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Summary. Three a posteriori error estimators for PEERS and BDM S ele-
ments in linear elasticity are presented: one residual error estimator and two
estimators based on the solution of auxiliary local problems with different
boundary conditions. All of them are reliable and efficient with respect to the
standard norm and furthermore robust for nearly incompressible materials.

1 Introduction

Adaptive finite element methods and a posteriori error estimators are indis-
pensable tools in the numerical treatment of partial differential equations.
The error estimators provide indicators for refining and coarsening the mesh
and allow to control whether the error is below a given threshold.

There are many different error estimators for finite element methods for
a variety of different equations and discretizations. An overview on the com-
mon methods in a posteriori error analysis is given in [14].

The estimators presented there deal with discretizations which are based
on primal finite element methods, that is pure minimization problems and
no saddle point problems. But, often a saddle point problem and the corre-
sponding mixed finite element discretization are the more natural way to treat
a partial differential equation numerically. In elasticity there are mainly two
reasons to prefer the mixed method: first it is stable even for nearly incom-
pressible materials and second it provides an acceptable precision simulta-
neously for displacements and stresses.
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A first error estimator for a mixed finite element discretization of the
Poisson equation was developed by Braess and Verfiirth [5]. This estimator is
based on a mesh dependent norm which is not equivalent to the standard norm
of the given problem. Alonso [1] and Carstensen [7] were the first who devel-
oped residual error estimators for this problem with respect to the standard
norm. They circumvent the difficulties arising from the anisotropy of the norm
by the use of the Helmholtz decomposition of square-integrable tensors. We
also utilize the Helmholtz decomposition to derive a residual error estimator
for the P EERS element [2] and Stenberg’s BDM S family [13] of elements
for the linear elasticity problem. This error estimator is similar to the one given
by Carstensen in [8]. But, in contrast to Carstensen we do not use differently
weighted norms for the upper and lower error bounds. Our estimator is reli-
able and efficient and furthermore robust for nearly incompressible materials.

In the last section we present two error estimators based on the solution
of auxiliary local problems. These error estimators are similar to the ones
developed by Bank and Weiser [4]. In order to deal with these problems and
to obtain estimates with respect to the standard norms, we need the results
on the stability of BDM S elements which we presented in [12].

2 The linear elasticity problem

Let @ C RY, d = 2, 3, be a bounded polygonal or polyhedral domain with
boundary I' = 0Q2 = I'p Uy, p NIy = @, I'p, 'y # O and unit
outer normal 7. In the following u : Q — R? will denote the displacement,
o : Q — R4 the symmetric stress tensor, and & : Q@ — R9*¢ the strain
tensor. We use the abbreviations Du = %(grad u-+grad u”) for the symmetric
gradient and asoc = o — o for the skew symmetric part of a tensor.

The linear elasticity problem is given by the boundary value problem

(2.1a) e = Du in
(2.1b) e=Clo in Q
(2.1¢c) —dive = f in
(2.1d) aso =0 in Q
(2.1e) u=>0 onI'p
(2.1f) o-n=0 on [y

where f is the given body load. C is the elasticity tensor
(2.2) oc=Ce=Mtr(e)] +2ue

where A, u > 0 are the Lamé parameters, tr(e) is the trace of &, and [
denotes the unit tensor. For simplicity we assume that the displacement on
the Dirichlet boundary I', vanishes and that there are no surface tractions on
the Neumann boundary Iy .
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The Hellinger-Reissner principle is a corresponding mixed variational
formulation, in which the strain ¢ is eliminated:
Find (o, u,y) € H x V x W so that

(2.3a) a(o, t) +b(t;u,y) =0
(2.3b) b(o;v,m) == (f,v)

holds for all (z,v,n) €e H x V x W.
The bilinear forms a and b are given by

(2.4a) a(o, 1) =/ Clo:tdx,
Q

(2.4b) b(o;v,n) :f divo - vdx—i—/ o :ndx,
Q Q

whereo : 7 = Zlii’jfd 0;;Tij. The spaces H, V, W are defined by

H={o e L@ | dive e 2@, lolly=/ldivol: + o,
V= t{ue L)), lully = lluell 2.,
W={yel2@™y+y" =0,  lrlw=Irl..

The divergence of atensor o is takenrow by rowi.e. (divo); = 215 j<n 0j0;j.
The additional Lagrangian parameter y was introduced by Arnold, Brezzi,
Douglas [2] in order to allow the construction of stable finite elements [6,
§VIL.2].

Arnold and Falk [3] have proven the unique solvability of the variational
problem (2.3). In fact they have etablished the following stronger result:

Lemma 2.1 Denote by Z the kernel of the bilinear form b. Then there are
constants c, and c, which do not depend on )\ such that

1
(2.62) a(o, 1) =—llollg Itlx Vo,7 € H,
uw

(2.6b)  a(o,0) >c, ol Yo € H,
(260) b(Ga v, ’7) S ”UHH ||(U, 77)||V><W Yo € Ha (U5 77) eV x W?

