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Summary. Three a posteriori error estimators for PEERS andBDMS ele-
ments in linear elasticity are presented: one residual error estimator and two
estimators based on the solution of auxiliary local problems with different
boundary conditions. All of them are reliable and efficient with respect to the
standard norm and furthermore robust for nearly incompressible materials.

1 Introduction

Adaptive finite element methods and a posteriori error estimators are indis-
pensable tools in the numerical treatment of partial differential equations.
The error estimators provide indicators for refining and coarsening the mesh
and allow to control whether the error is below a given threshold.

There are many different error estimators for finite element methods for
a variety of different equations and discretizations. An overview on the com-
mon methods in a posteriori error analysis is given in [14].

The estimators presented there deal with discretizations which are based
on primal finite element methods, that is pure minimization problems and
no saddle point problems. But, often a saddle point problem and the corre-
sponding mixed finite element discretization are the more natural way to treat
a partial differential equation numerically. In elasticity there are mainly two
reasons to prefer the mixed method: first it is stable even for nearly incom-
pressible materials and second it provides an acceptable precision simulta-
neously for displacements and stresses.
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A first error estimator for a mixed finite element discretization of the
Poisson equation was developed by Braess and Verfürth [5]. This estimator is
based on a mesh dependent norm which is not equivalent to the standard norm
of the given problem. Alonso [1] and Carstensen [7] were the first who devel-
oped residual error estimators for this problem with respect to the standard
norm. They circumvent the difficulties arising from the anisotropy of the norm
by the use of the Helmholtz decomposition of square-integrable tensors. We
also utilize the Helmholtz decomposition to derive a residual error estimator
for the PEERS element [2] and Stenberg’s BDMS family [13] of elements
for the linear elasticity problem. This error estimator is similar to the one given
by Carstensen in [8]. But, in contrast to Carstensen we do not use differently
weighted norms for the upper and lower error bounds. Our estimator is reli-
able and efficient and furthermore robust for nearly incompressible materials.

In the last section we present two error estimators based on the solution
of auxiliary local problems. These error estimators are similar to the ones
developed by Bank and Weiser [4]. In order to deal with these problems and
to obtain estimates with respect to the standard norms, we need the results
on the stability of BDMS elements which we presented in [12].

2 The linear elasticity problem

Let � ⊂ R
d , d = 2, 3, be a bounded polygonal or polyhedral domain with

boundary � = ∂� = �D ∪ �N , �D ∩ �N = ∅, �D, �N �= ∅ and unit
outer normal n. In the following u : � → R

d will denote the displacement,
σ : � → R

d×d the symmetric stress tensor, and ε : � → R
d×d the strain

tensor. We use the abbreviationsDu = 1
2 (grad u+grad uT ) for the symmetric

gradient and as σ = σ − σT for the skew symmetric part of a tensor.
The linear elasticity problem is given by the boundary value problem

ε = Du in �(2.1a)

ε = C−1σ in �(2.1b)

− div σ = f in �(2.1c)

as σ = 0 in �(2.1d)

u = 0 on �D(2.1e)

σ · n = 0 on �N(2.1f)

where f is the given body load. C is the elasticity tensor

σ = Cε = λ tr(ε)I + 2µε(2.2)

where λ, µ > 0 are the Lamé parameters, tr(ε) is the trace of ε, and I
denotes the unit tensor. For simplicity we assume that the displacement on
the Dirichlet boundary �D vanishes and that there are no surface tractions on
the Neumann boundary �N .



The linear elasticity problem 759

The Hellinger-Reissner principle is a corresponding mixed variational
formulation, in which the strain ε is eliminated:

Find (σ, u, γ ) ∈ H × V ×W so that

a(σ, τ )+ b(τ ; u, γ ) = 0(2.3a)

b(σ ; v, η) = − (f, v)(2.3b)

holds for all (τ, v, η) ∈ H × V ×W .
The bilinear forms a and b are given by

a(σ, τ ) =
∫
�

C−1σ : τ dx,(2.4a)

b(σ ; v, η) =
∫
�

div σ · v dx +
∫
�

σ : η dx,(2.4b)

where σ : τ = ∑
1≤i,j≤d σij τij . The spaces H , V , W are defined by

H = {σ ∈ L2(�)d×d | div σ ∈ L2(�)d}, ‖σ‖H =
√

‖div σ‖2
L2 + ‖σ‖2

L2,

V = {u ∈ L2(�)d}, ‖u‖V = ‖u‖L2 ,

W = {γ ∈ L2(�)d×d | γ + γ T = 0}, ‖γ ‖W = ‖γ ‖L2 .

The divergence of a tensorσ is taken row by row i.e. (div σ)i = ∑
1≤j≤n ∂jσij .

The additional Lagrangian parameter γ was introduced by Arnold, Brezzi,
Douglas [2] in order to allow the construction of stable finite elements [6,
§VII.2].

Arnold and Falk [3] have proven the unique solvability of the variational
problem (2.3). In fact they have etablished the following stronger result:

Lemma 2.1 Denote by Z the kernel of the bilinear form b. Then there are
constants ca and cb which do not depend on λ such that

a(σ, τ ) ≤ 1

µ
‖σ‖H ‖τ‖H ∀σ, τ ∈ H,(2.6a)

a(σ, σ ) ≥ca ‖σ‖2
H ∀σ ∈ H,(2.6b)

b(σ ; v, η) ≤ ‖σ‖H ‖(v, η)‖V×W ∀σ ∈ H, (v, η) ∈ V ×W,(2.6c)

sup
σ∈H
σ �=0

b(σ ; v, η)
‖σ‖H

≥cb ‖(v, η)‖V×W ∀(v, η) ∈ V ×W.

(2.6d)

We can combine the two bilinear forms a and b to a single bilinear form

d[(σ, u, γ ), (τ, v, η)] = a(σ, τ )+ b(τ ; u, γ )+ b(σ ; v, η).(2.7)

Standard arguments for saddle point problems [11, Lemma 2.9 and Lemma
2.10] and the previous lemma then imply the following stability estimate:
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Lemma 2.2 Set

cD =
√

2 max{1, 1

µ
}, cd = 1√

5
min{ca, µc2

b√
2µ2c2

b + 8
}.

