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Summary. A new mixed variational formulation of the equations of station-
ary incompressible magneto–hydrodynamics is introduced and analyzed. The
formulation is based on curl-conforming Sobolev spaces for the magnetic
variables and is shown to be well-posed in (possibly non-convex) Lipschitz
polyhedra. A finite element approximation is proposed where the hydrody-
namic unknowns are discretized by standard inf-sup stable velocity-pressure
space pairs and the magnetic ones by a mixed approach using Nédélec’s
elements of the first kind. An error analysis is carried out that shows that the
proposed finite element approximation leads to quasi-optimal error bounds
in the mesh-size.

Mathematics Subject Classification (2000): 65N30

1 Introduction

Incompressible magneto-hydrodynamics (MHD) describes the flow of a vis-
cous, incompressible and electrically conducting fluid. The governing equa-
tions form a multifield problem that arises in several applications such as, for
example, liquid metals in magnetic pumps or aluminum electrolysis; we refer
to [22,24] for comprehensive accounts of the physical background of mag-
neto-hydrodynamics. Several papers have been devoted to the design and the
analysis of numerical schemes for the simulation of such fluids. We mention
here [3] for an engineering approach to the numerical solution of transient
incompressible MHD problems, with emphasis on long-term dissipativity of
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time integration. In [15], finite element methods (FEM) with suitable sta-
bilization of the bilinear forms have been proposed and analyzed for linear-
ized stationary problems in convection-dominated regimes. The recent work
[17,18] deals with a decoupled linear MHD problem involving electrically
conducting and insulating regions.

The paper [19] gives a detailed existence theory and convergence analysis
of finite element methods for nonlinear, fully coupled stationary incompress-
ible MHD problems in domains � ⊂ R

3 that are either convex or whose
boundaries are of class C1,1. The functional setting is based on the standard
Sobolev spaces H 1(�) and L2(�). The hydrodynamic variables in the equa-
tions are discretized accordingly by inf-sup stable mixed elements and the
magnetic ones by nodal, i.e., H 1-conforming, elements. The above assump-
tions on the smoothness of the boundary of the domain had to be made in order
to assure sufficient regularity of the solution for the nodal FEM to converge.
It has been known for some time, however, that in non-convex polyhedra � of
engineering practice, the magnetic field may have regularity below H 1(�)3

and that nodal FEM discretizations, albeit stable, can converge to a mag-
netic field that misses certain singular (but physical) solution components
induced by reentrant vertices or edges (for more details, see, e.g., [8] and the
references cited therein). Consequently, in non-convex polyhedra �, setting
the magnetic unknowns of the incompressible MHD equations in H 1(�)

leads to a well-posed problem where the magnetic field cannot be correctly
approximated.

This paper is devoted to the analysis and finite element approximation of
nonlinear and fully coupled MHD problems in general Lipschitz polyhedra.
To account for the possible low regularity of the magnetic field, we introduce
a new mixed variational formulation for which the magnetic field belongs to
the Sobolev space H(curl; �), as opposed to the H 1(�)-based approaches
that are employed in the works mentioned above. We first prove the existence
of solutions to this formulation and show that the solutions are unique under
standard smallness assumptions on the data (i.e., for small Reynolds numbers
and small forcing terms). Although the proof of these results is carried out
using well-known fixed point arguments developed for the stationary incom-
pressible Navier-Stokes equations, see [16,29] and the references therein,
and follows [19] in some sense, it employs technical tools for the magnetic
part of the equations that are substantially different than those in [19], owing
to the novel functional-analytic framework. In particular, suitable Helmholtz
decompositions of vector fields and the recent imbedding results from [2]
will play a crucial role in our analysis. We then propose and analyze a new
finite element approximation of the incompressible MHD equations, based
on standard inf-sup stable velocity-pressure space pairs for the hydrodynamic
variables and on a mixed formulation using Nédélec’s elements of the first
kind for the magnetic ones; see [25,26] for the definition of these elements.
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The well-posedness of the finite element formulation is established analo-
gously to the analysis of the continuous problem, by using corresponding
discrete Helmholtz decompositions and well-known results from the finite
element theory for Maxwell’s equations; see, e.g., the survey [21], the recent
monograph [23] and the references therein. Finally, we present an error analy-
sis that shows that the proposed finite element approximation leads to quasi-
optimal error bounds in the mesh-size. In the note [28], the results of this
paper have been announced and numerically confirmed for a linear MHD
problem in two dimensions.

Throughout the paper, we use standard notation. For a Lipschitz polyhe-
dron � ⊂ R

3, we denote by Lp(�), 1 ≤ p ≤ ∞, the Lebesgue space of
p-integrable functions, endowed with the norm ‖ · ‖0,p. When p = 2, we
simply write ‖ · ‖0. The standard L2-based Sobolev space with integer or
fractional regularity exponent s > 0 is denoted by Hs(�). We write ‖ · ‖s

for its norm. We define H 1
0 (�) to be the subspace of H 1(�) of functions

with zero trace on ∂�. The dual space of H 1
0 (�) is denoted by H−1(�).