(2.6d)
b(o;v,m)

>cp [0, My w V(v,n) e VxW.
oeri  llollu
o#0
We can combine the two bilinear forms a and b to a single bilinear form
2.7 dl(o,u,y), (t,v,n)]=alo, 1)+ b(r;u,y)+ blo;v,n).

Standard arguments for saddle point problems [11, Lemma 2.9 and Lemma
2.10] and the previous lemma then imply the following stability estimate:
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Lemma 2.2 Set

2
ney

J2mkel +8

1 1
cp =+2max{l, =}, ¢4 = —— min{c,, 1.
n

NG

Then d satisfies the estimates

dl(o,u,y), (z,v,
(2.8a) sup sup IC r). ( )] <c¢p
(t,v,7)#0 (o,u,y)#£0 l(o, u, V)”HXVXW (T, v, 77)“H><V><W

(2.8b) inf  su dl(o, u, ). (¥, v, ] > ¢4

p
(T,v,m)7#0 (O',u,)/);éo I|(Gv u, y)||H><V><W ||(t’ v, n)lIHXVXW

Thanks to this stability result, all forthcoming constants are independent
of the Lamé parameter A. Hence, the corresponding estimates are robust for
nearly incompressible materials.

3 PEERS and BDM S elements

Let 7, be an admissible and shape-regular triangulation of €2, with regularity
parameter K = sup;, maxre7, b Here hr denotes the diameter of T and pr
is the diameter of the largest ball inscribed into 7. Given an element T of 7,
we denote by Ag, . .. , A4 its barycentric coordinates and introduce the bubble
function Y7 = (d + 1)4+! H?:o A

As usual the operator curl is defined by

curlu =V xu ifu:Q— R
curl f = (3, f, —0x f) if f:Q—>R
curlu = 0,us — dyu; ifu:Q— R%

Using these definitions we set

3.1
Bi(T) = {(0ij) e R | (041, ... , 01a) = curl(Yrw;), w; € Pp(T),
i=1,...,d,1=2d—-3}.
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Definition 3.1 (Arnold, Brezzi, Douglas [2]) The plane elasticity element
with reduced symmetry, called PEERS, is defined by

RTy(T) ={w € LX(T)¢ |w =a +bx,a € R, b e R,

(3.2a) x =1, ..., x0T},
Hy, ={o}, € H|oplr € RTo(T)* & By(T), T € Ty,
(3.2b) op-n=0o0nTy},
(3.2¢) Vi ={vp € V| uilr € Po(T), T € Tp},
(3.2d) Wi ={nw € W N CQ | mulr € PUTY, T € T},

(3.2e) PEERS =Hj, x V, x W,
Definition 3.2 (Stenberg [13]) For k > 2 the BD M S-element is defined by
(3.3a) BDM(T) =P, (T)¢,

Hy ={oy € H|oplr € BDM(T)! @ Bi_(T), T € T,

(3.3b) o,-n=00onTy},
(3.3¢) Vi ={vw € V|vplr € P (T, T € Ty},
(3.3d) Wy ={nw € W mulr € Po(T)Y, T € Ty},

(3.3e) BDMS, =H), x Vi x W,

Remark 3.3. For both elements, the space W), is isomorphic to the space
{ol@lr € P(T), T €Ty, | =2d — 3}. The corresponding isomorphism is

given by
: 0—¢ e
12'(’0_)((,00) ifd =2,
@1 0 o o
L:lex]l = |—¢1 0 ¢ ifd = 3.
®3 —p2—¢3 0

Denote by Z, = {o € H, |b(o;v,n) =0, Y(v,n) € V), x W} the ker-
nel of b in these finite element spaces. The following estimates for PEERS
are established in [2]

(3.4a) a(o, o) =cPEERS | 0|12, Yo € Zy,
b(o;v,n)
(3.4b) P P >c[EERS o, M lyww Y, 1) € Viy x W
oeHp\{0 H

Hence there exists a unique solution (o}, uy, y,) € PEERS of the discrete
problem (2.3).

In [12] we have established similar estimates for BDM S; with corre-
sponding constants c5PM5 and ¢BPMS. Again, this proves the unique sov-

ability of the discrete problem.
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As in the analytic case we obtain an inf-sup-condition for the bilinear
form d with respect to the finite dimensional spaces.

4 A residual a posteriori error estimator

Following the techniques presented in [14] we use the bilinear form d defined
in (2.7) to derive a reliable and efficient a posteriori error estimator, which is
robust for nearly incompressible materials. In order to circumvent the diffi-
culties that are due to the anisotropy of the H (div)-norm (cf. [5]), we adopt
the suggestion of Alonso [1] and Carstensen [7] and use a Helmholtz decom-
position for the stress tensors. In contrast to Carstensen’s error estimator for
the BDM S element [8] we obtain estimates which use the same norm for
the upper and lower bound of the estimator.