Then d satisfies the estimates

sup
(τ,v,η)�=0

sup
(σ,u,γ )�=0

d[(σ, u, γ ), (τ, v, η)]

‖(σ, u, γ )‖H×V×W ‖(τ, v, η)‖H×V×W
≤ cD(2.8a)

inf
(τ,v,η)�=0

sup
(σ,u,γ )�=0

d[(σ, u, γ ), (τ, v, η)]

‖(σ, u, γ )‖H×V×W ‖(τ, v, η)‖H×V×W
≥ cd(2.8b)

Thanks to this stability result, all forthcoming constants are independent
of the Lamé parameter λ. Hence, the corresponding estimates are robust for
nearly incompressible materials.

3 PEERS and BDMS elements

Let Th be an admissible and shape-regular triangulation of�, with regularity
parameter κ = suph maxT ∈Th

hT
ρT

. Here hT denotes the diameter of T and ρT
is the diameter of the largest ball inscribed into T . Given an element T of Th
we denote by λ0, . . . , λd its barycentric coordinates and introduce the bubble
function ψT = (d + 1)d+1 ∏d

i=0 λi .
As usual the operator curl is defined by

curl u = ∇ × u if u : � → R
3

curl f = (∂yf,−∂xf ) if f : � → R

curl u = ∂xu2 − ∂yu1 if u : � → R
2.

Using these definitions we set

Bk(T ) = {(σij ) ∈ R
d×d | (σi1, . . . , σid) = curl(ψT wi), wi ∈ Pk(T )

l,

i = 1, . . . , d, l = 2d − 3}.

(3.1)
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Definition 3.1 (Arnold, Brezzi, Douglas [2]) The plane elasticity element
with reduced symmetry, called PEERS, is defined by

RT0(T ) ={w ∈ L2(T )d |w = a + bx, a ∈ R
d, b ∈ R,

x = (x1, . . . , xd)
T },(3.2a)

Hh ={σh ∈ H | σh|T ∈ RT0(T )
d ⊕ B0(T ), T ∈ Th,

σh · n = 0 on �N },(3.2b)

Vh ={vh ∈ V | vh|T ∈ P0(T )
d, T ∈ Th},(3.2c)

Wh ={ηh ∈ W ∩ C(�)d×d | ηh|T ∈ P1(T )
d×d, T ∈ Th},(3.2d)

PEERS =Hh × Vh ×Wh.(3.2e)

Definition 3.2 (Stenberg [13]) For k ≥ 2 the BDMS-element is defined by

BDMk(T ) =Pk(T )
d,(3.3a)

Hh ={σh ∈ H | σh|T ∈ BDMk(T )
d ⊕ Bk−1(T ), T ∈ Th,

σh · n = 0 on �N },(3.3b)

Vh ={vh ∈ V | vh|T ∈ Pk−1(T )
d, T ∈ Th},(3.3c)

Wh ={ηh ∈ W | ηh|T ∈ Pk(T )
d×d, T ∈ Th},(3.3d)

BDMSk =Hh × Vh ×Wh.(3.3e)

Remark 3.3. For both elements, the space Wh is isomorphic to the space
{ϕ |ϕ|T ∈ Pk(T )

l, T ∈ Th, l = 2d − 3}. The corresponding isomorphism is
given by

I2 : ϕ →
(

0 −ϕ
ϕ 0

)
if d = 2,

I3 :


ϕ1

ϕ2

ϕ3


 →


 0 ϕ1 ϕ2

−ϕ1 0 ϕ3

−ϕ2 −ϕ3 0


 if d = 3.

Denote by Zh = {σ ∈ Hh | b(σ ; v, η) = 0, ∀(v, η) ∈ Vh ×Wh} the ker-
nel of b in these finite element spaces. The following estimates for PEERS
are established in [2]

a(σ, σ ) ≥cPEERSa ‖σ‖2
H ∀σ ∈ Zh,(3.4a)

sup
σ∈Hh\{0}

b(σ ; v, η)
‖σ‖H

≥cPEERSb ‖(v, η)‖V×W ∀(v, η) ∈ Vh ×Wh.(3.4b)

Hence there exists a unique solution (σh, uh, γh) ∈ PEERS of the discrete
problem (2.3).

In [12] we have established similar estimates for BDMSk with corre-
sponding constants cBDMSa and cBDMSb . Again, this proves the unique sov-
ability of the discrete problem.
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As in the analytic case we obtain an inf-sup-condition for the bilinear
form d with respect to the finite dimensional spaces.

4 A residual a posteriori error estimator

Following the techniques presented in [14] we use the bilinear form d defined
in (2.7) to derive a reliable and efficient a posteriori error estimator, which is
robust for nearly incompressible materials. In order to circumvent the diffi-
culties that are due to the anisotropy of the H(div)-norm (cf. [5]), we adopt
the suggestion of Alonso [1] and Carstensen [7] and use a Helmholtz decom-
position for the stress tensors. In contrast to Carstensen’s error estimator for
the BDMS element [8] we obtain estimates which use the same norm for
the upper and lower bound of the estimator.

In the following (σ, u, γ ) and (σh, uh, γh) are the solutions of the ana-
lytical (2.3) respectively the discretized problem using PEERS or BDMS
elements. We denote by eσ = σ − σh, eu = u − uh and eγ = γ − γh the
corresponding errors.