Its norm is ‖ · ‖−1. For a generic function space X(�) we write X(�)3

to denote vector fields whose components belong to X(�). This space is
equipped with the usual product norm which we denote in the same way as
the norm in X(�). We use (·, ·) for the inner product in L2(�)3, and 〈·, ·〉
for the duality pairing in H−1(�)3 × H 1

0 (�)3. The spaces H(curl; �) and
H(div; �) are the spaces of vector fields c ∈ L2(�)3 with curl c ∈ L2(�)3

and div c ∈ L2(�), respectively, endowed with the graph norms ‖ · ‖curl and
‖·‖div.We denote by H0(curl; �) and H0(div; �) the subspaces of H(curl; �)

and H(div; �) of fields with zero tangential trace and normal trace on
∂�, respectively, and by H(curl0; �) and H(div0; �) the subspaces of
H(curl; �) and H(div; �) of fields with zero rotation and divergence, respec-
tively. We further set H0(div0; �) = H0(div; �) ∩ H(div0; �).

The outline of the paper is as follows. In Section 2, we introduce the
equations of incompressible magneto-hydrodynamics, propose a mixed var-
iational formulation and prove existence as well as uniqueness, under the
usual smallness assumptions on the data, of solutions. Section 3 is devoted to
a mixed finite element discretization with emphasis on existence and stability
results for the discrete formulation. Section 4 contains an error analysis of
the proposed finite element method and shows that it leads to quasi-optimal
error bounds in the mesh-size. In Section 5, we end our presentation with
concluding remarks.

2 Stationary incompressible magneto–hydrodynamics

In this section, we first review the equations of incompressible magneto-
hydrodynamics. We then introduce an auxiliary variational formulation based
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on solenoidal function spaces and establish existence and uniqueness results
in general Lipschitz polyhedra. Finally, we propose and analyze a mixed for-
mulation that incorporates the divergence constraints by the use of Lagrange
multipliers.

2.1 The equations of incompressible magneto-hydrodynamics

Let � be a bounded Lipschitz polyhedron in R
3. For simplicity, we assume

that � is simply-connected, and that its boundary ∂� is connected. We con-
sider the following incompressible MHD equations (see, e.g., [22,24] for
comprehensive accounts of the physical background of magneto-hydrody-
namics): find the velocity field u, the pressure p, the magnetic field b, and
the scalar function r satisfying

− R−1
s �u + (u · ∇)u + ∇p − Sc curl b × b = f in �,(2.1)

R−1
m Sc curl(curl b) − Sc curl(u × b) − ∇r = g in �,(2.2)

div u = 0 in �,(2.3)

div b = 0 in �.(2.4)

Here, Rs is the hydrodynamic Reynolds number, Rm the magnetic Reynolds
number, Sc the coupling number, and f ∈ H−1(�)3 and g ∈ L2(�)3 are
given source terms. We complete the above system with the homogeneous
boundary conditions

u = 0 on ∂�,

b · n = 0 on ∂�,(2.5)

n × curl b = 0 on ∂�,

where n denotes the outward normal unit vector on ∂�. The scalar functions
ρ and � will be required to have zero mean over �.

Remark 2.1 The scalar function r is the Lagrange multiplier associated to the
constraint div b = 0; see, e.g., [10,32]. Formally, by taking the divergence of
equation (2.2), we obtain −�r = div g, see Remark 2.16 below. In particular,
we have r = 0 if div g = 0. Thus, for g = 0 the MHD problem (2.1)–(2.4) is
the same as that considered in [19] or the linearized version thereof studied
in [15].

Strongly related to boundary conditions in (2.5) is the following L2(�)3–
orthogonal Helmholtz decomposition

L2(�)3 = H0(div0; �) ⊕ ∇H 1(�),(2.6)

valid under the above assumptions on the domain; see, e.g., [13, Section 4].
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Remark 2.2 Our results are also valid for another frequently used set of
boundary conditions for (2.1)–(2.4) given by

u = 0, n × b = 0, r = 0, on ∂�,

see, e.g., [19] and the references cited therein. In this case, the correspond-
ing decomposition is L2(�)3 = H(div0; �) ⊕ ∇H 1

0 (�); see [13, Section 4]
or [23, Theorem 3.45].

2.2 Solenoidal function spaces

We first introduce an auxiliary variational formulation for (2.1)–(2.4) that is
based on solenoidal function spaces. To this end, we define the space

H(�) := H(curl; �) ∩ H0(div; �),

and equip it with the norm

‖c‖2
H(�) := ‖c‖2

0 + ‖ curl c‖2
0 + ‖ div c‖2

0.

