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Summary. We develop a new algorithm for the fast evaluation of linear
combinations of radial functions f (yj ) := ∑N

k=1 αkK(||yj − xk||) (j =
1, . . . , M) for xk, yj ∈ R

2 based on the recently developed fast Fourier trans-
form at nonequispaced knots. For smooth kernels, e.g. the Gaussian, our algo-
rithm requires O(N+M) arithmetic operations. In case of singular kernels an
additional regularization procedure must be incorporated and the algorithm
has the arithmetic complexity O(N log

√
N + M) or O(M log

√
M + N) if

either the points yj or the points xk are “reasonably uniformly distributed”.
We prove error estimates to obtain clues about the choice of the involved
parameters and present numerical examples for various singular and smooth
kernels in two dimensions.

Mathematics Subject Classification (2000): 65T40, 65T50, 65F30

1 Introduction

In this paper, we develop a new algorithm for the fast computation of sums
of the form

f (yj ) :=
N∑

k=1

αkK(yj − xk) (j = 1, . . . , M)(1.1)
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at knots yj , xk ∈ R
2. We will focus our attention on real–valued radially

symmetric functions K, i.e., K(x) = K(‖x‖), where ‖ · ‖ = || · ||2 denotes
the Euclidean norm in R

2, and where K is a univariate function.
Frequently applied kernels are the singularity functionK(||x||) = log ||x||

of the bivariate Laplacian which appears for example in two–dimensional
particle simulation [16] and the thin–plate spline K(||x||) = ||x||2 log ||x||
[8] which is often used for the scattered data approximation of surfaces.
These kernels or their derivatives have singularities at zero. The best known
algorithm for the efficient computation of (1.1) is the fast multipole method
(FMM). The FMM was originally developed in the context of particle simu-
lation by L. Greengard and V. Rokhlin [16,18] and requires only O(N + M)

arithmetic operations, where the O constant depends on the desired accuracy
of the computation. As convenient in literature in this field we do not use the
Landau symbol in its strong sense but write insteadO(α g1(N)+β g2(M)) :=
F(M, N) for N, M > 1, if there exists 0 < c < ∞ independent of α and β

such that |F(N, M)/(α g1(N) + β g2(M))| ≤ c. The prize one has to pay for
the fast performance of the FMM consists in an expensive adaptation to new
kernels. In particular, R. Beatson et al. have adapted the FMM to various ker-
nels appearing in the scattered data approximation of functions. Meanwhile
several improved and modified FMM versions were suggested, see, e.g., [30,
28,3,7].

Another frequently used smooth kernel which arises in the context of dif-
fusion [17], image processing [11], fluid dynamics and finance [6], is the
Gaussian K(||x||) = e−σ ||x||2 . The corresponding transform (1.1) is known
as discrete Gauss transform. Fast Gauss transforms were introduced in [19,
20,2].

However, for equispaced knots, (1.1) is simply a discrete convolution and
its fast computation is mainly realized by fast Fourier methods exploiting
the basic property e2π i(y−x) = e2π iy e−2π ix . Following these lines, we pro-
pose to compute the “convolution at nonequispaced knots” (1.1) by Fourier
methods too, more precisely by fast Fourier transforms at nonequispaced
knots (NFFT). The corresponding techniques were recently developed by
A. Dutt and V. Rokhlin [10] and were further modified and improved by vari-
ous groups, in particular by the authors [4,27,9,13,26]. Briefly speaking, for
arbitrary points wj ∈ [−1/2, 1/2)2 and the index set In := {l ∈ Z

2 : −n
2 ≤

l < n
2 } with componentwise inequalities, the NFFT(n) computes sums of the

form

f (wj ) =
∑

k∈In

fk e−2π ikwj (j = −M/2, . . . , M/2 − 1)(1.2)

and the NFFTT(n) sums of the form
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h(j) =
M/2−1∑

k=−M/2

fk e−2π ijwk (j ∈ In)(1.3)

with O((ρn)2 log(ρn) + m2M) arithmetic operations, respectively. Here ρ

is an oversampling factor and m a cut–off parameter. Both parameters have
to be chosen in accordance with the desired accuracy of the NFFT computa-
tions. In general the approximation error introduced by the NFFT decreases
exponentially in m, where the basis of the exponent depends on ρ. For a
summary of various error estimates see the appendix in [24].

Concerning the notation NFFT and NFFTT, note that the first Fourier sum
(1.2) is the multiplication of f := (fk)k∈In

with

AM := (
e−2π ikwj

)
j=−M/2,... ,M/2−1;k∈In

,

while the second sum (1.3) describes the multiplication with AT
M . Meanwhile

there exist several free NFFT software packages for the computation of fast
Fourier transforms at nonequispaced knots, e.g., the C–package of the authors
[23] which uses the FFTW [14] or the MATLAB–package [12].