4.1 The residual

We define the residual R(eσ , eu, eγ ) as a linear functional onH ×V ×W by
〈
R(eσ , eu, eγ ), (τ, v, η)

〉 = d[(eσ , eu, eγ ), (τ, v, η)].(4.1)

Here 〈·, ·〉 denotes the duality pairing between the corresponding spaces.
Obviously the following Galerkin orthogonality holds

〈
R(eσ , eu, eγ ), (τ, v, η)

〉 = 0 ∀(τ, v, η) ∈ Hh × Vh ×Wh.(4.2)

In order to derive an a posteriori error estimator, we need an L2-represen-
tation of the residual. Denoting the inner product of L2 by (·, ·), we derive
from (2.3):

(4.3)〈
R(eσ , eu, eγ ), (τ, v, η)

〉
= (C−1eσ , τ )+ (div τ, eu)+ (τ, eγ )+ (div eσ , v)+ (eσ , η)

= −(C−1σh, τ )− (div τ, uh)− (τ, γh)+ (div eσ , v)+ (eσ , η)

= −(C−1σh, τ )− (div τ, uh)− (τ, γh)

− (f, v)− (div σh, v)− (as σh, η)

= −(C−1σh + γh, τ )− (div τ, uh)− (f + div σh, v)− (as σh, η).
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Since the stress tensors are in L2(�)d×d they admit a Helmholtz decom-
position rowwise. For its description we introduce the space

� =
{

{ψ ∈ H 1(�) : ψ |�D = 0, ψ |�N = c} if d = 2,

{ψ ∈ H 1(�)3 : divψ = 0, curlψ · n|� = 0} if d = 3.

Here, c is an arbitrary constant, if �D and �N consist of disjoint connected
components, and equals 0 otherwise. Then the rowwise Helmholtz decom-
position of a tensor τ is given by (cf. [10, §3])

τ = Gτ + curlRτ with Gτ = grad G̃τ(4.4)

where G̃τ ∈ (H 1(�)/R)d and Rτ ∈ �d . The proof of the upper bound on
the error requires a certain regularity of this decomposition. More precisely,
we have to assume that the estimates

|Rτ |1 ≤ ‖τ‖L2(�)(4.5a) ∣∣∣G̃τ
∣∣∣
2

≤ C ‖div τ‖L2(�)(4.5b)

hold for all tensors τ ∈ H , where |·|1 and |·|2 denote theH 1 respectivelyH 2-
seminorm. This regularity assumption is satisfied if the boundary� is of class
C1,1 or if� is a convex polyhedron. (Note that the assumption G̃τ ∈ H 2(�)

is the critical one.)
We know from [12] that there exists an interpolation operator�h : H →

Hh, that fullfills a “commuting diagram property” (c.d.p.)

(div τ, uh) = (div�hτ, uh) ∀τ ∈ H, uh ∈ Vh,(4.6)

and the error estimate

‖τ −�hτ‖L2(T ) ≤ c�hT |τ |H 1(T ) .(4.7)

Moreover, the relation

∫
E

n(τ −�hτ)vh = 0 ∀τ ∈ H, vh ∈ Vh(4.8)
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holds for all edges respectively faces E. Using this operator we can write the
first two terms of (4.3) as follows

(4.9)

− (C−1σh + γh, τ )− (div τ, uh)

= −(C−1σh + γh,Gτ)− (C−1σh + γh, curlRτ)− (divGτ, uh)

− (div curlRτ, uh)︸ ︷︷ ︸
=0

= −(C−1σh + γh,Gτ)− (C−1σh + γh, curlRτ)− (div�hGτ, uh)︸ ︷︷ ︸
c.d.p.

= (C−1σh + γh, (�h − Id)Gτ)− (C−1σh + γh, curlRτ)

= (C−1σh + γh − grad uh, (�h − Id)Gτ)− (C−1σh + γh, curlRτ)

+ (grad uh, (�h − Id)Gτ)︸ ︷︷ ︸
=0

= (C−1σh + γh − grad uh, (�h − Id)Gτ)− (C−1σh + γh, curlRτ).

Equations (4.3) and (4.9) and integration by parts elementwise yield the fol-
lowing L2-representation of the residual

(4.10)〈
R(eσ , eu, eγ ), (τ, v, η)

〉
= (C−1σh + γh − grad uh, (�h − Id)Gτ)− (C−1σh + γh, curlRτ)

− (f + div σh, v)− (σh, η)

= (C−1σh + γh − grad uh, (�h − Id)Gτ)

− (f + div σh, v)− (as σh, η)

−
∑
T ∈Th

(curl(C−1σh + γh), Rτ)T −
∑
E∈Eh

([γt (C
−1σh + γh)]E,Rτ)E.

Here, γt is the trace operator in tangential direction, [·]E denotes the jump
across an edge respectively face E and Eh is the set of all interior edges
respectively faces of the triangulation.

4.2 The case µ = 1

In a first step we give an error estimate for the case that the Lamé parameter
µ equals 1. A scaling argument will then yield a similar estimate for arbitrary
µ.
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4.2.1 Upper bound We denote with Ih Clément’s interpolation operator [9]
and set ηh = 0, vh = 0 and τh = curl IhRτ . Invoking the Galerkin orthogo-
nality we obtain

(4.11)〈
R(eσ , eu, eγ ), (τ, v, η)

〉
= 〈
R(eσ , eu, eγ ), (τ − τh, v − vh, η − ηh)

〉
= −(C−1σh + γh − grad uh, (Id −�h)Gτ)− (f + div σh, v)− (σh, η)

−
∑
T ∈Th

(curl(C−1σh + γh), (Id − Ih)Rτ)T

−
∑
E∈Eh

([γt (C
−1σh + γh)]E, (Id − Ih)Rτ)E.

Due to (4.7) and (4.5) we have

‖(Id −�h)Gτ‖0,T ≤ c�hT |Gτ |1,T = c�hT

∣∣∣G̃τ
∣∣∣
2,T
,

where ‖.‖0;T and |.|k,T denote the L2(T )-norm and the Hk(T )-seminorm
respectively.

The error estimates for Clément’s interpolation operator and (4.5) yield

‖(Id − Ih)Rτ‖0,T ≤ cIhT |Rτ |1,ω̃T
‖(Id − Ih)Rτ‖0,E ≤ cIh

1
2
T |Rτ |1,ω̃E .

Here, the domains ω̃T and ω̃E consist of the union of all elements that share
at least a vertex with T respectively E and ‖.‖0,E denotes the L2(E)-norm.