In the following (o, u, y) and (o}, uy, yi) are the solutions of the ana-
lytical (2.3) respectively the discretized problem using PEERS or BDM S
elements. We denote by e, = 0 — 0, ¢, = u —u, and e, = y — y;, the
corresponding errors.

4.1 The residual

We define the residual R(e,, e, e, ) as a linear functional on H x V x W by

4.1) (R(ecr’ ey, ey), (T, 0, 77)) =dl[(es, ey, €y), (T, v, M)].

Here (-, -) denotes the duality pairing between the corresponding spaces.
Obviously the following Galerkin orthogonality holds

42)  (R(es.eu.e)), (t.v, ) =0 ¥(z,v,7) € Hy X Vj x Wy,

In order to derive an a posteriori error estimator, we need an L?-represen-
tation of the residual. Denoting the inner product of L2 by (-, -), we derive
from (2.3):
4.3)
(R(es eu.e)), (T, 0, 1)

= (C'es, T) + (divr, e)) + (7, ¢)) + (dives, v) + (5, 1)

= —(C"loy, ©) = (div T, up) — (v, yh) + (div &5, v) + (€0 1)

= —(C'on, ) = (divr,up) — (7. i)

— (f,v) — (divoy, v) — (as oy, )
= —(C7 oy +yp. 1) — (dive, up) — (f +divoy, v) — (asop, n).
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Since the stress tensors are in L?(2)?*¢ they admit a Helmholtz decom-

position rowwise. For its description we introduce the space

o — {y € HY(Q) : ¥, =0, ¥Ir, =c} ifd =2,
T iy e HY(Q)? : divy =0, curl ¢ - nlr =0} ifd = 3.

Here, c is an arbitrary constant, if ' and "y consist of disjoint connected
components, and equals 0 otherwise. Then the rowwise Helmholtz decom-
position of a tensor 7 is given by (cf. [10, §3])

“4.4) T =Gt +curl Rt with Gt = grad Gt

where Gt € (H'(Q)/R)? and Rt € ®“. The proof of the upper bound on
the error requires a certain regularity of this decomposition. More precisely,
we have to assume that the estimates

(4.52) |RTly < lITll2e
(4.5b) G| = Clldivelig,

hold for all tensors T € H, where |-|; and |-|, denote the H' respectively H?-
seminorm. This regularity assumption is satisfied if the boundary I' is of class
C"! or if Q is a convex polyhedron. (Note that the assumption Gt € H?(S)
is the critical one.)

We know from [12] that there exists an interpolation operator I, : H —
Hj, that fullfills a “commuting diagram property” (c.d.p.)

(46) (le T, I/th) = (le Hh‘L’, uh) \AS H, uy € Vh,
and the error estimate
4.7 It — Tl 2¢ry < enhr ltlyiry -

Moreover, the relation

4.8) / n(t —I,t)v, =0 VreHv, eV,
E
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holds for all edges respectively faces E. Using this operator we can write the
first two terms of (4.3) as follows

(4.9)
—(C7'op + i, T) — (div T, up)
= —(Cflah + vn, GT) — (C oy, + v, curl Rt) — (div G, uy)
— (divcurl Rz, uy)
T
=—(C7 oy + vh, GT) — (Cloy + v, curl Rt) — (div 1, G, uy)
T
= (C 7oy + yp, (I, — Id)GT) — (C'o} + 4, curl R7)
= (C_loh ~+ yp — grad uy, (I, — 1d)Gt) — (C_lah + ¥, curl Rt)
+ (grad uy,, (I, — Id)GT)
=0
= (C oy + yp — graduy,, (T, — Id)Gt) — (C o), + 3, curl RT).

Equations (4.3) and (4.9) and integration by parts elementwise yield the fol-
lowing L>-representation of the residual

(4.10)
(R(eo. eu, €y), (T, v, 1))
= (C'oy, + yp — grad uy,, (T, — I1d)Gt) — (C o}, + 4, curl RT)
— (f +divoy, v) — (o4, 1)
= (Cloy + v — grad uy, (1T, — Id)GT)
—(f +divoy, v) — (asoy, n)
= Y (curl(C™ oy + i), ROr — Y (7 (C™'on + v, RT)E.

TeT, Eec&y

Here, y; is the trace operator in tangential direction, [-]g denotes the jump
across an edge respectively face E and &, is the set of all interior edges
respectively faces of the triangulation.