For smooth kernels K , e.g., the Gaussian, our new summation algorithm
requires O(N + M) arithmetic operations for arbitrary distributed points xk

and yj . For kernels with singular derivatives at one point, we have to intro-
duce an additional regularization procedure and a “near field correction”. If
either the knots xk or yj are “sufficiently uniformly distributed”, a notation

which we will clarify later, then our algorithm requires O(N log
√

N + M),
respectively O(M log

√
M +N) arithmetic operations, where the O constant

depends on the desired accuracy of the computation.
In summary, the advantage of our algorithm, which has nearly the same

arithmetic complexity as the FMM algorithm consists in its simple struc-
ture which resembles ideas from the fast convolution by FFTs and allows an
immediate incorporation of various kernels. Moreover one can build up on
existing software packages. A drawback of our algorithm in its present form
is that for singular kernels, the arithmetic complexity can be only assured if
one of the point sets {xk} or {yj } is “reasonably uniformly distributed”.

In this paper, we will focus our attention on the summation (1.1) with
explicitly known kernels. In the numerical solution of integral equations (or
of partial differential equations by recasting them as integral equations) one
computational task consists in the evaluation of large sums with special struc-
tured but not explicitly known kernels. Here the method of panel clustering,
see, e.g., [22], or more general the theory of H–matrices, see, e.g., [21] and
mosaic–skeleton approximations, see, e.g., [29,15] may be applied.

The remainder of this paper is organized as follows: in Section 2 we pres-
ent our NFFT based summation algorithm. In particular, we present a simple
regularization procedure for singular kernels which involves only solutions
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of small systems of linear equations with right–hand sides depending on the
kernel. This makes it easy to adapt our algorithm to various kernels. Error
estimates are proved in Section 3. Section 4 provides numerical examples for
various singular and smooth kernels.

2 Fast summation algorithms

We are interested in the fast evaluation of sums

f (x) :=
N∑

k=1

αkK(x − xk) =
N∑

k=1

αkK(‖x − xk‖),

at M different knots yj (j = 1, . . . , M). The kernel function K is in gen-
eral a non-periodic function, while the use of Fourier methods requires to
replace K by a periodic version. Without loss of generality we may assume
that the knots are scaled, such that ‖xk‖, ‖yj‖ < 1

4 − εB
2 and consequently

‖yj − xk‖ < 1
2 − εB. The parameter εB > 0, which we specify later, guaran-

tees that K has to be evaluated only at points in the interval [− 1
2 +εB, 1

2 −εB].
This simplifies the later consideration of a 1-periodic version of K .

First we deal with kernels K which are C∞ except for the origin, where
K or its derivatives may have singularities. Examples of such kernels are

‖x‖2 log ‖x‖, log ‖x‖ and
1

‖x‖β
(β ∈ N).(2.1)

Beyond a special treatment of K near the boundary we have to be concerned
about the singularity of K at the origin. We regularize K near 0 and near the
boundary of ‖x‖ = 1/2 as follows:

KR(x) :=






TI(‖x‖) if ‖x‖ ≤ εI,

TB(‖x‖) if 1
2 − εB < ‖x‖ < 1

2 ,

TB( 1
2 ) if 1

2 ≤ ‖x‖,
K(‖x‖) otherwise,

(2.2)

where 0 < εI < 1
2 −εB < 1

2 . The functions TI and TB will be chosen such that
KR is in the Sobolev space Hp(T2) for an appropriate parameter p > 0. Sev-
eral regularizations of K are possible, e.g., by algebraic polynomials, splines
or trigonometric polynomials. Here we focus our attention on trigonometric
polynomials TI and TB. We set

TI(x) :=
p−1∑

j=0

aI
j cos

πj

2εI
x,(2.3)
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where the coefficients aI
j are determined by

T
(r)

I (εI) = K(r) (εI) (r = 0, . . . , p − 1),(2.4)

and

TB(x) :=
pB−1∑

j=0

aB
j cos

(
πj

2εB

(

x − 1

2

)) (

x ∈
(

1

2
− εB,

1

2

])

,(2.5)

where pB := p + �(p − 1)/2� and the coefficients aB
j are determined by

T
(r)

B

(
1

2
− εB

)

= K(r)

(
1

2
− εB

)

(r = 0, . . . , p − 1),(2.6)

T
(2r)

B

(
1

2

)

= 0 (r = 1, . . . , �(p − 1)/2�) .

Here �x� denotes the largest integer ≤ x. By definition (2.5) we have that
T

(2r+1)
B

(
1
2

) = 0 for all r ∈ N0.

By the ansatz (2.3) and condition (2.4) the coefficients ofaI
even := (aI

2j )
� p−1

2 �
j=1

and aI
odd := (aI

2j+1)
� p−2

2 �
j=0 are the solutions of the following two linear systems

of equations

V I
even aI

even =
((

2

πεI

)2r

K(2r) (εI)

)� p−1
2 �

r=1

and

V I
odd aI

odd =
(

−
(

2

πεI

)2r+1

K(2r+1) (εI)

)� p−2
2 �

r=0

,

where V I
even and V I

odd are the mosaic Vandermonde matrices

V I
even := (

(−1)r+j (2j)2r
)� p−1

2 �
r,j=1 , V I

odd := (
(−1)r+j (2j + 1)2r+1)� p−2

2 �
r,j=0 .

In our algorithm we will only need small values p ≤ 16 of p for which these
ill–conditioned small linear systems can be solved without problems.