We then set

J := H 1
0 (�)3 ∩ H(div0; �), X := H(�) ∩ H(div0; �),

endowed with the norms v �→ ‖v‖1 and c �→ ‖c‖curl = (‖c‖2
0 + ‖ curl c‖2

0)
1
2 ,

respectively.
Next, we recall the following Poincaré-Friedrichs inequality in X: there

holds

‖ curl c‖0 ≥ C‖c‖0 ∀ c ∈ X,(2.7)

with a constant C > 0 solely depending on the domain �; see, e.g., [13,
Proposition 7.4] or [23, Corollary 3.51]. In view of (2.7), functions in X are
uniquely defined by their rotation, and, on X, the norm c �→ ‖ curl c‖0 is
equivalent to the norm ‖ · ‖curl.

The following imbedding results are crucial for our analysis.

Proposition 2.3 We have the following imbedding properties:

(1) The space H 1(�)3 is compactly imbedded into Lq(�)3 for any exponent
1 ≤ q < 6.

(2) There exists an exponent s = s(�) > 1
2 such that H(�) is continuously

imbedded into Hs(�)3.
(3) There exists a parameter δ1 = δ1(�) > 0 such that H(�) is compactly

imbedded into L3+δ1(�)3.
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Proof. The first imbedding is well-known; see [16, Theorem I.1.3]. The sec-
ond one follows from [2, Proposition 3.7]. To prove the third imbedding, let
s > 1

2 be such that H(�) ↪→ Hs(�)3. We may assume that s ∈ ( 1
2 , 1]. Then,

since Hs(�)3 is compactly imbedded into Lq(�)3 for any 1 ≤ q < 6
3−2s

,
see, for instance, [16, Theorem I.1.3 and Definition I.1.2], we can choose
q = 3 + δ1 for a parameter δ1 > 0 in such a way that H(�) is compactly
imbedded into Lq(�)3. ��

Next, we introduce the trilinear forms

c0(w; u, v) := 1

2

∫
�

(w · ∇)u · v dx − 1

2

∫
�

(w · ∇)v · u dx,

c1(d; v, b) := Sc

∫
�

(curl b × d) · v dx,

c2(d; u, c) := Sc

∫
�

(u × d) · curl c dx.

Remark 2.4 The form c0 is the usual anti-symmetrized form for the non-
linear term of the Navier-Stokes operator; see, e.g., [29, Section II.3.2] for
details.

The next two results show that the forms c0, c1 and c2 are well-defined.

Lemma 2.5 Let u, v, w in H 1(�)3. We have that

|c0(w; u, v)| ≤ C ‖w‖0,4 ‖u‖1 ‖v‖1 ≤ C‖w‖1 ‖u‖1 ‖v‖1,

for constants C > 0 only depending on �.

Proof. This follows from the compact imbedding H 1(�)
c

↪→ L4(�) in Prop-
osition 2.3 and Hölder’s inequality; cf. [16, Lemma IV.2.1]. ��
Lemma 2.6 Let d ∈ X, u, v ∈ H 1(�)3 and b, c ∈ H(curl; �). Let δ1 > 0
be such that H(�)

c
↪→ L3+δ1(�) according to Proposition 2.3. Then there

exists a second parameter δ2 > 0 such that

|c1(d; v, b)| ≤ Sc ‖d‖0,3+δ1‖v‖0,6−δ2‖ curl b‖0

≤ C Sc ‖d‖curl‖v‖1‖ curl b‖0,

and

|c2(d; u, c)| ≤ Sc ‖d‖0,3+δ1‖u‖0,6−δ2‖ curl c‖0

≤ C Sc ‖d‖curl‖u‖1‖ curl c‖0,

for constants C > 0 only depending on �.
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Proof. In view of the imbedding properties in Proposition 2.3, we can choose
δ2 > 0 such that 1

3+δ1
+ 1

6−δ2
= 1

2 and

H(�)
c

↪→ L3+δ1(�)3, H 1(�)3 c
↪→ L6−δ2(�)3.

For vectors x, y ∈ R
3, we have |x · y| ≤ ‖x‖ ‖y‖ and ‖x × y‖ ≤ ‖x‖ ‖y‖.

Therefore, by Hölder’s inequality,

|c1(d; v, b)| ≤ Sc

∫
�

‖d‖ ‖v‖ ‖ curl b‖ dx

≤ Sc ‖d‖0,3+δ1‖v‖0,6−δ2‖ curl b‖0.

The above imbeddings and the fact that ‖d‖H(�) = ‖d‖curl for d ∈ X give
the assertion for c1. The proof for c2 is analogous. ��

Moreover, we recall the following skew-symmetry properties.

Lemma 2.7 The following results hold:

(1) Let w, v ∈ H 1(�)3. Then we have

c0(w; v, v) = 0.

(2) Let d ∈ X, v ∈ H 1(�)3 and c ∈ H(curl; �). Then we have

c1(d; v, c) + c2(d; v, c) = 0.