4.2 The case © = 1

In a first step we give an error estimate for the case that the Lamé parameter
w equals 1. A scaling argument will then yield a similar estimate for arbitrary

uw.
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4.2.1 Upper bound We denote with I, Clément’s interpolation operator [9]
and set n, = 0, v, = 0 and 1;, = curl I, Rt. Invoking the Galerkin orthogo-
nality we obtain

@.11)
(R(es. eue)), (T, v, 1)
= (R(eo, €ur €y), (T — Tpo U — V4, 7 — 1))

= —(C oy + yn — grad uy,, (Id — 1) G7) — (f + div oy, v) — (o, 1)

— Y (curl(C™'oy + 1), (Id — Ii)R7)7
TeT),

— Y (i (C o+ y)le, (Id — L) RT) .
Eec&),

Due to (4.7) and (4.5) we have

I(1d = )Gl r < enhr |Gl ¢ = enhr |Ge|

where ||.|lp.7 and |.|; 7 denote the L*(T)-norm and the H*(T)-seminorm
respectively.
The error estimates for Clément’s interpolation operator and (4.5) yield

l(Id — IRzl < crhr |RT|, 5,

1
I(Id — I)Rzllo.p < cihy |RT| 5, -
Here, the domains @7 and @ consist of the union of all elements that share
at least a vertex with T respectively E and ||. ||, g denotes the L?(E)-norm.

These estimates and the Cauchy-Schwarz inequalities for integrals and
sums imply that

(R(es, e, ey), (z, v, )|
<[ e oty — gradun ] enhr |G|

2.T
TeT,
+ > lf +divoullor Ivllor + D lasoullor Inllor
TG’];l Te,Th
—1
+ Y |leurl(C o + yi) | 7 crlr I1RT] 5,
TeT,

1
+ 3 € o+ il g erhi RT3, )
Ec&,
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. 2 2
<ef 3 (Mdivon + 1B + lasonli 1
TeT,

+h2T ”C‘lah + vn — grad uy, ||§’T + hzT ||cur1(C_10h + J/h)”éj

1

+ 3 ke i€ o+l )}
EedT

1

) 2
{‘Gr‘z + [RT|F + (vl + Ilnllé}

: 2 2
= (ldiven + 13 7+ las ol
TeT,

+h2T HC_lah + yp — grad ”’1”31 + hzT ||cur1(C_lah + J/h)”éj

1
+ 3 e [t on+ ol )} 1@ v Dl ey
EecoT

In the second step we have used the fact that the domains @7 and @g only
consist of a finite number of elements, this number being bounded by the
regularity parameter «.

These estimates and the inf-sup-condition for the bilinear form d finally
yield

(4.12) Cd H(ea’e”’e)/)HHxVxW
" ((R(es, eu. €y), (. v, 1)

- (t,v,m)#0 ”(T» v, 77)||H><V><W

<o 3 (ldivon + filld 1 + las ol 7
TeT,
—|—h2T ”C‘lah + yn — grad uy, ”gj

_|_h2T ”curl(C_IGh + ) ”é,T

+ > he v (C o + Vh)]||(2),E)2}
EedT

+cllf = fally -

As usual in a posteriori error analysis, we have replaced the function f by

a suitable finite element approximation f;, e.g., the L2-projection of f into
Vi.

1
2

4.2.2 Lower bound To prove the converse of inequality (4.12) we estimate
each residual term separately by inserting suitable local test-functions in (2.3).
To this end we denote by ¥ the product of the affine nodal shape functions
corresponding to the vertices of a given edge respectively face £ multiplied
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by d“. The support g of Y then consists of the two elements that share E.
The following lemma is the special case p = 2 of [14, Lemma 3.3].

Lemma 4.1 Thefollowing estimates holdfor all elements T, all edges respec-
tively faces E of T, and all polynomials v and p defined on T respectively
E:

(4.13a) Iolg.r <1 (v, ¥ro)r

(4.13b) o1,z <c2 (o YEP)E »

(4.13¢) lgrad(Wrv)llor <eshz' vllo.r .

(4.13d) lgrad(ep)llo.r <cshz' 1veplor -

(4.13¢) IWepllor <esh ol

Here, the polynomial p is continued to a polynomial on the whole space in the
canonical way. The constants cy, . . . , cs depend on the polynomial degree of

v and p and on the shape parameter k.

The weak formulation (2.3) immediately implies

(4.14) Idiv oy + fullo.r + llas anllo.r
< |ldivoy + fllo.r + llasonllor + 11 f — fullor
= [|divesllo.r + llasesllo.r + I1f — fallo.r

= dive,llo.r + 2 llesllo.r + I.f = fullo.r
<2V2lesllgr + I1f = fullor -

Set pr = Y7 (C~'oy, + y» — grad uy,). Since 1 = 1 we conclude from (2.6)
and lemma 4.1 that

A

' [+ — arad
< (C7'on + yu — graduy, pr)
= (C™'on + . pr) + (up, div pr)
= a(oy, pr) + b(or; un, yn)
—a(eq, pr) — b(pr; e, €y)
lles llo.z Loz llo.r + llewllo.z Idiv prllo.r + [ley || 7 lorllo.7

IA

—1
< lesllo.r lorllor + cshz' ledllor lorllor + ey |o 7 lorllor

= m “ (€5, eu, eV)HO,T “C_lah + yn — grad uy, “O,T .