In a similar way, we see by (2.5) and (2.6), that the coefficients of aB
even :=

(aB
2j )

� pB−1
2 �

j=1 and aB
odd := (aB

2j+1)
� pB−2

2 �
j=0 are the solution of the linear system






V B
even 0

0 V B
odd

V B
e V B

o






(
aB

even

aB
odd

)

=







(
K(2r)

(
1
2 − εB

))� p−1
2 �

r=1
(
K(2r+1)

(
1
2 − εB

))� p−2
2 �

r=0

0





 ,
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where

V B
even := (

(−1)r+j (2j)(2r)
)� p−1

2 �,� pB−1
2 �

r=1,j=1 ,

V B
odd := (

(−1)r+j (2j + 1)(2r+1)
)� p−2

2 �,� pB−2
2 �

r=0,j=0

and

V B
e := (

(−1)r(2j)(2r)
)� p−1

2 �,� pB−1
2 �

r=1,j=1 ,

V B
o := (

(−1)r(2j + 1)(2r)
)� p−1

2 �,� pB−2
2 �

r=1,j=0 .

Next we approximate the smooth function KR by the Fourier series

KRF(x) :=
∑

l∈In

bl e2π ilx,(2.7)

where

bl := 1

n2

∑

j∈In

KR(j/n) e−2π ij l/n (l ∈ In) .(2.8)

Then our original kernel splits as

K = (K − KR) + (KR − KRF) + KRF = KNE + KER + KRF,(2.9)

where KNE := K −KR and KER := KR −KRF. Since KR is smooth, its Fou-
rier approximation KRF should introduce only a small error KER. We neglect
this error and approximate f by

f̃ (x) := fNE(x) + fRF(x),

where

fNE(x) :=
N∑

k=1

αkKNE(x − xk) ,(2.10)

fRF(x) :=
N∑

k=1

αkKRF(x − xk) .(2.11)

Instead of f we evaluate f̃ at the points yj . If either the points xk or the
points yj are “sufficiently uniformly distributed” this can indeed be done in
a fast way, namely:
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• Near field computation (2.10)
By definition (2.2), the function KNE has a small support contained in
the ball of radius εI around 0 and in the neighborhood of the boundary.
The boundary is not interesting for us since ‖xk − yj‖ ≤ 1/2 − εB. To
achieve the desired complexity of our algorithm we suppose that either the
N points xk or the M points yj are “sufficiently uniformly distributed”,
i.e., we suppose that there exists a small constant ν ∈ N such that every
ball of radius εI contains at most ν of the points xk or of the points yj ,

respectively. This implies that εI depends linearly on 1/
√

N , respectively
1/

√
M . In the following, we restrict our attention to the case

εI ∼
√

ν

N
.(2.12)

Then the sum (2.10) contains for fixed yj not more than ν summands so
that its evaluation at M knots requires only O(νM) arithmetic operations.

We remark that also O(log
√

M), respectively O(log
√

N) points in-
stead of O(1) points per ball will keep a complexity of O(M log

√
M +

N log
√

N) of our whole algorithm. This is in particular the case for inho-
mogeneousely distributed Legendre knots which play an important role in
computations on the 2–sphere [5].

• Far field summation (2.11) by NFFTT/NFFT
Substituting (2.7) for KRF we obtain

fRF(yj ) =
N∑

k=1

αk

∑

l∈In

bl e2π il(yj −xk) =
∑

l∈In

bl

(
N∑

k=1

αk e−2π ilxk

)

e2π ilyj

The expression in the inner brackets can be computed by a bivariate
NFFTT(n). This is followed by n2 multiplications with bl and completed
by a bivariate NFFT(n) to compute the outer sum with the complex expo-
nentials. If m is the cut-off parameter and ρ = 2 the oversampling factor
of the NFFTT/NFFT, then the proposed evaluation of fRF at the points
yj (j = 1, . . . , M) requires O(m2(N + M) + (ρn)2 log(ρn)) arithme-
tic operations. The relation between M, N and n is determined by the
approximation error of the algorithm and will be specified in Section 3.1.

In summary we obtain the following algorithm:

Algorithm 2.1

Precomputation:

i) Computation of aI
j (j = 0, . . . , p − 1) and aB

j (j = 0, . . . , pB − 1).
ii) Computation of (bl)l∈In

by (2.8) and (2.2).
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iii) Computation of KNE(yj − xk) for all (j = 1, . . . , M) and k ∈ INE
n,a (j),

where INE
εI

(j) := {k ∈ {1, . . . , N} : ‖yj − xk‖ < εI}. See also Remark
4.3.

1. For l ∈ In compute

al :=
N∑

k=1

αk e−2π ilxk

by the bivariate NFFTT(n).
2. For l ∈ In compute the products

dl := albl.

3. For j = 1, . . . , M compute

fRF(yj ) :=
∑

l∈In

dl e2π ilyj

by the bivariate NFFT(n).
4. For j = 1, . . . , M compute the near field sums

fNE(yj ) =
∑

k∈INE
εI

(j)

αkKNE(yj − xk).

5. For j = 1, . . . , M compute the near field corrections

f̃ (yj ) = fNE(yj ) + fRF(yj ).