Proof. The first result is obvious. The second property follows from the fact
that (x × y) · z = −(z × y) · x for vectors x, y, z ∈ R

3. ��
By introducing the bilinear forms

as(u, v) := R−1
s

∫
�

∇u : ∇v dx,

am(b, c) := R−1
m Sc

∫
�

curl b · curl c dx,

we are ready to define an auxiliary variational formulation for (2.1)–(2.4)
that is based on the solenoidal spaces J and X.

Formulation 2.8 Find (u, b) ∈ J × X such that

as(u, v) + c0(u; u, v) − c1(b; v, b) = 〈f, v〉,
am(b, c) − c2(b; u, c) = (g, c)

for all (v, c) ∈ J × X.

Remark 2.9 Note that, due to the use of solenoidal function spaces, both the
pressure p and the potential r have been eliminated from the equations and
do not appear in the auxiliary variational problem in Formulation 2.8.
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Remark 2.10 If we decompose the source term g ∈ L2(�)3 into g = g0+∇ϕ,
with g0 ∈ H0(div0; �) and ϕ ∈ H 1(�), according to (2.6), we have that
(g, c) = (g0, c) for all c ∈ X. Thus, the gradient part ∇ϕ in the decompo-
sition of g does not appear in Formulation 2.8. A similar remark applies to
the source term f .

For the purpose of our analysis, it will be convenient to rewrite the varia-
tional problem in Formulation 2.8 in the compact form: find (u, b) ∈ J × X
such that

A(u, b; v, c) + C(u, b; u, b; v, c) = L(v, c)(2.8)

for all (v, c) ∈ J × X. Here,

A(u, b; v, c) := as(u, v) + am(b, c),

C(w, d; u, b; v, c) := c0(w; u, v) − c1(d; v, b) − c2(d; u, c),

L(v, c) := 〈f, v〉 + (g, c).

Next, we equip the product space H 1
0 (�)3 × H(curl; �) with the norm

||| (v, c) |||2A := ‖v‖2
1 + ‖c‖2

curl,

and set

|||L |||− := sup
(0,0)�=(v,c)∈J×X

L(v, c)
||| (v, c) |||A ,

|||L |||∗ := [ ‖f‖2
−1 + ‖g‖2

0

] 1
2 .

Note that |||L |||− ≤ |||L |||∗.
We have the following properties for the forms A, C and L. First, we note

that

A(v, c; v, c) ≥ Ca min{R−1
s , R−1

m Sc} ||| (v, c) |||2A,(2.9)

for all (v, c) ∈ J × X, with a constant Ca > 0 only depending on �, and

C(w, d; v, c; v, c) = 0,(2.10)

for all (w, d) ∈ H 1(�)3 × X, (v, c) ∈ H 1(�)3 ×H(curl; �). The coercivity
of the form A follows from the Poincaré-Friedrichs inequality in H 1

0 (�) and
the one in (2.7). The skew-symmetry of the trilinear form C follows from
Lemma 2.7.

Because of Lemma 2.5 and Lemma 2.6, we further have the continuity
properties

|A(u, b; v, c)| ≤ max{R−1
s , R−1

m Sc} ||| (u, b) |||A||| (v, c) |||A,(2.11)

for all (u, b), (v, c) ∈ H 1(�)3 × H(curl; �), and
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|C(w, d; u, b; v, c)| ≤ Cc max{1, Sc} ||| (w, d) |||A||| (u, b) |||A||| (v, c) |||A,

(2.12)

for all (w, d) ∈ H 1(�)3 ×X and (u, b), (v, c) ∈ H 1(�)3 ×H(curl; �). The
constant Cc > 0 solely depends on �. Finally, we have

|L(v, c)| ≤ |||L |||−||| (v, c) |||A,(2.13)

for all (v, c) ∈ J × X, and

|L(v, c)| ≤ |||L |||∗||| (v, c) |||A,(2.14)

for all (v, c) ∈ H 1(�)3 × H(curl; �).

2.3 Existence and uniqueness of solutions

We address the existence and uniqueness of solutions to Formulation 2.8 by
applying the abstract theory developed in [16, Section IV.1] for a class of non-
linear problems (that includes the stationary incompressible Navier-Stokes
equations).

To this end, we first recall the results from [16, Theorem IV.1.2 and The-
orem IV.1.3] in a form which is convenient for our analysis.

Theorem 2.11 Let V be a separable Hilbert space with norm ‖ · ‖V , l a lin-
ear functional in the dual space V ′, and (u, v, w) �→ a(u; v, w) a trilinear
mapping V × V × V → R satisfying the following hypotheses:

• There exists a constant α > 0 such that

|a(u; v, w)| ≤ α‖u‖V ‖v‖V ‖w‖V ∀u, v, w ∈ V.

• There exists a constant β > 0 such that

a(u; v, v) ≥ β‖v‖2
V ∀u, v ∈ V.