These estimates and the Cauchy-Schwarz inequalities for integrals and
sums imply that

∣∣〈R(eσ , eu, eγ ), (τ, v, η)〉∣∣
≤

{∑
T ∈Th

∥∥C−1σh + γh − grad uh
∥∥

0,T c�hT

∣∣∣G̃τ
∣∣∣
2,T

+
∑
T ∈Th

‖f + div σh‖0,T ‖v‖0,T +
∑
T ∈Th

‖as σh‖0,T ‖η‖0,T

+
∑
T ∈Th

∥∥curl(C−1σh + γh)
∥∥

0,T cIhT |Rτ |1,ω̃T

+
∑
E∈Eh

∥∥[γt (C
−1σh + γh)]

∥∥
0,E cIh

1
2
T |Rτ |1,ω̃E

}
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≤ c
{∑
T ∈Th

(‖div σh + f ‖2
0,T + ‖as σh‖2

0,T

+h2
T

∥∥C−1σh + γh − grad uh
∥∥2

0,T + h2
T

∥∥curl(C−1σh + γh)
∥∥2

0,T

+
∑
E∈∂T

hE
∥∥[γt (C

−1σh + γh)]
∥∥2

0,E

)2
} 1

2

{∣∣∣G̃τ
∣∣∣2

2
+ |Rτ |21 + ‖v‖2

0 + ‖η‖2
0

} 1
2

≤ c′
{∑
T ∈Th

(‖div σh + f ‖2
0,T + ‖as σh‖2

0,T

+h2
T

∥∥C−1σh + γh − grad uh
∥∥2

0,T + h2
T

∥∥curl(C−1σh + γh)
∥∥2

0,T

+
∑
E∈∂T

hE
∥∥[γt (C

−1σh + γh)]
∥∥2

0,E

)2
} 1

2 ‖(τ, v, η)‖H×V×W .

In the second step we have used the fact that the domains ω̃T and ω̃E only
consist of a finite number of elements, this number being bounded by the
regularity parameter κ .

These estimates and the inf-sup-condition for the bilinear form d finally
yield

cd
∥∥(eσ , eu, eγ )∥∥H×V×W(4.12)

≤ sup
(τ,v,η)�=0

∣∣〈R(eσ , eu, eγ ), (τ, v, η)〉∣∣
‖(τ, v, η)‖H×V×W

≤ c
{∑
T ∈Th

(‖div σh + fh‖2
0,T + ‖as σh‖2

0,T

+h2
T

∥∥C−1σh + γh − grad uh
∥∥2

0,T

+h2
T

∥∥curl(C−1σh + γh)
∥∥2

0,T

+
∑
E∈∂T

hE
∥∥[γt (C

−1σh + γh)]
∥∥2

0,E

)2
} 1

2

+c ‖f − fh‖V .
As usual in a posteriori error analysis, we have replaced the function f by
a suitable finite element approximation fh, e.g., the L2-projection of f into
Vh.

4.2.2 Lower bound To prove the converse of inequality (4.12) we estimate
each residual term separately by inserting suitable local test-functions in (2.3).
To this end we denote by ψE the product of the affine nodal shape functions
corresponding to the vertices of a given edge respectively face E multiplied
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by dd . The support ωE of ψE then consists of the two elements that share E.
The following lemma is the special case p = 2 of [14, Lemma 3.3].

Lemma 4.1 The following estimates hold for all elementsT , all edges respec-
tively faces E of T , and all polynomials v and ρ defined on T respectively
E:

‖v‖2
0,T ≤c1 (v, ψT v)T ,(4.13a)

‖ρ‖2
0,E ≤c2 (ρ, ψEρ)E ,(4.13b)

‖grad(ψT v)‖0,T ≤c3h
−1
T ‖v‖0,T ,(4.13c)

‖grad(ψEρ)‖0,T ≤c4h
−1
E ‖ψEρ‖0,T ,(4.13d)

‖ψEρ‖0,T ≤c5h
1
2
E ‖ρ‖0,E .(4.13e)

Here, the polynomial ρ is continued to a polynomial on the whole space in the
canonical way. The constants c1, . . . , c5 depend on the polynomial degree of
v and ρ and on the shape parameter κ .

The weak formulation (2.3) immediately implies

‖div σh + fh‖0,T + ‖as σh‖0,T(4.14)

≤ ‖div σh + f ‖0,T + ‖as σh‖0,T + ‖f − fh‖0,T
= ‖div eσ‖0,T + ‖as eσ‖0,T + ‖f − fh‖0,T
= ‖div eσ‖0,T + 2 ‖eσ‖0,T + ‖f − fh‖0,T

≤ 2
√

2 ‖eσ‖H,T + ‖f − fh‖0,T .

Set ρT = ψT (C
−1σh + γh − grad uh). Since µ = 1 we conclude from (2.6)

and lemma 4.1 that

c−1
1

∥∥C−1σh + γh − grad uh
∥∥2

0,T

≤ (
C−1σh + γh − grad uh, ρT

)
= (

C−1σh + γh, ρT
) + (uh, div ρT )

= a(σh, ρT )+ b(ρT ; uh, γh)
= −a(eσ , ρT )− b(ρT ; eu, eγ )
≤ ‖eσ‖0,T ‖ρT ‖0,T + ‖eu‖0,T ‖div ρT ‖0,T + ∥∥eγ∥∥0,T

‖ρT ‖0,T

≤ ‖eσ‖0,T ‖ρT ‖0,T + c3h
−1
T ‖eu‖0,T ‖ρT ‖0,T + ∥∥eγ∥∥0,T

‖ρT ‖0,T

≤
√

2 + c2
3h

−2
T

∥∥(eσ , eu, eγ )∥∥0,T

∥∥C−1σh + γh − grad uh
∥∥

0,T .

Dividing by h−1
T

∥∥C−1σh + γh − grad uh
∥∥

0,T this yields

hT
∥∥C−1σh + γh − grad uh

∥∥
0,T(4.15)

≤ c1

√
2 + c2

3h
−2
T hT

∥∥(eσ , eu, eγ )∥∥0,T .
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Next we set ρT = ψT curl(C−1σh + γh) and obtain

c−1
1

∥∥curl(C−1σh + γh)
∥∥2

0,T

≤ (
curl(C−1σh + γh), ρT

)
0,�

= (
C−1σh + γh, curl ρT

)
0,�

= a(σh, curl ρT )+ b(curl ρT ; uh, γh)
= −a(eσ , curl ρT )− b(curl ρT ; eu, eγ )
≤ ‖eσ‖0,T ‖curl ρT ‖0,T + ‖curl ρT ‖0,T

∥∥eγ∥∥0,T

≤ c4h
−1
T

√
2
{ ‖eσ‖2

0,T + ∥∥eγ∥∥2
0,T

} 1
2 ‖ρT ‖0,T

≤ c4h
−1
T

√
2

∥∥(eσ , eu, eγ )∥∥0,T

∥∥curl(C−1σh + γh)
∥∥

0,T .