Remark 2.2 (Matrix version of Algorithm 2.1)

Let K := (K(yj − xk)
)M,N

j=1,k=1
and α := (αk)

N
k=1. Then Algorithm 2.1

reads in matrix–vector notation

Kα ≈ (
ĀMDKRAT

N + KNE
)
α,

where DKR := diag(bl)l∈In
, AN := (

e−2π ilxk
)
k=1,... ,N;l∈In

,

AM := (
e−2π ilyj

)
j=1,... ,M;l∈In

and KNE := (KNE(yj − xk)
)M,N

j=1,k=1
. Using

the matrix–vector notation of our NFFT/NFFTT

AM ≈ BMFρnDn

with a diagonal matrix Dn, a sparse matrix BM having at most (2m + 1)2

nonzero entries in each row and column and the “equispaced” Fourier matrix
Fρn := (

e−2π ikl/n
)
k∈In;l∈Iρn

, this can be rewritten as

Kα ≈ (B̄MT BT
N + KNE)α,
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where T := FρnDnDKRDnF
T
ρn is a block–Toeplitz–Toeplitz–block matrix.

Note that we can avoid the complex arithmetic introduced by the FFT by
using fast Toeplitz matrix times vector multiplications based on trigonomet-
ric transforms (see Algorithm 3 of [25]).

Next we are interested in smooth kernels, e.g., in the Gaussian e−σx2
. Here

no regularization at the neighborhood of 0 is necessary and our computation
does not require a “near field correction”. If the kernel K is very small at
the boundary, e.g. for large values σ of the Gaussian, we also do not need a
regularization at the boundary. In this case, we set KR := K. Otherwise we
use

KR(x) =





TB(‖x‖) if 1
2 − εB < ‖x‖ < 1

2 ,

TB( 1
2 ) if 1

2 ≤ ‖x‖,
K(‖x‖) otherwise.

(2.13)

Then Algorithm 2.1 simplifies to its first three steps. Moreover we will
see in Section 3.2 that the lack of the “near field correction” implies that
the size n of the NFFT/ NFFTT does not depend on the number N or M

of the knots. Thus the Algorithm 2.1 (Step 1 – 3) requires for nonsingular
kernels only O((ρn)2 log(ρn)+m2(M +N)) = O(M +N) arithmetic oper-
ations. Applied to the Gaussian we call Algorithm 2.1 (Step 1 – 3) fast Gauss
transform.

3 Error estimates

Beyond the well–known errors appearing in the NFFT computations, our
algorithm produces the error

|f (yj ) − f̃ (yj )| =
∣
∣
∣
∣
∣

N∑

k=1

αkKER(yj − xk)

∣
∣
∣
∣
∣

(j = 1, . . . , M).

By Hölders inequality these errors can be estimated by

|f (yj ) − f̃ (yj )| ≤ ‖α‖p

∥
∥
∥
(KER(yj − xk)

)N
k=1

∥
∥
∥

q
,(3.1)

where 1/p + 1/q = 1 (1 ≤ p, q ≤ ∞) and

‖α‖p :=






(
N∑

k=1
|αk|p

)1/p

1 ≤ p < ∞,

max
k=1,... ,N

|αk| p = ∞ .

In the following, we restrict our attention to the case p = 1, i.e., we use ‖α‖1

in (3.1), so that it remains to estimate ||KER||∞ := max
‖x‖≤ 1

2 −εB

|KER(x)|. This
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kind of estimate is also given for FMMs. Note that (3.1) is sharp if αk = 0
for all indices k except for this one which corresponds to the largest value
|KER(yj − xk)|.

Our error estimates are based on the following well–known aliasing result:

Lemma 3.1 (Aliasing error) Let f ∈ L2(T
2) be a function with absolutely

convergent Fourier series

f (x) =
∑

k∈Z2

ck(f ) e2π ikx , ck(f ) =
∫

T2

f (x) e−2π ikx dx

and let an approximation of f be given by

fF (x) :=
∑

l∈In

bl e2π ilx , bl = 1

n2

∑

j∈In

f

(
j

n

)

e−2π ij l/n .

Then
bl = cl(f ) +

∑

r∈Z2\(0,0)

|cl+nr(f )|

and the approximation error can be estimated for all x ∈ T
2 by

|f (x) − fF (x)| ≤ 2
∑

r∈Z2\(0,0)

∑

l∈In

|cl+nr(f )|.

3.1 Singular kernels

In the following we restrict our attention to kernels K = Kβ (β ∈ N0) which
are C∞ except for the origin and which satisfy for k = 1, . . . , p the relation

|K(k)(x)| ≤ CK

(k + β − 1)!

(β − 1)!
|x|−(k+β) (x 
= 0)(3.2)

with a constant CK ≥ 0. In case β = 0 we set (−1)! := 1. For example,
K(x) = 1/|x|β (β ∈ N) fulfills (3.2) with CK = 1. Further, K(x) = log |x|
satisfies (3.2) with CK = 1 and β = 0.

The following lemma was proved by the authors in [24].

Lemma 3.2 Let K satisfy (3.2) and let TI be the trigonometric polynomial
associated with K by (2.3) and (2.4). Then, for 2 ≤ p ≤ 50, the following
estimate holds true

p−1∑

j=1

jp|aI
j | ≤ CK

(p + β + δ0,β − 2)!

(β − 1)! ε
β

I

(γπ

2

)p

where γ :=
√

1 + (2/π)2 and δ0,β := max{0, 1 − β}.
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We conjecture that Lemma 3.2 is true for arbitrary integers p ≥ 2. However,
our proof in [24] contains some numerical computations which were done
only up to p = 50.