• The mapping u �→ a(u; u, v) is sequentially weakly continuous on V .
That is, if um → u weakly in V for m → ∞, then

a(um; um, v) → a(u; u, v), m → ∞,

for all v ∈ V .

Then the problem: find u ∈ V such that

a(u; u, v) = l(v) ∀v ∈ V,

has at least one solution u ∈ V . Any solution u ∈ V satisfies the stability
bound ‖u‖V ≤ β−1‖l‖V ′ . Furthermore, if

αβ−2‖l‖V ′ < 1,

the above problem has a unique solution u ∈ V .
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Let us now show the following existence result for Formulation 2.8.

Theorem 2.12 For f ∈ H−1(�)3 and g ∈ L2(�)3, there exists at least
one solution (u, b) in J × X of the variational problem in Formulation 2.8.
Furthermore, we have the stability bound

||| (u, b) |||A ≤ |||L |||−
Ca min{R−1

s , R−1
m Sc}

for any solution (u, b) ∈ J × X.

Proof. We shall apply Theorem 2.11 for the formulation (2.8). To this end,
we proceed in several steps.

Step 1 First, we show that the space J × X is separable. To do so, we note
that the space J is a closed subspace of H 1(�)3 and thus clearly separable.
Moreover, the space H(�) is isomorphic to a closed subspace of L2(�)7.
This can be seen by defining the mapping T : H(�) → L2(�)7 by T (c) =
(c, curl c, div c). Obviously, ‖T (c)‖0 = ‖c‖H(�). Thus, H(�) and its closed
subspace X are separable. The product space J × X is therefore separable.

Step 2 Next, we show that the mapping

(u, b) �→ A(u, b; v, c) + C(u, b; u, b; v, c)(2.15)

is sequentially weakly continuous on J × X.
To this end, let (um, bm)m∈N be a sequence in J×X that weakly converges

to (u, b) ∈ J × X. Obviously, limm→∞ A(um, bm; v, c) = A(u, b; v, c) due
to the continuity property (2.11) of the form A. Furthermore, due to the com-
pact imbeddings in Proposition 2.3, we have that um → u strongly in L4(�)3

and L6−δ2(�)3 and bm → b strongly in L3+δ1(�)3 for the parameters δ1 > 0
and δ2 > 0 from Proposition 2.3 and Lemma 2.6. Linearity in the first two
arguments of C then gives

|C(um, bm; um, bm; v, c) − C(u, b; u, b; v, c)|
≤ |C(um − u, bm − b; um, bm; v, c)| + |C(u, b; um − u, bm − b; v, c)|.

Thanks to Lemma 2.5, Lemma 2.6, and Proposition 2.3, we have

|c0(um − u; um; v)| ≤ C‖u − um‖0,4‖um‖1‖v‖1,

|c1(bm − b; v, bm)| ≤ CSc‖bm − b‖0,3+δ1‖v‖1‖ curl bm‖0,

|c2(bm − b; um, c)| ≤ CSc‖bm − b‖0,3+δ1‖um‖1‖ curl c‖0.

Hence, using the boundedness of (um, bm) in J × X shows that

lim
m→∞ |C(um − u, bm − b; um, bm; v, c)| = 0.
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It remains to see that |C(u, b; um − u, bm − b; v, c)| converges to zero. To
do so, we first note that

lim
m→∞ |c0(u; um − u, v)| = 0,

lim
m→∞ |c1(b; v, bm − b)| = 0,

since w �→ c0(u; w, v) and c �→ c1(b; v, c) are continuous functionals on J
and X, respectively, due to Lemma 2.5 and Lemma 2.6. Furthermore,

|c2(b; um − u, c)| ≤ Sc‖b‖curl‖um − u‖0,6−δ2‖ curl c‖0.

Thus,

lim
m→∞ |C(u, b; um − u, bm − b; v, c)| = 0.

This shows that the mapping in (2.15) is sequentially weakly continuous.

Step 3 The coercivity and continuity properties in (2.9)–(2.13) and the results
in Step 1 and Step 2 verify the hypotheses in Theorem 2.11 for the formulation
in (2.8). Referring to Theorem 2.11 thus proves the assertion. ��

For small data, we obtain the following uniqueness result from Theo-
rem 2.11.

Theorem 2.13 Assume that

Cc max{1, Sc} |||L |||−
C2

a min{R−2
s , R−2

m S2
c }

< 1.(2.16)

Then the variational problem in Formulation 2.8 has a unique solution (u, b) ∈
J × X.

Remark 2.14 The results in Theorem 2.12 and Theorem 2.13 hold true ver-
batim for the boundary conditions in Remark 2.2 if we replace H(�) and X
by

H(�) = H0(curl; �) ∩ H(div; �), X = H(�) ∩ H(div0; �),

respectively.