Dividing by h}l ||C_lc7h + yn — grad uy, ||0 o this yields

(4.15) hr |[C'on + v — grad us ),

< a1y/2+ Ghrhr [ eos enn ey -
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Next we set pr = 7 curl(C~'o}, + ) and obtain

cl_1 ||curl(C_10h + yh)||(2”
< (curl(C™'a + i), o1 g
= (C_lah ~+ v, curl 'OT)O,Q
= a(oy, curl pr) + b(curl pr; up, i)
= —a(eg, curl pr) — b(curl pr; ey, e,)

< lles llo.z llcurl prllg.7 + llcurl prllo 7 [ley [
< esh7'V2{ lleol3r + ey 21 Y llorllo s
< C4h;1\/§ || (eg, €y, ey) ||0,T chrl(C_lah + Vh) ||0,T .

Division by h}l ||curl(C*10h + i) ||0’T yields
(4.16) hr [eull(C™on + )| < c1e3v2 (e ews €)1 -

Now we insert pg = wE[yt(C_lah 4+ y»)]E in (2.3) and apply lemma 4.1
with p = [y,(C_lo*h + vr)]Ee. This yields

;' (€ o+ vle g
< (i (C™ o+ vlE, PE), 4
= Y {—(cutl(C™"on + ). pE) ; + (C™'on + va curl pi),, ;. }

Tewg

— Z — (curl(C ™oy + ¥a), pE)o,T

Tewg

—a(es, curl pg) — b(curl pg; ey, ey)

< > {llewnt€on + vy 1 NoElos

Tewg

+lles llo.7 leurl pello.r + [ley || o lcurl pello 7}

< Y {eresv2hy! |(eos ew e)) | o 1 llpEllo.r

Tewg

+eah llesllor loellor + cahy' e, lo.r IoElo.7}

_1
< chy* Z {0103\/5 | (eo, e e)/)”()’T loello, e

Tewg

+cacs llesllo.r pEllo, £ + cacs | e, ||0,T loello.g)
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_1
< colc1e3v/2+ 2cacs)h llpelloe ) [(oreuse) o r

Tewg

< co(c163v2 4 2¢4¢5)V/2 H (€5, eus €y) ||0,a)E

_1
X hy® |y (C™on 4+ vl -
Dividing by h;% |y (C7 o + yi)le |, this gives

1
(4.17) hi | (€™ on + vi)le o
< cac6(c13v2 + 2c45)V2 || (e €4, ;) ||0,a)E :
Combining the previous estimates we finally arrive at the lower bound
(4.18) [ (idivon + filld 7 + Nasonlly ;
TeTy,

—|—h2T HC‘lah + yp — grad uy ”3,7

+h2T chrl(C‘loh + Vi) ”é,r

+ 3 e o+l )’}

EedT
5 C ||(eo’7€ua ey)”HXVXW + ”.f - fh”V

1
2

with a constant C independent of 4 and A.

4.3 Arbitrary |

In order to extend our results to arbitrary © we consider the scaling

5 — 1 5, — L1
U_MG’ O’h—ﬂo'h,
i=u, Up = Up,
?:Vv )7h=)/h,
f:if’ fh:ifh'

and define a modified bilinear form a by

a, 1) =/ C'6:tdx Cl'=pnc'.
Q
Then (o, u, y) and (6, iy, ) are the solutions of the saddle point problems

a(o,7)+b(t;u,y)=0
b(G;v, ) =—(f,v)
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in H x V x W respectively Hj, x V), x W),. This is the linear elasticity problem
and its discretization with Lamé parameter A = % und o = 1. This leads to
the following definition.

Definition 4.2 The residual a posteriori error estimator ng is defined by:
2 L 2 1 2
4.19) Nr,r =5 ldiv oy, + fh”oj + — ||aSUh||0,T
I w
| c! duy
+ ny || op + yp — gra MhHOJ
_ 2
+ hzT chrl(C lon + Vh)”o,T
_ 2
+ > he (€ on + vl 4

EeoT
and
1
(4.20) =Y kel
TeTy

The previous transformation and inequalities (4.12) and (4.18) prove the next
theorem.

Theorem 4.3 If Q is a convex polyhedron and (o, u, y), (on, uy, y,) are
the solutions of (2.3) and of the associated discrete problem, then ng is a
reliable and efficient a posteriori error estimator, which is robust for nearly
incompressible materials. There are constants ¢ and C independent of h, A
and | so that the following estimates hold

(4.21a)
1 1
c|Gemo|,  smr RIS fily,
1 1
(4.21b) nR.T SC(H(I—LeU, e)HHvaw<wT) + L1 = fallor)-

Here ||.|| g xv xw(w;) denotes the restriction of ||.|| g« v xw to the domain wr C
Q which consists of all elements that share an edge respectively face with T .