Now we can prove the following theorem.

Theorem 3.3 Let K be a function which is C∞ except for the origin. Assume
that K satisfies (3.2). For the radial function K(x) := K(‖x‖), we define
KER by (2.9). Then, for 3 ≤ p ≤ 50, p � n and εI ≤ εB, the following
estimate holds true

‖KER‖∞ < CK

10 π
√

p (p + β + δ0,β − 2)!

(β − 1)!(p − 2) np−2 ε
p+β−2
I

.

Proof. By Lemma 3.1, we obtain that

‖KER‖∞ ≤ 2
∑

l∈In

∑

r∈Z2\(0,0)

|cl+nr(KR)|

≤ 2
n/2∑

k=−n/2

(|c(n/2,k)(KR)| + |c(k,n/2)(KR)|)

+ 2
∑

‖k‖∞≥n/2+1

|ck(KR)| .(3.3)

To keep the notation simple we restrict our attention to even p and set q := p

2 .
Since KR ∈ Hp(T2), we have for any bivariate polynomial

P(x1, x2) =
∑

‖µ‖1≤p

aµx
µ1
1 x

µ2
2

of total degree ≤ p that

ck(KR) = 1

P(2π ik)
ck(P (D)KR),

where

P(D) :=
∑

‖µ‖1≤p

aµ

∂ ||µ||1

∂x
µ1
1 ∂x

µ2
2

.

In particular, we obtain for

P(x1, x2) = (x2
1 + x2

2)q = ‖x‖p

that

|ck(KR)| ≤ 1

(2π)p‖k‖p

∣
∣ck(�

qKR)
∣
∣ ,
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where �u = ∂2

∂x2
1
u + ∂2

∂x2
2
u and �qu = �(�q−1u). Thus, by (3.3),

||KER||∞ ≤ 2

(2π)p



2
n/2∑

k=−n/2

((n

2

)2
+ k2

)−q

+
∑

‖k‖∞≥n/2+1

1

‖k‖p





×
∫

T2

|�qKR(x)| dx .

The first sum can be estimated directly by

n/2∑

k=−n/2

((n

2

)2
+ k2

)−q

≤ n

(
n2

4

)−q

= 2p

np−1

and the second sum by an upper integral

∑

‖k‖∞≥n/2+1

1

‖k‖p
≤

∫

||x||≥n/2

1

||x||p dx + 4

∞∫

n/2

1

x
dx

≤ 2p−2

np−2(p − 2)

(

2π + 8

n

)

.

In summary we obtain for n  p that

||KER||∞ ≤ 5π

4(p − 2)πpnp−2

∫

T2

|�qKR(x)| dx .(3.4)

By definition of KR, in particular, since KR(x) is constant for ‖x‖ ≥ 1/2, it
follows that

∫

T2

|�qKR(x)| dx =
∫

‖x‖≤εI

|�qTI(x)| dx +
∫

εI≤‖x‖≤ 1
2 −εB

|�qK(x)| dx

+
∫

1
2 −εB≤‖x‖≤ 1

2

|�qTB(x)| dx

and further by using polar coordinates

∫

T2

|�qKR(x)| dx = 2π

( εI∫

0

r|�q
r TI(r)| dr +

1
2 −εB∫

εI

r|�q
r K(r)| dr(3.5)

+
1
2∫

1
2 −εB

r|�q
r TB(r)| dr

)
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where �ru = urr + 1
r
ur . Note that

�q
r u =

p∑

k=1

cp,k

rp−k

dk

drk
u ,(3.6)

where the coefficients cp,k can be obtained recursively by

cp,p = 1 , cp,p−1 = p/2 ,

cp,k = (p − 2 − k)2cp−2,k + (3 − 2(p − k))cp−2,k−1 + cp−2,k−2

(k = 3, . . . , p − 2) ,

cp,2 = −(p − 3)2cp−2,1 , cp,1 = (p − 3)2cp−2,1 .

Using this relation, it is easy to check by induction that

|cp,k| = (−1)k+1 cp,k (k = 1, . . . , p − 1).(3.7)

By definition (2.3) of TI, we see that

�q
r TI(r) =

p−1∑

j=0

aI
j

p∑

k=1

cp,k

rp−k

(
πj

2εI

)k

cos(k)

(
πj

2εI
r

)

=
(

π

2εI

)p p−1∑

j=0

jpaI
j

p∑

k=1

cp,k
(

πj

2εI
r
)p−k

cos(k)

(
πj

2εI
r

)

=
(

π

2εI

)p p−1∑

j=0

jpaI
j

(
�q

r cos
)
(

πj

2εI
r

)

.(3.8)

Since

�q
xx

j =






0 j < p,

2p (q!)2 j = p,

2p
(

(j/2)!
(j/2−q)!

)2
xj−p j > p,

we obtain by the Taylor series of cos x that

|�q
x cos x| ≤ |(�q

x cos)(0)| = 2p (q!)2/p!

and by using Stirling’s formula for p ≥ 3

√
2πp

(p

e

)p

< p! < 1.03
√

2πp
(p

e

)p

(3.9)

that

|�q
x cos x| ≤ 4

3
√

p.