2.4 Mixed variational formulation

We are now ready to define a mixed variational formulation for the MHD
equations (2.1)–(2.4). To do so, we first introduce the spaces
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V := H 1
0 (�)3, Q := L2(�)/R,

C := H(curl; �), S := H 1(�)/R,

and equip them with the norms ‖ · ‖1, ‖ · ‖0, ‖ · ‖curl and ‖ · ‖1, respectively.
Next, we introduce the forms bs : Q × V → R and bm : S × C → R

given by

bs(q, v) := −
∫

�

q div v dx, bm(s, c) := −
∫

�

∇s · c dx.

These forms are continuous and satisfy the following inf-sup conditions

inf
0 �=q∈Q

sup
0 �=v∈V

bs(q, v)

‖v‖1‖q‖0
≥ �s > 0,

inf
0 �=s∈S

sup
0 �=c∈C

bm(s, c)
‖c‖curl‖s‖1

≥ �m > 0,

(2.17)

respectively, with constants �s and �m only depending on �. The inf-sup
condition for the form bs can be found in, e.g., [16, Section I.5.1]. For the
form bm, it can be easily seen by noting that, for s ∈ S arbitrary, we have
∇s ∈ c and thus by the Poincaré-Friedrichs inequality in H 1(�)/R:

sup
0 �=c∈C

bm(s, c)
‖c‖curl‖s‖1

≥ bm(s, −∇s)

‖∇s‖curl‖s‖1
= ‖∇s‖2

0

‖∇s‖0‖s‖1
≥ �m > 0,

see also [25, Theorem 9] and [21, Section 5.4].
We define the following mixed variational formulation for (2.1)–(2.4).

Formulation 2.15 Find (u, p, b, r) ∈ J × Q × X × S such that

as(u, v) + c0(u; u, v) − c1(b; v, b) + bs(p, v) = 〈f, v〉,
am(b, c) − c2(b; u, c) + bm(r, c) = (g, c)

for all (v, c) ∈ V × C.

Remark 2.16 By decomposing the data g into g = g0 + ∇ϕ, with g0 ∈
H0(div0; �) and ϕ ∈ S, according to (2.6), we have that the multiplier r

solves the problem −(∇r, ∇s) = (∇ϕ, ∇s) for all s ∈ S. This can be seen by
choosing test functions c = ∇s in the second equation of the problem in For-
mulation 2.15. In particular, for a divergence–free function g ∈ H0(div0; �),
we have that r = 0.

It will be convenient to introduce the global form

B(q, s; v, c) := bs(q, v) + bm(s, c),

and to define the kernel

Z := {(v, c) ∈ V × C : B(q, s; v, c) = 0 ∀ (q, s) ∈ Q × S}.
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Notice that a function (v, c) ∈ V × C belongs to J × X if and only if
(v, c) ∈ Z. This follows from standard properties of the divergence operator,
see [16, Section I.2.2], and from the Helmholtz decomposition in (2.6). Thus,
we have

Z = J × X,(2.18)

and can rewrite the variational problem in Formulation 2.15 in the compact
form: find (u, p, b, r) ∈ V × Q × C × S such that

A(u, b; v, c) + C(u, b; u, b; v, c) + B(p, r; v, c) = L(v, c),

B(q, s; u, b) = 0
(2.19)

for all (v, q, c, s) ∈ V × Q × C × S.
By endowing the space Q × S with the product norm

||| (q, s) |||2B := ‖q‖2
0 + ‖s‖2

1,

we have, in addition to the properties in (2.9)–(2.14),

|B(q, s; v, c)| ≤ Cb ||| (q, s) |||B ||| (v, c) |||A,(2.20)

for all (v, q, c, s) ∈ V × Q × C × S, with a continuity constant Cb > 0.
Furthermore, we have the following inf-sup condition for the form B.

Lemma 2.17 There is a constant � > 0 solely depending on � such that

sup
(0,0)�=(v,c)∈V×C

B(q, s; v, c)
||| (v, c) |||A ≥ � ||| (q, s) |||B

for all (q, s) ∈ Q × S.

Proof. Let (q, s) ∈ Q×S. Thanks to (2.17), there exist functions v ∈ V and
c ∈ C such that

bs(q, v) ≥ ‖q‖2
0, bm(s, c) ≥ ‖s‖2

1,

and
‖v‖1 ≤ �−1

s ‖q‖0, ‖c‖curl ≤ �−1
m ‖s‖1.

Therefore, we obtain

B(q, s; v, c) ≥ ‖q‖2
0 + ‖s‖2

1 = ||| (q, s) |||2B,

and

||| (v, c) |||2A ≤ max{�−2
s , �−2

m }[‖q‖2
0 + ‖s‖2

1

]
≤ max{�−2

s , �−2
m }||| (q, s) |||2B.