5 Estimators based on auxiliary local problems

In this section we want to treat error estimators based on the solution of aux-
iliary problems. These are saddle point problems similar to the original one,
but based on small patches of elements. In order to ensure the reliability and
efficiency of the error estimators, we must assure that appropriate norms of
the solutions of the auxiliary problems do not depend on the diameter of the
patches. This is achieved by the following lemma.
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Lemma 5.1 The constant c, in the inf-sup-condition (2.8b) with respect to
a single element T € T}, does not depend on the element’s diameter ht. It
only depends on the condition number of the transformation of T onto the
reference simplex T, i.e. the shape parameter hy [ pr.

Proof. The lemma is proven by transforming to the reference element, invok-
ing stability of the linear elasticity problem on the reference element and
transforming back to the element 7 (cf. [11] for details). O

5.1 Local problems with neumann boundary conditions

We want to treat local auxiliary problems, which are based on a single ele-
ment T € 7;,. Furthermore we want to impose pure Neumann boundary
conditions. Since the displacement of a linear elasticity problem with pure
Neumann boundary conditions is unique only up to rigid body motions, we
must factor out the rigid body motions of the element 7. These are given by

(5.1
_ (ve (L (T)?|v=_(a,b)+c(—x2,x1), a,b,ceR} ifd=2,

’ {ve (LA(T))’|lv=a+bxx, a,beR3 ifd = 3.

The bilinear form a is still coercive and we obtain the following inf-sup-con-
dition for b
b(o;u,y)

inf sup > Cp.
uf}‘é/uffr oer 1o llm 1 V) ly /gy <w

We split V;,(T) into the rigid body motions R7 and the remaining part V;,(T)
Vi(T) = Ry ® Vi(T),  Vi(T) = Vi(T)/Ry.
Using this decomposition we define
BDMS|(T) = Hy(T) x Vi x Wi(T),

where [ > 2 is the polynomial degree in the finite element spaces.
Since the error (e, e,, e,) € H x V x W is a solution of

(5.2a) ales, )+ b(t; ey, e)) =—aloy, ©) — b(T; up, yn)
(5.2b) b(es; v, m) = —(f, v) — blox; v, m)

for all (r,v,n) € H x V x W, we consider the following auxiliary local
problem: Find (o7, ur, yr) € BDMS;(T) such that

(5.3a) a(or,t) +b(t;ur, yr) = —a(on, ©) — b(T; up, yu),
(5.3b) b(or;v,n) = —(fn,v) — b(on; v, 1)

holds for all (z, v, n) € BDMS;(T).
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The coercivity of a and the inf-sup-condition for b immediately imply:

Proposition 5.2 Problem (5.3) admits a unique solution.

Definition 5.3 We define the a posteriori error estimator név by:

R e
(5.4a) N, T (MUT ur, yr) H VW)
2.1
(5.4b) =D v )
TeTy

Here ||.|| g v xwr) denotes the restriction of ||.|| gy xw to T.

Remark 5.4. In order to implement the error estimator nlN one has to con-
struct a basis for the space V,, (7). This can be achieved by taking the standard
basis of V},(T') and dropping those degrees of freedom that belong to the rigid
body motions. Afterwards one has to compute the stiffness matrix for each
element 7 € 7), and solve the associated local auxiliary problems.

Theorem 5.5 Assume that Q2 is a convex polyhedron, that the discretization
consists of BDM S elements with polynomial degree k > 2, and that the
polynomial degree | of the auxiliary problem (5.3) satisfies | > k + 2d. Then
né\, is a robust, reliable and efficient a posteriori error estimator. There are

constants ¢ and C, independent of h, A and (u such that:

(5.52)
c|Geso], <RI = filly,s
[ 1 1
(5.5b) mvr < C(|(bes o) HHWX‘W) +L11f = fullo,r)-

It is sufficient to prove this theorem for the case u = 1. The same scaling as
for the residual error estimator yields the assertion for arbitrary u.

Lemma 5.6 Ifu = 1andl > k+2d then né\,’T and 77§v vield local and global

lower bounds for the error || (es, €y, We obtain the estimates

eV)HHxVxW(T)'

(5.6a) e < C(||Ceosewse) |y wery + IF = Fullor),
(5.6b) Ny < V2C(|(eor e )| oy + I1F = fillv).