Division by h−1
T

∥∥curl(C−1σh + γh)
∥∥

0,T yields

hT
∥∥curl(C−1σh + γh)

∥∥
0,T ≤ c1c3

√
2

∥∥(eσ , eu, eγ )∥∥0,T .(4.16)

Now we insert ρE = ψE[γt (C−1σh + γh)]E in (2.3) and apply lemma 4.1
with ρ = [γt (C−1σh + γh)]E . This yields

c−1
2

∥∥[γt (C
−1σh + γh)]E

∥∥2

0,E

≤ (
[γt (C

−1σh + γh)]E, ρE
)

0,E

=
∑
T ∈ωE

{− (
curl(C−1σh + γh), ρE

)
0,T + (

C−1σh + γh, curl ρE
)

0,T

}

=
∑
T ∈ωE

− (
curl(C−1σh + γh), ρE

)
0,T

−a(eσ , curl ρE)− b(curl ρE; eu, eγ )
≤

∑
T ∈ωE

{∥∥curl(C−1σh + γh)
∥∥

0,T
‖ρE‖0,T

+ ‖eσ‖0,T ‖curl ρE‖0,T + ∥∥eγ∥∥0,T
‖curl ρE‖0,T

}
≤

∑
T ∈ωE

{
c1c3

√
2h−1

T

∥∥(eσ , eu, eγ )∥∥0,T
‖ρE‖0,T

+c4h
−1
T ‖eσ‖0,T ‖ρE‖0,T + c4h

−1
T

∥∥eγ∥∥0,T
‖ρE‖0,T

}

≤ c6h
− 1

2
T

∑
T ∈ωE

{
c1c3

√
2

∥∥(eσ , eu, eγ )∥∥0,T
‖ρE‖0,E

+c4c5 ‖eσ‖0,T ‖ρE‖0,E + c4c5

∥∥eγ∥∥0,T
‖ρE‖0,E

}
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≤ c6(c1c3

√
2 + 2c4c5)h

− 1
2

T ‖ρE‖0,E

∑
T ∈ωE

∥∥(eσ , eu, eγ )∥∥0,T

≤ c6(c1c3

√
2 + 2c4c5)

√
2

∥∥(eσ , eu, eγ )∥∥0,ωE

×h− 1
2

T

∥∥[γt (C
−1σh + γh)]E

∥∥
0,E .

Dividing by h
− 1

2
T

∥∥[γt (C−1σh + γh)]E
∥∥

0,E this gives

h
1
2
T

∥∥[γt (C
−1σh + γh)]E

∥∥
0,E(4.17)

≤ c2c6(c1c3

√
2 + 2c4c5)

√
2

∥∥(eσ , eu, eγ )∥∥0,ωE
.

Combining the previous estimates we finally arrive at the lower bound
{∑
T ∈Th

(‖div σh + fh‖2
0,T + ‖as σh‖2

0,T(4.18)

+h2
T

∥∥C−1σh + γh − grad uh
∥∥2

0,T

+h2
T

∥∥curl(C−1σh + γh)
∥∥2

0,T

+
∑
E∈∂T

hE
∥∥[γt (C

−1σh + γh)]
∥∥2

0,E

)2
} 1

2

≤ C
∥∥(eσ , eu, eγ )∥∥H×V×W + ‖f − fh‖V

with a constant C independent of h and λ.

4.3 Arbitrary µ

In order to extend our results to arbitrary µ we consider the scaling

σ̄ = 1
µ
σ, σ̄h = 1

µ
σh,

ū = u, ūh = uh,

γ̄ = γ, γ̄h = γh,

f̄ = 1
µ
f, f̄h = 1

µ
fh.

and define a modified bilinear form ā by

ā(σ̄ , τ ) =
∫
�

C̄−1σ̄ : τ dx C̄−1 = µC−1.

Then (σ̄ , ū, γ̄ ) and (σ̄h, ūh, γ̄h) are the solutions of the saddle point problems

ā(σ̄ , τ )+ b(τ ; ū, γ̄ ) = 0

b(σ̄ ; v, η) = −(f̄ , v)
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inH×V ×W respectivelyHh×Vh×Wh. This is the linear elasticity problem
and its discretization with Lamé parameter λ̄ = λ

µ
und µ̄ = 1. This leads to

the following definition.

Definition 4.2 The residual a posteriori error estimator ηR is defined by:

η2
R,T = 1

µ2
‖div σh + fh‖2

0,T + 1

µ2
‖as σh‖2

0,T(4.19)

+ h2
T

∥∥C−1σh + γh − grad uh
∥∥2

0,T

+ h2
T

∥∥curl(C−1σh + γh)
∥∥2

0,T

+
∑
E∈∂T

hE
∥∥[γt (C

−1σh + γh)]
∥∥2

0,E

and

ηR =
{∑
T ∈Th

η2
R,T

} 1
2
.(4.20)

The previous transformation and inequalities (4.12) and (4.18) prove the next
theorem.

Theorem 4.3 If � is a convex polyhedron and (σ, u, γ ), (σh, uh, γh) are
the solutions of (2.3) and of the associated discrete problem, then ηR is a
reliable and efficient a posteriori error estimator, which is robust for nearly
incompressible materials. There are constants c and C independent of h, λ
and µ so that the following estimates hold

c

∥∥∥( 1
µ
eσ , e)

∥∥∥
H×V×W

≤ηR + 1
µ

‖f − fh‖V ,
(4.21a)

ηR,T ≤C(∥∥∥( 1
µ
eσ , e)

∥∥∥
H×V×W(ωT )

+ 1
µ

‖f − fh‖0,T

)
.(4.21b)

Here ‖.‖H×V×W(ωT ) denotes the restriction of ‖.‖H×V×W to the domainωT ⊂
� which consists of all elements that share an edge respectively face with T .