The assertion follows. ��
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Corollary 2.18 For f ∈ H−1(�)3 and g ∈ L2(�)3, there exists at least one
solution (u, p, b, r) in J × Q × X × S of the mixed problem in Formula-
tion 2.15. We have the stability bounds

||| (u, b) |||A ≤ |||L |||−
Ca min{R−1

s , R−1
m Sc}

,

and

||| (p, r) |||B ≤�−1

[
|||L |||∗ + max{R−1

s , R−1
m Sc}||| (u, b) |||A

+ Cc max{1, Sc}||| (u, b) |||2A
]
,

for any solution (u, p, b, r) ∈ J × Q × X × S.
Moreover, under assumption (2.16), the problem in Formulation 2.15 has

a unique solution.

Remark 2.19 In convex or smooth domains �, existence and uniqueness
results of this type have been proven in [19, Theorem 4.7] for a variational
formulation of the MHD equations (2.1)–(2.4) that is based on the standard
Sobolev space H 1(�)3 for the magnetic field b.

Proof. The proof of Corollary 2.18 follows from the theory of saddle point
problems; see [5, Section II.1] or [16, Section I.4.1 and Section IV.I]. Let
(u, b) ∈ J × X be the solution of the auxiliary problem in Formulation 2.8,
in accordance to the results in Theorem 2.12 and Theorem 2.13. Due to the
inf-sup condition in Lemma 2.17 and the continuity properties of A, C and
L, it is possible to uniquely solve the following problem for the multiplier
(p, r): find (p, r) ∈ Q × S such that

B(p, r; v, c) = L(v, c) − A(u, b; v, c) − C(u; b; u, b; v, c)

for all (v, c) ∈ (V × C)/(J × X); see, e.g., [16, Section I.4.1 and
Theorem IV.1.4]. The function (u, p, b, r) then solves (2.19) and thus is
a solution of Formulation 2.15.

Furthermore, we obtain from Lemma 2.17

�||| (p, r) |||B
≤ sup

(0,0)�=(v,c)∈V×C

B(p, r; v, c)
||| (v, c) |||A

≤ sup
(0,0)�=(v,c)∈V×C

L(v, c) − A(u, b; v, c) − C(u; b; u, b; v, c)
||| (v, c) |||A ,

from where the stability bound for (p, r) follows with the continuity of the
forms L, A and C. ��
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Remark 2.20 For the boundary conditions in Remark 2.2, the spaces C and S

in Formulation 2.15 have to be replaced by C = H0(curl; �) and S = H 1
0 (�),

respectively. Corollary 2.18 holds then true verbatim.

3 Finite element discretization

In this section, we introduce a mixed finite element approximation of the
MHD equations in (2.1)–(2.4). The approximation is based on Nédélec’s
first family of elements for the discretization of the magnetic field. We then
establish the well-posedness of the finite element formulation.

3.1 Meshes and finite element spaces

Throughout, we consider regular and quasi-uniform meshes Th of mesh-size h

that partition � into tetrahedra {K}. Let Pk(K) be the space of polynomials
of total degree at most k ≥ 0 on K and P̃k(K) the space of homogeneous
polynomials of degree k on K . The space Dk(K) denotes the polynomials
p in P̃k(K)3 that satisfy p(x) · x = 0 on K . For k ≥ 1, we define the space

Nk(K) = Pk−1(K)3 ⊕ Dk(K).

Note that Nk(K) ⊂ Pk(K)3.
To approximate the unknowns (u, p) in Formulation 2.15, we use standard

finite element spaces

Vh ⊂ V, Qh ⊂ Q,(3.1)

that are based on the meshes Th. We assume that the pair Vh × Qh satisfies
the discrete inf-sup condition

inf
0 �=q∈Qh

sup
0 �=v∈Vh

bs(q, v)

‖v‖1‖q‖0
≥ γs > 0,(3.2)

with an inf-sup constant γs that is independent of the mesh-size h.
A wide variety of spaces Vh and Qh fulfilling the inf-sup condition in

(3.2) have been proposed in the literature; we refer to [5, Chapter IV], [16,
Chapter II] and the references cited therein.

To approximate the unknowns (b, r) in Formulation 2.15, we use Nédélec’s
first family of spaces, see [25,26], given by

Ch = { c ∈ C | u|K ∈ Nk(K), K ∈ Th },(3.3)

combined with the standard H 1-conforming space

Sh = { s ∈ S | s|K ∈ Pk(K), K ∈ Th },(3.4)
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for an approximation order k ≥ 1. Since ∇Sh ⊂ Ch, it can be seen as on the
continuous level that Ch × Sh satisfies the inf-sup condition

inf
0 �=s∈Sh

sup
0 �=c∈Ch

bm(s, c)
‖c‖curl‖s‖1

≥ γm > 0,(3.5)

with γm only depending on �; see also [25, Theorem 9] and [21, Section 5.4].
In fact, we have γm = �m, with �m being the constant in (2.17).

Remark 3.1 It is also possible to base the space Ch on Nédélec’s elements
of the second type; see [27] for the definition of these elements. The space
Sh then has to be suitably adjusted; see [27] or [23, Section 8.2].