The constant C depends on the regularity parameter k but does not depend
on the diameter hp nor on the Lamé parameter .
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Proof. This lemma follows directly from the inf-sup condition (2.8b)

!
cany.r = calor, ur, yo)luxvsw

< sup  (a(or, ) +b(ziur, yr) + blori v, )
(t,v,nN)eBDMS;(T)
e, vnllgxyxw=1

= sup (alon, ©) + b(T; up, yu) — (fn, v) — b(on; v, 1))
(t,v,m)eBDMS;(T)
It v nllgxyxw=1

= sup  (alop, D) +b(Twn, yi) = (f,0) +(f = fi,0)
(t,v,meBDMS|(T)
e vnll sy xw=1

— b(ow; v, 1))

= sup (a(e(,, 7)
(zr,v,m)e€BDMS|(T)
Iz, vl gxvxw=1

+b(t; en, €)) + bleg; v, ) + (f — fu, V).
Invoking the continuity of a and b and Holder’s inequality this yields
775\/,]* S cgl\/i(H (eﬂa el,h e)/) ||HXV><W(T) + ”f - fh ||0,T)'
The global bound is an immediate consequence of the local one. O

In order to establish the reliability of the estimator, we prove that né\,’T is
an upper bound for the terms in ng r. Invoking (4.12) this will complete the
proof of theorem 5.5.

Lemma 5.7 If u = 1 and [ > k + 2d, the following estimates holds

(5.72) ldivoy + fullg 7 + lasonllg 7 <2c1 'y 7,

(5.70) hr ||C*loh ~+ yn — grad uy, ”o,r gcl,/ZhZT + c% "év,T»
5.7¢) by |eurl(C™ o + vi) |, <crc3v2nly 1,

1 _ 212
670 b [ o+ g <2eeres +ees| 3 n )

TCwg

Proof. We consider the local test-function

O, vr, nt) = O, Yr(divo, + fi), 2¢7 asoy).

Since (divoy, + f) € V, we have vy € Pr.y and aso;, € Priy_1, hence
nr € Pryoq. The condition [ > k + 2d therefore implies (0, vr, QT) €
BDMS(T). Since vy vanishes on the boundary of T, we have vy € V}, and
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thus (0, vz, n7) € BDMS;(T). Hence we can insert (0, vy, n7) as a test
function in the auxiliary problem. Invoking lemma 4.1 we obtain

: 2 . 2 2
I(div oy + fi, as oW Iy wwry = I1divon + fullo 7 + llas onllg 7

< cl(/(divoh + fn) - vrdx
T

+/ah : nrdx)
T

= c1((fa, vr) + b(ow; vr, n1))
= ¢y |b(or; vr, 7))l
The continuity of » and 7 < 1 yield
|b(or; vr, nr)l < llorllor 1(vr, no)lly xwr)
< 2y 7 1@V on + fir, as o) v sewcr -

Division by |[|(divoy, + fi, ason)lly«wr) on both sides of the inequality
proves the first estimate.
For the second estimate we consider the local test-function

(t7,0,0) = (Yr(C™ oy, + yu — grad uy), 0, 0).

We have 77 € P54 and therefore (t7, 0,0) € BDM S;(T). With lemma 4.1
and integration by parts in the second term we get

|c~ on + v — graduh”(z)j

501(/ C‘lah:erx—/graduh:erx+fyh:erx),
T T T

= ci(a(on, tr) + b(tr: up, yn)).
The definition of the auxiliary problem (5.3) and the continuity of a and b
imply
|C™on + v — grad ),
<ci(alor, tr) + b(zr;ur, yr))
< ci(llorllo.r lzrllo.r + Idiv Trllo.r lurllor + ltzllor lvrlo.r)
<l

-1
1 ||0T||0,T ||TT||0,T +C3hT ||TT||0,T ||MT||0,T + ||TT||0,T ||J/T||0,T)

/ -2
ciy/2 + cihy” (or, ur, Yo llgsvxwery Itrllo,r -

Using the definition of 77 and né\,’T and the fact that |v7| < 1 we obtain

IA

[C¢™on + y — eradus

< a2+ 72 [C Vo + vy — rad s | .1

Division by h;l || C~ oy + y, — grad uy, || proves the second estimate.
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Nextwe set 77 = Y7 curl(C~'oy,4+y,,) and have (17, 0,0) € BDMS;(T).
Lemma 4.1, integration by parts and the definition of the auxiliary problem
(5.3) yield

||cur1(C_loh + yh)H(Z) r=c / curl(C_lo'h + yn) s Trdx
' T

= /(C‘lah + yp) :curl T dx
T

= Cl(a(ah, curl 77) + b(curl t7; uy,, yh))

= cl(a(aT, curl t7) + b(curl 7; ur, yT)).