5 Estimators based on auxiliary local problems

In this section we want to treat error estimators based on the solution of aux-
iliary problems. These are saddle point problems similar to the original one,
but based on small patches of elements. In order to ensure the reliability and
efficiency of the error estimators, we must assure that appropriate norms of
the solutions of the auxiliary problems do not depend on the diameter of the
patches. This is achieved by the following lemma.
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Lemma 5.1 The constant cd in the inf-sup-condition (2.8b) with respect to
a single element T ∈ Th does not depend on the element’s diameter hT . It
only depends on the condition number of the transformation of T onto the
reference simplex T̂ , i.e. the shape parameter hT /ρT .

Proof. The lemma is proven by transforming to the reference element, invok-
ing stability of the linear elasticity problem on the reference element and
transforming back to the element T (cf. [11] for details). ��

5.1 Local problems with neumann boundary conditions

We want to treat local auxiliary problems, which are based on a single ele-
ment T ∈ Th. Furthermore we want to impose pure Neumann boundary
conditions. Since the displacement of a linear elasticity problem with pure
Neumann boundary conditions is unique only up to rigid body motions, we
must factor out the rigid body motions of the element T . These are given by

RT =
{

{v ∈ (L2(T ))2 | v = (a, b)+ c(−x2, x1), a, b, c ∈ R} if d = 2,

{v ∈ (L2(T ))3 | v = a + b × x, a, b ∈ R
3} if d = 3.

(5.1)

The bilinear form a is still coercive and we obtain the following inf-sup-con-
dition for b

inf
u∈V/RT
γ∈W

sup
σ∈H

b(σ ; u, γ )
‖σ‖H ‖(u, γ )‖V/RT×W

≥ cb.

We split Vh(T ) into the rigid body motions RT and the remaining part Ṽh(T )

Vh(T ) = RT ⊕ Ṽh(T ), Ṽh(T ) = Vh(T )/RT .

Using this decomposition we define

BDMSl(T ) = Hh(T )× Ṽh ×Wh(T ),

where l ≥ 2 is the polynomial degree in the finite element spaces.
Since the error (eσ , eu, eγ ) ∈ H × V ×W is a solution of

a(eσ , τ )+ b(τ ; eu, eγ ) = −a(σh, τ )− b(τ ; uh, γh)(5.2a)

b(eσ ; v, η) = −(f, v)− b(σh; v, η)(5.2b)

for all (τ, v, η) ∈ H × V × W , we consider the following auxiliary local
problem: Find (σT , uT , γT ) ∈ BDMSl(T ) such that

a(σT , τ )+ b(τ ; uT , γT ) = −a(σh, τ )− b(τ ; uh, γh),(5.3a)

b(σT ; v, η) = −(fh, v)− b(σh; v, η)(5.3b)

holds for all (τ, v, η) ∈ BDMSl(T ).



772 M. Lonsing, R. Verfürth

The coercivity of a and the inf-sup-condition for b immediately imply:

Proposition 5.2 Problem (5.3) admits a unique solution.

Definition 5.3 We define the a posteriori error estimator ηlN by:

ηlN,T =
∥∥∥( 1

µ
σT , uT , γT )

∥∥∥
H×V×W(T )

,(5.4a)

ηlN = (∑
T ∈Th

ηlN,T
2) 1

2 .(5.4b)

Here ‖.‖H×V×W(T ) denotes the restriction of ‖.‖H×V×W to T .

Remark 5.4. In order to implement the error estimator ηlN one has to con-
struct a basis for the space Ṽh(T ). This can be achieved by taking the standard
basis of Vh(T ) and dropping those degrees of freedom that belong to the rigid
body motions. Afterwards one has to compute the stiffness matrix for each
element T ∈ Th and solve the associated local auxiliary problems.

Theorem 5.5 Assume that � is a convex polyhedron, that the discretization
consists of BDMS elements with polynomial degree k ≥ 2, and that the
polynomial degree l of the auxiliary problem (5.3) satisfies l ≥ k+ 2d. Then
ηlN is a robust, reliable and efficient a posteriori error estimator. There are
constants c and C, independent of h, λ and µ such that:

c

∥∥∥( 1
µ
eσ , e)

∥∥∥
H×V×W

≤ηlN + 1
µ

‖f − fh‖V ,
(5.5a)

ηlN,T ≤ C
(∥∥∥( 1

µ
eσ , e)

∥∥∥
H×V×W(T )

+ 1
µ

‖f − fh‖0,T

)
.(5.5b)

It is sufficient to prove this theorem for the case µ = 1. The same scaling as
for the residual error estimator yields the assertion for arbitrary µ.

Lemma 5.6 Ifµ = 1 and l ≥ k+2d then ηlN,T and ηlN yield local and global
lower bounds for the error

∥∥(eσ , eu, eγ )∥∥H×V×W(T ). We obtain the estimates

ηlN,T ≤ C
(∥∥(eσ , eu, eγ )∥∥H×V×W(T ) + ‖f − fh‖0,T

)
,(5.6a)

ηlN ≤
√

2C
(∥∥(eσ , eu, eγ )∥∥H×V×W + ‖f − fh‖V

)
.(5.6b)

The constant C depends on the regularity parameter κ but does not depend
on the diameter hT nor on the Lamé parameter λ.
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Proof. This lemma follows directly from the inf-sup condition (2.8b)

cdη
l
N,T = cd ‖(σT , uT , γT )‖H×V×W(T )

≤ sup
(τ,v,η)∈BDMSl(T )‖τ,v,η‖H×V×W=1

(
a(σT , τ )+ b(τ ; uT , γT )+ b(σT ; v, η))

= sup
(τ,v,η)∈BDMSl(T )‖τ,v,η‖H×V×W=1

(
a(σh, τ )+ b(τ ; uh, γh)− (fh, v)− b(σh; v, η)

)

= sup
(τ,v,η)∈BDMSl(T )‖τ,v,η‖H×V×W=1

(
a(σh, τ )+ b(τ ; uh, γh)− (f, v)+ (f − fh, v)

− b(σh; v, η)
)

= sup
(τ,v,η)∈BDMSl(T )‖τ,v,η‖H×V×W=1

(
a(eσ , τ )

+ b(τ ; eu, eγ )+ b(eσ ; v, η)+ (f − fh, v)
)
.

