1) =

∫

τ

G0

( d+1∑

j=1

cjφ
(τ)
j

)
dx.

Setting [m] := ([m(τ)
1 ], . . . , [m(τ)

d+1]) and m := (m
(τ)
1 , . . . , m

(τ)
d+1), we have

to show H0([m]) < H0(m).
Since G0 is strictly increasing on (M0, ∞) (by assumption (C4)), the

inequality H0([m]) < H0(m) is immediate if min{[m(τ)
1 ], . . . , [m(τ)

d+1]} =
max{[m(τ)

1 ], . . . , [m(τ)
d+1]} = K + ε, since in this case, uε

h < uh holds

in the interior of τ . We assume therefore that min{[m(τ)
1 ], . . . , [m(τ)

d+1]} <

max{[m(τ)
1 ], . . . , [m(τ)

d+1]} = K + ε. In particular, J+ = {1, . . . , d + 1}. The
function H0 is continuously differentiable with

∂H0

∂cα

(c1, . . . , cd+1) =
∫

τ

g0

( d+1∑

j=1

cjφ
(τ)
j

)
φ(τ)

α dx.
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It holds [m(τ)
j ] = m

(τ)
j for all j ∈ J+, hence

H0(m) − H0([m]) =
∫ 1

0
∇H0(sm + (1 − s)[m]) · (m − [m])ds

=
∑

j∈J+

∫ 1

0

∂H0

∂cj

(sm + (1 − s)[m])(m(τ)
j − [m(τ)

j ])ds.(22)

Set cj = sm
(τ)
j + (1 − s)[m(τ)

j ]. We assume without loss of generality that
the vertices are numbered in such a way that c1 = max{c1, . . . , cd+1} and
cd+1 = min{c1, . . . , cd+1}. Then c1 > cd+1 since J+ is neither empty nor
the whole set {1, . . . , d + 1}. With this numbering, 1 ∈ J+ and

c1 = sm
(τ)
1 + (1 − s)[m(τ)

1 ] = sm
(τ)
1 + (1 − s)(K + ε) > K + ε > M0.

As G0 is strictly increasing on (M0, ∞), this implies

G0(c1) > G0(M0) = sup
σ<M0

G0(σ ) ≥ 1

c1 − cd+1

∫ c1

cd+1

G0(σ )dσ.(23)

Introducing barycentric coordinates (see [6]) we can reformulate

H0(c1, . . . , cd+1)

= meas(τ )

∫

(0,1)d
G0(c1λ1 + · · · + cdλd + cd+1

×(1 − λ1 − · · · − λd))d(λ1, . . . , λd)

= meas(τ )

c1 − cd+1

∫ c1

cd+1

G0(σ )dσ,

where σ = (σ1, . . . , σd), σ2 = λ2, . . . , σd = λd and

σ1 = c1λ1 + · · · + cdλd + cd+1(1 − λ1 − · · · − λd).

Thus, by (23),

∂H0

∂c1
(c1, . . . , cd+1) = meas(τ )

c1 − cd+1

×
(

G0(c1) − 1

c1 − cd+1

∫ c1

cd+1

Go(σ)dσ

)
> 0.

Finally, we obtain from (22):

H0(m) − H0([m]) > 0.

��
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4.3 Discussion

We re-consider the finite element discretizations of Examples 15 and 16. It
is assumed that (A1)–(A8) hold. The verification of (C1)–(C3) is left to the
reader.

Example 15 (revisited). The proof of existence of a Xh-equilibrium solution
uh is as straight forward as in the “continuous” case. Choosing

g◦(s) = s+
(

log(s+) + inf
�

f

)
,

we easily check (C4) with G◦(s) = 1
4 (s+)2

(
2 log(s+) − 1 + 2 inf� f

)
, and

M0 = √
e exp (− inf� f ). We obtain an estimate on max uh which is a bit

worse (more precisely, a factor
√

e larger) than in the “continuous” case.

Example 16 (revisited). Certainly each constant functionuc = c ∈ (−∞, 10]
is a Xh-equilibrium solution of (20). The verification of (C4) is easy for
g(x, s) = g0(s) = (s − 10)+. Hence uh ≤ 10 for each Xh-equilibrium
solutions of (20).
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