342 D. Potts et al.

Applying this inequality and Lemma 3.2 in (3.8), we get
εI∫

0

r|�q
r TI(r)| dr ≤ CK

2
√

p (p + β + δ0,β − 2)!

3 (β − 1)! ε
p+β−2
I

(
γπ2

4

)p

.(3.10)

In a similar way we can estimate the third integral on the right-hand side of
(3.5).

Next we have by assumption (3.2) on K and by (3.7) that

|�q
r K(r)| =

∣
∣
∣
∣
∣

p∑

k=1

cp,k

rp−k
K(k)(r)

∣
∣
∣
∣
∣

≤ CK

p∑

k=1

|cp,k|
rp−k

(k + β − 1)!

(β − 1)! rk+β

≤ CK

rp+β

(
(p + β − 1)!

(β − 1)!
−

p−1∑

k=1

(−1)kcp,k

(k + β − 1)!

(β − 1)!

)

.

For x > 0 and β ∈ N, we obtain by direct computation that

�q
x(x

−β) = β2(β + 2)2 . . . (β + p − 2)2 x−(β+p)

and by (3.6) that

�q
x(x

−β) =
p∑

k=1

cp,k(−1)k
(k + β − 1)!

(β − 1)!
x−(β+p).

Thus,

|�q
r K(r)| ≤ CK

rp+β

(
(p + β − 1)!

(β − 1)!

−
(

β2(β + 2)2 . . . (β + p − 2)2 − (p + β − 1)!

(β − 1)!

))

.

For β = 0 we have to consider log x instead of x−β to obtain a similar result.
For β ∈ N0, we get in summary

|�q
r K(r)| ≤ 2 CK (p + β − 1)!

(β − 1)!
r−(p+β)

and consequently
1
2 −εB∫

εI

r|�q
r K(r)| dr ≤ 2 CK (p + β − 1)!

(p + β − 2) (β − 1)!
ε

−(p+β−2)

I .(3.11)

By (3.10), (3.11), (3.5) and (3.4) we obtain finally

||KER||∞ <
CK 10 π

√
p (p + β + δ0,β − 2)!

(β − 1)! (p − 2)np−2 ε
p+β−2
I

.

��
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We will use the estimates in the Theorem 3.3 to specify the parameters εI , p

and n of our algorithm. Using the Stirling formula (3.9) we can rewrite our
error estimate as

|f (yj ) − f̃ (yj )| ≤ 10 π CK ‖α‖1 nβ+δ0,β ε
δ0,β

I

√
2πp(p + β + δ0,β − 2)

(p − 2)(β − 1)!

×
(

p + β + δ0,β − 2

e n εI

)p+β+δ0,β−2

.

Thus, choosing εI such that p+β+δ0,β−2
e n εI

< 1, our error decays exponentially
in p. In our numerical examples we choose

εI = p

n
.(3.12)

While (3.12) steers the error, condition (2.12) on εI is necessary to keep the
near field computation linear in M . Now (3.12) and (2.12) together imply
that

n ∼ p

√
N

ν
.

If M = N , then the near field computation requires approximately νN arith-
metic operations and the NFFT computations

n2 log n + O(N) = (Np2/ν) log(p
√

N/ν) + O(N)

arithmetic operations. One should choose ν such that both operation counts
are balanced. It seems that ν ∼ p, i.e.,

n ∼
√

p N

is a good choice.

3.2 The Gaussian

In this subsection we have a closer look at the error introduced by our fast
Gauss transform without boundary regularization. By (3.1) it remains to esti-
mate the error between K and its finite Fourier series KRF.

Theorem 3.4 Let K(x) := e−σ ||x||2 (σ > 0) be a bivariate Gaussian and
let KER := K − KRF, where KRF denotes the finite Fourier series (2.7) of K.
Then, for η := πn

2
√

σ
≥ 1, the following estimate holds true

‖KER‖∞ ≤ 4 Cσ

(

e−η2
(√

π

σ
+ 1

η

)

+ e−σ/4 2
√

σ

η

)

,(3.13)

where Cσ := (
1 + σ

3 e−σ/4 +√
π
σ

)
.
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Proof. The Fourier transform of the univariate Gaussian is given by

∞∫

−∞
e−σx2

e−2π ikx dx =
√

π

σ
e−k2π2/σ .

Further we will use the following simple estimates:

n/2∑

k=1

1

k2
≤

∞∑

k=1

1

k2
= π2

6
,(3.14)

n/2∑

k=1

e−k2π2/σ ≤
∞∫

0

e−x2π2/σ dx = 1

2

√
σ

π
,(3.15)

∞∑

k=n/2+1

1

k2
≤

∞∫

n/2

1

x2
dx = 2

n
,(3.16)

∞∑

k=n/2+1

e−k2π2/σ ≤
∞∫

n/2

e−x2π2/σ dx ≤ σ

nπ2
e−π2n2/(4σ),(3.17)

where the last inequality follows by

∞∫

a

e−cx2
dx ≤

∞∫

0

e−c(x+a)2
dx ≤ e−ca2

∞∫

0

e−2acx dx = e−ca2

2ac
.