Invoking the continuity of a and b and Hölder’s inequality this yields

ηlN,T ≤ c−1
d

√
2
(∥∥(eσ , eu, eγ )∥∥H×V×W(T ) + ‖f − fh‖0,T

)
.

The global bound is an immediate consequence of the local one. ��
In order to establish the reliability of the estimator, we prove that ηlN,T is
an upper bound for the terms in ηR,T . Invoking (4.12) this will complete the
proof of theorem 5.5.

Lemma 5.7 If µ = 1 and l ≥ k + 2d, the following estimates holds

‖div σh + fh‖2
0,T + ‖as σh‖2

0,T ≤2c1 η
l
N,T ,(5.7a)

hT
∥∥C−1σh + γh − grad uh

∥∥
0,T ≤c1

√
2h2

T + c2
3 η

l
N,T ,(5.7b)

hT
∥∥curl(C−1σh + γh)

∥∥
0,T ≤c1c3

√
2 ηlN,T ,(5.7c)

h
1
2
E

∥∥[γt (C
−1σh + γh)]

∥∥
0,E ≤2c2(c1c3 + c4)c5

{ ∑
T⊂ωE

ηlN,T
2
} 1

2
.(5.7d)

Proof. We consider the local test-function

(0, vT , ηT ) = (0, ψT (div σh + fh), 2ψT as σh).

Since (div σh + fh) ∈ Vh we have vT ∈ Pk+d and as σh ∈ Pk+d−1, hence
ηT ∈ Pk+2d . The condition l ≥ k + 2d therefore implies (0, vT , ηT ) ∈
BDMSl(T ). Since vT vanishes on the boundary of T , we have vT ∈ Ṽh and
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thus (0, vT , ηT ) ∈ BDMSl(T ). Hence we can insert (0, vT , ηT ) as a test
function in the auxiliary problem. Invoking lemma 4.1 we obtain

‖(div σh + fh, as σh)‖2
V×W(T ) = ‖div σh + fh‖2

0,T + ‖as σh‖2
0,T

≤ c1
(∫
T

(div σh + fh) · vT dx

+
∫
T

σh : ηT dx
)

= c1
(
(fh, vT )+ b(σh; vT , ηT )

)
= c1 |b(σT ; vT , ηT )| .

The continuity of b and ψT ≤ 1 yield

|b(σT ; vT , ηT )| ≤ ‖σT ‖0,T ‖(vT , ηT )‖V×W(T )
≤ 2ηlN,T ‖(div σh + fh, as σh)‖V×W(T ) .

Division by ‖(div σh + fh, as σh)‖V×W(T ) on both sides of the inequality
proves the first estimate.

For the second estimate we consider the local test-function

(τT , 0, 0) = (ψT (C
−1σh + γh − grad uh), 0, 0).

We have τT ∈ Pk+2d and therefore (τT , 0, 0) ∈ BDMSl(T ). With lemma 4.1
and integration by parts in the second term we get∥∥C−1σh + γh − grad uh

∥∥2

0,T

≤ c1
(∫
T

C−1σh : τT dx −
∫
T

grad uh : τT dx +
∫
T

γh : τT dx
)
,

= c1
(
a(σh, τT )+ b(τT ; uh, γh)

)
.

The definition of the auxiliary problem (5.3) and the continuity of a and b
imply∥∥C−1σh + γh − grad uh

∥∥2

0,T

≤ c1
(
a(σT , τT )+ b(τT ; uT , γT )

)
≤ c1

(‖σT ‖0,T ‖τT ‖0,T + ‖div τT ‖0,T ‖uT ‖0,T + ‖τT ‖0,T ‖γT ‖0,T

)
≤ c1

(‖σT ‖0,T ‖τT ‖0,T + c3h
−1
T ‖τT ‖0,T ‖uT ‖0,T + ‖τT ‖0,T ‖γT ‖0,T

)

≤ c1

√
2 + c2

3h
−2
T ‖(σT , uT , γT )‖H×V×W(T ) ‖τT ‖0,T .

Using the definition of τT and ηlN,T and the fact that |ψT | ≤ 1 we obtain
∥∥C−1σh + γh − grad uh

∥∥2

0,T

≤ c1

√
2 + c2

3h
−2
T

∥∥C−1σh + γh − grad uh
∥∥

0,T η
l
N,T .

Division by h−1
T

∥∥C−1σh + γh − grad uh
∥∥ proves the second estimate.
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Next we set τT = ψT curl(C−1σh+γh) and have (τT , 0, 0) ∈ BDMSl(T ).
Lemma 4.1, integration by parts and the definition of the auxiliary problem
(5.3) yield

∥∥curl(C−1σh + γh)
∥∥2

0,T ≤ c1

∫
T

curl(C−1σh + γh) : τT dx

= c1

∫
T

(C−1σh + γh) : curl τT dx

= c1
(
a(σh, curl τT )+ b(curl τT ; uh, γh)

)
= c1

(
a(σT , curl τT )+ b(curl τT ; uT , γT )

)
.

The continuity of a and b and |ψT | ≤ 1 imply

∥∥curl(C−1σh + γh)
∥∥2

0,T ≤ c1
(‖σT ‖0,T ‖curl τT ‖0,T + ‖curl τT ‖0,T ‖γT ‖0,T

)
≤ c1

√
2 ‖(σT , 0, γT )‖H×V×W(T ) ‖curl τT ‖0,T

≤ c1

√
2c3h

−1
T ‖τT ‖0,T η

l
N,T

≤ c1c3

√
2h−1

T

∥∥curl(C−1σh + γh)
∥∥

0,T η
l
N,T .