The continuity of @ and b and || < 1 imply

- 2
|eurl(C " on + yi) [, < cr(llorllo.r leurl ez llg 7 + lleurl zrllo 7 llyrllo.7)
< eiv21©r. 0. yD)ll v swr llewrl 2z llo 7
< aiV2eshr e llo r iy 7
< c103«/§h}1 ”curl(C‘lah + 1) ”0,7 775\],7-
Division by h;l chrl(C “Low + ) || 0T establishes the third estimate.
Finally we consider an element 7 and an edge respectively face E thereof
and set Tz = Yy, [C'oy + yulEe. Here the polynomial [C oy + vulE is
continued to the whole space in the canonical way. Due to the assumption on

the polynomial degree / we have (curl tg, 0,0) € BDM S;(T). Integration
by parts and lemma 4.1 yield

| o+ v},

= C2/[)’t(clﬂh 4+ yvi)le : teds
E

= 62(—/ curl(C~ Yoy, + yi) : T dx +f (C™ oy + ) : curl Tg dx).
wWE w

E

The first term can be estimated by invoking the Cauchy-Schwarz inequality
and the fourth estimate of lemma 4.1

1
_ _ 2 )2
/ curl(C~ oy, + ) s tpdx < { Z ”curl(C lon + J/h)“o,r}2 £ 0,0,
WE

TCowg

1
= 3 @esvznr'nh ) Ieelo,

TCowg

1
_ 212
< clcm/ith{ Z Uév,r } I7ello.w, -

TCowg
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Using once again lemma 4.1 we obtain

/ curl(Cilah + yp) i Tpdx
wWE

1

< cies2h | Y ol esv2hr [ €Yo+ vle

TCwg

1
<2cic3cshy { Z ’7N T }2 ”[Vt(c_l(’h + Vh)]E”o,E'

TCwg

Invoking the continuity of a and b and lemma 4.1 the second term can be
estimated by

/ (Cilah + yp) :curl Tg dx
WE
= a(oy, curl tg) + b(curl tg; uy, yi)

= Z a(or, curl tg) + b(curl tg; ur, yr)

TCwg
< Y lorllor leurl zello,r + lleurl tello 7 lyvrllo, 7
TCwg
< VZlleurl tell o, (3 v r)?
TCwE
< 2c4cs5hy’ Z My, T ‘V:[C o+ )/h]EHO I

TCwg

_1
Combining these estimates and dividing by A ,* || vlC  on + vile ||0 g We
obtain ’

. !
5.8)  hy |[nlCTlon +wmlel, , < 2ea(crie3 + C4)Cs{ > nle}z-

TCwg

This proves the last estimate of the lemma. o

Lemma 5.7 proves the second estimate of theorem 5.5. Hence ny r is a reli-
able and efficient error estimator. Since our estimates do not depend on the
Lamé-parameter A, this estimator is also robust for nearly incompressible
materials.

5.2 Local problems with dirichlet boundary conditions

It is also possible to impose Dirichlet boundary conditions on the auxiliary
problems. But due to the nature of these boundary conditions the local prob-
lem must be posed on a larger patch of elements. We will derive an error
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estimator which is posed on the patches w7 that consist of the union of all
elements sharing an edge respectively face with a given element 7'.

Proposition 5.8 For every T € T, and every | > k there is a unique
(Cwrs Uors Yor) € BDM S(wr) such that

(5.9a) a(Ow, T) +b(T; Uwy s Vor) = —aloy, T) — b(T; up, yi),
(5.9b) b(0w;;v,m) = —(fn, v) — blop; v, 1)
holds for all (z,v,n) € BDM S;(wr).

wr wT

Fig. 1. The mapping of wr onto w;

Remark 5.9. Lemma 5.1 deals only with the scaling of ¢; under affine trans-
formations of a single element. In order to get areliable and efficient a posteri-
ori error estimator based on the auxiliary problem (5.9) we need an analogous
lemma with respect to domains of the type wr. Applying an affine transfor-
mation to wr we can map 7" onto the reference element T. The remaining
three respectively four elements are mapped onto arbitrary elements adjacent
to 7. Hence we get an arbitrary patch w;. Due to the regularity of the triangu-
lation 7, the set of all possible patches w; is a compact set. Since ¢, depends
continuously on the transformation it attains its minimum ¢, on this compact
set. Obviously, this minimum is still independent of the Lamé parameter A.

Definition 5.10 We define the a posteriori error estimator nlD by

I L
(5.10a) Np,r = H(ﬂawT’ Uors Yor) ‘HXVXW(T) ’
2.1
(5.10b) = () nbr )’
TeT,

With the same arguments as in the previous section one can prove that
np.r provides a reliable and efficient a posteriori error estimator, robust with
respect to nearly incompressible materials.

Theorem 5.11 If Q is a convex polyhedron and (o, u, y), (on, uy, y,) are
the solution of (2.3) respectively its discretization in BDM Sy and if the



778

M. Lonsing, R. Verfiirth

polynomial degree | of the auxiliary local problem (5.9) fullfills | > k + 2d,
then there are constants ¢ and C, independent of h, A, and |, such that the
estimates

(5.11a)

(5.11b) Ny < C(H(ﬁea, e) H

c|es o) b+ Lif =il

HxVxW

+ 1L = fallo.r)-

HxVxW(wr)

hold.
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