By applying two times integration by parts, we obtain for the univariate
Gaussian and k 
= 0 that

ck

(
e−σx2

)
:=

1/2∫

−1/2

e−σx2
e−2π ikx dx

= (−1)k+1 σ

2π2k2
e−σ/4

+ σ

2π2k2

1/2∫

−1/2

(1 − 2σx2) e−σx2
e−2π ikx dx

= (−1)k+1 σ

2π2k2
e−σ/4 − 1

4π2k2

∞∫

−∞
( e−σx2

)′′ e−2π ikx dx

+ 1

2π2k2

∞∫

1/2

( e−σx2
)′′ cos(2πkx) dx
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and consequently

|ck

(
e−σx2

)
| ≤ σ

2π2k2
e−σ/4 +

√
π

σ
e−k2π2/σ + 1

2π2k2

∞∫

1/2

( e−σx2
)′′ dx

=
√

π

σ
e−k2π2/σ + σ

π2k2
e−σ/4.(3.18)

By (3.3) we have

‖KER‖∞ ≤ 2
n/2∑

k=−n/2

(|c(n/2,k)(K)| + |c(k,n/2)(K)|) + 2
∑

‖k‖∞≥n/2+1

|ck(K)|

=: 2 S1 + 2 S2.

Using the tensor product structure of the bivariate Gaussian, i.e., the splitting
ck(K) = ck1( e−σx2

1 )· ck2( e−σx2
2 ), where k := (k1, k2)

T and x := (x1, x2)
T,

and (3.18) we get for the first sum

S1 ≤ 2

(√
π

σ
e−n2π2/(4σ) + 4σ

π2n2
e−σ/4

)

×






n/2∑

k=−n/2
k 
=0

(√
π

σ
e−k2π2/σ + σ

π2k2
e−σ/4

)

+
√

π

σ






and further by (3.14) and (3.15)

S1 ≤ 2 Cσ

(√
π

σ
e−η2 + 1

η2
e−σ/4

)

.

The second sum splits as

S2 ≤ 4
∞∑

k1=n/2+1

∞∑

k2=n/2+1

|c(k1,k2)(K)| + 4
n/2∑

k1=−n/2

∞∑

k2=n/2+1

|c(k1,k2)(K)|.

Estimating the right–hand side by (3.18) and (3.14) – (3.17) we arrive at

S2 ≤ 4 A(n, σ ) (A(n, σ ) + Cσ ) ,

where

A(n, σ ) := 1

2
√

πη
e−η2 +

√
σ

πη
e−σ/4.

Note that A(n, σ ) ≤ 0.38. In summary we obtain

‖KER‖∞ ≤ 4 Cσ

(

e−η2
(√

π

σ
+ 1

η

)

+ e−σ/4 2
√

σ

η

)

.

��



346 D. Potts et al.

The first summand in (3.13) decreases with increasing η. The second sum-
mand is negligible for larger σ , e.g., we have

√
σ e−σ/4 < 2.7 · 10−6 for

σ ≥ 60.

4 Numerical examples

We have implemented Algorithms 2.1 in C and tested on an AMD Atlon
xp1800+ 512MB RAM, SuSe-Linux 8.0 using double precision arithmetic.

Throughout our experiments, we have applied the NFFT/NFFTT package
[23] with Kaiser–Bessel functions, oversampling factor ρ = 2 and several
cut–off parameters m which will be specified in the examples.

For simplicity we have chosen M = N and knots yj = xj (j = 1, . . . , N)

in {x : ||x|| ≤ 7
32 }, i.e., εB = 1

16 . In case of singular kernels, we have com-
puted

f (xj ) :=
N∑

k=1
k 
=j

αkK(xj − xk) (j = 1, . . . , N)

instead of (1.1). The coefficients αk were randomly distributed in [0,1]. More-
over, we set εI = p

n
.

Every figure presents the arithmetic mean of 20 computations.

Example 4.1 Figure 4.1 presents the error

E := max
j=1,... ,N

|f (xj ) − f̃ (xj )|
|f (xj )| .(4.1)

introduced by our algorithm as a function of the regularization parameter p

for the kernels in (2.1). We have used N = 5122 randomly distributed knots
xj as depicted in Figure 4.2 (left). Further, we have applied twodimensional
NFFTs of size n = 512 with a large cut–off parameter m = 8 to ensure that
the NFFT does not introduce an additional error.

As expected the error decreases exponentially with increasing p. Further
the error increases with an increasing order of the singularity of K. ��

Example 4.2 Next we are interested in computation times. To compare our
method with the FMM we consider the kernel K(x) = log ‖x‖. The FMM
ToolboxT M v1.0 from MADMAX OpticsT M [1] was specifically designed for
this kernel. We applied the routine fmmcoul2d with parameter IPREC=1
from this toolbox. Table 4.1 compares the time for the direct computation with
those for the fast summation by using the FMM–package and our implemen-
tation for randomly distributed knots. In our algorithm we have set m = 4
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Fig. 4.1. Error E of Algorithm 2.1 in dependence on the regularization parameter p for
various kernels, N = 5122 randomly distributed knots and NFFTs of size n = 256.

and p = 3 to achieve single precision, i.e., a maximum error E in (4.1)
smaller than 1.0e−6. The FMM produces nearly the same error. Note that
the computation time for our fast algorithm includes the computation time for
the search of all points in the near field, which can be done in O(log N). The
FMM performs only slightly better than our NFFT–based program. Since this
is also true for the direct computation we hope to obtain further improvements
by a more advanced implementation.