Division by h−1
T

∥∥curl(C−1σh + γh)
∥∥

0,T establishes the third estimate.
Finally we consider an element T and an edge respectively faceE thereof

and set τE = ψEγt [C−1σh + γh]E . Here the polynomial [C−1σh + γh]E is
continued to the whole space in the canonical way. Due to the assumption on
the polynomial degree l we have (curl τE, 0, 0) ∈ BDMSl(T ). Integration
by parts and lemma 4.1 yield

∥∥[γt (C
−1σh + γh)]E

∥∥2

0,E

≤ c2

∫
E

[γt (C
−1σh + γh)]E : τE ds

= c2
(−

∫
ωE

curl(C−1σh + γh) : τE dx +
∫
ωE

(C−1σh + γh) : curl τE dx
)
.

The first term can be estimated by invoking the Cauchy-Schwarz inequality
and the fourth estimate of lemma 4.1
∫
ωE

curl(C−1σh + γh) : τE dx ≤
{ ∑
T⊂ωE

∥∥curl(C−1σh + γh)
∥∥2

0,T

} 1
2 ‖τE‖0,ωE

≤
{ ∑
T⊂ωE

(c1c3

√
2 h−1

T η
l
N,T )

2
} 1

2 ‖τE‖0,ωE

≤ c1c3

√
2 h−1

T

{ ∑
T⊂ωE

ηlN,T
2
} 1

2 ‖τE‖0,ωE .
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Using once again lemma 4.1 we obtain∫
ωE

curl(C−1σh + γh) : τE dx

≤ c1c3

√
2 h−1

T

{ ∑
T⊂ωE

ηlN,T
2
} 1

2
c5

√
2hT

∥∥[γt (C
−1σh + γh)]E

∥∥
0,E

≤ 2c1c3c5 h
− 1

2
T

{ ∑
T⊂ωE

ηlN,T
2
} 1

2 ∥∥[γt (C
−1σh + γh)]E

∥∥
0,E .

Invoking the continuity of a and b and lemma 4.1 the second term can be
estimated by∫

ωE

(C−1σh + γh) : curl τE dx

= a(σh, curl τE)+ b(curl τE; uh, γh)
=

∑
T⊂ωE

a(σT , curl τE)+ b(curl τE; uT , γT )

≤
∑
T⊂ωE

‖σT ‖0,T ‖curl τE‖0,T + ‖curl τE‖0,T ‖γT ‖0,T

≤
√

2 ‖curl τE‖0,ωE

( ∑
T⊂ωE

ηlN,T
2) 1

2

≤ 2c4c5h
− 1

2
T

{ ∑
T⊂ωE

ηlN,T
2} 1

2
∥∥γt [C−1σh + γh]E

∥∥
0,E .

Combining these estimates and dividing by h
− 1

2
T

∥∥γt [C−1σh + γh]E
∥∥

0,E we
obtain

h
1
2
T

∥∥γt [C−1σh + γh]E
∥∥

0,E ≤ 2c2(c1c3 + c4)c5

{ ∑
T⊂ωE

ηlN,T
2
} 1

2
.(5.8)

This proves the last estimate of the lemma. ��
Lemma 5.7 proves the second estimate of theorem 5.5. Hence ηN,T is a reli-
able and efficient error estimator. Since our estimates do not depend on the
Lamé-parameter λ, this estimator is also robust for nearly incompressible
materials.

5.2 Local problems with dirichlet boundary conditions

It is also possible to impose Dirichlet boundary conditions on the auxiliary
problems. But due to the nature of these boundary conditions the local prob-
lem must be posed on a larger patch of elements. We will derive an error
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estimator which is posed on the patches ωT that consist of the union of all
elements sharing an edge respectively face with a given element T .

Proposition 5.8 For every T ∈ Th and every l ≥ k there is a unique
(σωT , uωT , γωT ) ∈ BDMSl(ωT ) such that

a(σωT , τ )+ b(τ ; uωT , γωT ) = −a(σh, τ )− b(τ ; uh, γh),(5.9a)

b(σωT ; v, η) = −(fh, v)− b(σh; v, η)(5.9b)

holds for all (τ, v, η) ∈ BDMSl(ωT ).

T̂T

F−1

ωT̂ωT

Fig. 1. The mapping of ωT onto ω
T̂

Remark 5.9. Lemma 5.1 deals only with the scaling of cd under affine trans-
formations of a single element. In order to get a reliable and efficient a posteri-
ori error estimator based on the auxiliary problem (5.9) we need an analogous
lemma with respect to domains of the type ωT . Applying an affine transfor-
mation to ωT we can map T onto the reference element T̂ . The remaining
three respectively four elements are mapped onto arbitrary elements adjacent
to T̂ . Hence we get an arbitrary patchωT̂ . Due to the regularity of the triangu-
lation Th the set of all possible patches ωT̂ is a compact set. Since cd depends
continuously on the transformation it attains its minimum c̄d on this compact
set. Obviously, this minimum is still independent of the Lamé parameter λ.

Definition 5.10 We define the a posteriori error estimator ηlD by

ηlD,T =
∥∥∥( 1

µ
σωT , uωT , γωT )

∥∥∥
H×V×W(T )

,(5.10a)

ηlD = (∑
T ∈Th

ηlD,T
2) 1

2 .(5.10b)

With the same arguments as in the previous section one can prove that
ηD,T provides a reliable and efficient a posteriori error estimator, robust with
respect to nearly incompressible materials.

Theorem 5.11 If � is a convex polyhedron and (σ, u, γ ), (σh, uh, γh) are
the solution of (2.3) respectively its discretization in BDMSk and if the
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polynomial degree l of the auxiliary local problem (5.9) fullfills l ≥ k + 2d,
then there are constants c and C, independent of h, λ, and µ, such that the
estimates

c

∥∥∥( 1
µ
eσ , e)

∥∥∥
H×V×W

≤ ηlD + 1
µ

‖f − fh‖V ,
(5.11a)

ηlD,T ≤ C
(∥∥∥( 1

µ
eσ , e)

∥∥∥
H×V×W(ωT )

+ 1
µ

‖f − fh‖0,T

)
.(5.11b)

hold.
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