For highly inhomogeneous point distributions as the distribution in Figure
4.2 our algorithm requires about one and a half times the computation time
reported in Table 4.1 for our algorithm.

Remark 4.3 (“near field correction”) Up to now we have assumed that the
values KNE(yj −xk) = K(yj −xk)−KR(yj −xk) = K(yj −xk)−TI(‖yj −
xk‖2) (k ∈ INE

εI
(yj ); j = 1, . . . , N) in Step 4 of Algorithm 2.1 were pre-

computed. Alternatively, one can use the following procedure: splitting

fNE(yj ) =
∑

k∈INE
εI

(yj )

αkK(yj − xk) −
∑

k∈INE
εI

(yj )

αkTI(‖yj − xk‖) ,

we evaluate the first sum with O(pM) arithmetic operations first. By defini-
tion (2.3) of TI the computation of the second sum would require O(p2M)

arithmetic operations. We approximate this sum as follows: we precompute
TI(εI

s

p2 )(s = −p2, . . . , p2) and approximate TI(‖yj −xk‖2) by cubic spline
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Table 4.1. Comparison of the computation time for the direct computation, the FMM and
our NFFT–based Algorithm 2.1 for the kernel K(x) = log ||x|| and randomly distributed
knots

parameter FMM NFFT

N n direct fast direct fast

322 88 1.90e−1 5.00e−2 2.00e−1 4.00e−2
642 156 2.85e+0 1.30e−1 3.32e+0 1.60e−1
1282 312 4.73e+1 5.50e−1 5.46e+1 7.60e−1
2562 588 7.57e+2 2.30e+0 8.75e+2 3.46e+0
5122 980 − 9.40e+0 ∼ 1.39e+4 1.69e+1
10242 1960 − 3.85e+1 ∼ 2.20e+5 7.97e+1

interpolation. Now the (approximate) computation of the second sum requires
nearly the same number of arithmetic operations as the computation of the
first one.
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Fig. 4.2. Left: homogenous point distribution. Right: highly inhomogeneous point dis-
tribution

Example 4.4 We consider the Gaussian K(x) = e−σ‖2x‖2
. We have intro-

duced the factor 2 because the computations in [19] were done with respect
to ||x|| ≤ 1/2 instead of ||x|| ≤ 1/4. Since the performance of our algorithm
does not depend on the point distribution, we have chosen the inhomogeneous
point distribution in Figure 4.2 (right). For randomly distributed points, we
obtain exactly the same results. In the NFFT computations we have set m = 4.
Moreover, following the error estimate in Theorem 3.4, we have chosen n

and σ such that n/
√

σ is constant. Here n/
√

σ ≈ 5 which ensures an error
E ≤ 5.5e−8. Figure 4.3 presents the CPU time of our simplified Algorithm
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2.1 (Step 1 – 3, see (2.13)). As expected we see that the computational com-
plexity is only O(N).

For small values of σ one has to add a boundary regularization to obtain
arbitrary small errors as shown in Table 4.2. Here p = 0 denotes the algo-
rithm without boundary regularization. The complexity depends on n as in
Figure 4.3.
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Fig. 4.3. Computation time of Algorithm 2.1 for K(x) = e−σ‖2x‖2
2 with various values σ

and corresponding NFFT sizes n in dependence on the number N of (inhomogeneousely
distributed) points

Table 4.2. Error of Algorithm 2.1 (Step 1 – 3) with boundary regularization for K(x) =
e−‖2x‖2

2 , i.e., σ = 1 and N = 10000

p 0 2 4 6 8

n 32 32 64 128 256

E 3.659e-05 6.418e-06 1.666e-07 1.474e-08 3.739e-12
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5. Böhme, M., Potts, D.: A fast algorithm for filtering and wavelet decomposition on the
sphere. Electron. Trans. Numer. Anal. 16, 70 – 92 (2003)

6. Broadie, M.,Yamamoto,Y.: Application of the fast Gauss transform to option pricing.
Management Science 49, 1071 – 1088 (2003)

7. Cherrie, J. B., Beatson, R. K., Newsam, G. N.: Fast evaluation of radial basis func-
tions: Methods for generalized multiquadrics in Rn. SIAM J. Sci. Comput. 23, 1549
– 1571 (2002)

8. Duchon, J.: Fonctions splines et vecteurs aleatoires. Technical report, Seminaire
d’Analyse Numerique, Universite Scientifique et Medicale, Grenoble, 1975

9. Duijndam, A. J. W., Schonewille, M. A.: Nonuniform fast Fourier transform. Geo-
physics 64, 539 – 551 (1999)

10. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci.
Stat. Comput. 14, 1368 – 1393 (1993)

11. Elgammal, A., Duraiswami, R., Davis, L. S.: Efficient non-parametric adaptive color
modeling using fast Gauss transform. Technical report, The Univ. of Maryland, 2001

12. Fessler, J., Sutton, B.: NUFFT - nonuniform FFT toolbox for Matlab.
http://www.eecs.umich.edu/˜fessler/code/index.html, 2002

13. Fourmont, K.: Schnelle Fourier–Transformation bei nichtäquidistanten Gittern und
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