3.2 Discretely solenoidal function spaces

As on the continuous level, we first eliminate the multipliers by introducing
the following spaces of discretely divergence-free functions:

Jh := { v ∈ Vh | bs(q, v) = 0 ∀q ∈ Qh},
Xh := { c ∈ Ch | bm(s, c) = 0 ∀s ∈ Sh }.

Note that Jh �⊂ J and Xh �⊂ X which complicates the analysis of the discrete
problem and especially the treatment of the coupling forms c1 and c2.

One of our main tools will be the following discrete Helmholtz decom-
position:

Ch = Xh ⊕ ∇Sh,(3.6)

the decomposition being orthogonal in L2(�)3; see [25–27] or [23,
Section 7.2.1]. Furthermore, the space Xh is known to satisfy the follow-
ing discrete Poincaré-Friedrichs inequality:

‖ curl c‖0 ≥ C‖c‖0 ∀ c ∈ Xh,(3.7)

with a constant C > 0 independent of the mesh-size h; cf., e.g., [21,
Theorem 4.7].

First, we show that the trilinear forms c0, c1 and c2 are well-defined on
the discrete level; in view of Lemma 2.5, this is evident for the form c0 since
Vh ⊂ V. To study the forms c1 and c2, we set

X(h) := X + Xh,

equipped with the norm ‖ · ‖curl.
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Proposition 3.2 For d ∈ X(h), v ∈ Vh and b ∈ C, we have

|c1(d; v, b)| ≤ C Sc ‖d‖curl‖v‖1‖ curl b‖0.

Moreover, for d ∈ X(h), u ∈ V and c ∈ Ch, we have

|c2(d; u, c)| ≤ C Sc ‖d‖curl‖u‖1‖ curl c‖0.

The constants C > 0 are independent of the mesh-size h.

Proof. We proceed in several steps.

Step 1 We start by noting that there is a linear mapping H : Xh → X such
that curl d = curl(Hd) for all d ∈ Xh. Since functions in X are uniquely
defined by their rotations, see [21, Section 4] and the Poincaré-Friedrichs
inequality in (2.7), this mapping is well-defined. We then have

‖d − Hd‖0 ≤ Ch
1
2 +σ‖ curl d‖0 ∀ d ∈ Xh,(3.8)

for an exponent σ > 0 depending solely on the domain �. This can be eas-
ily seen by adapting the arguments in, e.g., [21, Section 4] to our boundary
conditions.

Step 2 We recall the following inverse estimate from [6, Theorem 3.2.6]. On
a quasi-uniform mesh there holds

‖ϕ‖0,q ≤ Ch
3( 1

q
− 1

p
)‖ϕ‖0,p, 1 ≤ p ≤ q ≤ ∞,(3.9)

for all piecewise polynomial functions ϕ, with a constant C > 0 independent
of the mesh-size h.

Step 3 We prove the assertion for the form c1. For d ∈ X, the claim follows
from Lemma 2.6 since Vh ⊂ V. Thus, we may assume that d ∈ Xh. By the tri-
angle inequality, Lemma 2.6, the definition of H, and the Poincaré-Friedrichs
inequality (2.7), we first note that

|c1(d; v, b)| ≤ |c1(d − Hd; v, b)| + |c1(Hd; v, b)|
≤ |c1(d − Hd; v, b)| + CSc‖Hd‖curl‖v‖1‖ curl b‖0

= |c1(d − Hd; v, b)| + CSc‖ curl d‖0‖v‖1‖ curl b‖0,

so that it remains to estimate the term |c1(d − Hd; v, b)|. To do so, fix 0 <

σ ′ ≤ σ and choose p ∈ [1, 6) such that

3

p
= 1

2
+ σ ′.(3.10)
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We obtain

|c1(d − Hd; v, b)| ≤ Sc‖v‖0,∞‖d − Hd‖0‖ curl b‖0

≤ CSc h− 1
2 −σ ′

h
1
2 +σ‖v‖0,p‖ curl d‖0‖ curl b‖0

≤ CSc ‖v‖1‖ curl d‖0‖ curl b‖0.

Here, we have used Hölder’s inequality, the inverse estimate (3.9) from Step 2
(with q = ∞ and the exponent p in (3.10)), the approximation result from
(3.8) from Step 1, and the first imbedding from Proposition 2.3. This proves
the assertion for c1.

Step 4 For c2, we proceed as before and may assume that d ∈ Xh. For
0 < σ ′ ≤ σ we choose parameters p1, p2 ≥ 1 such that

1

p1
+ 1

p2
= 1

2
,

1

p1
− 1

2
= −1

6
− σ ′

3
, p2 ∈ [1, 6).

As before, we only need to bound the term c2(d − Hd; u, c). We have

|c2(d − Hd; u, c)| ≤ Sc ‖d − Hd‖0‖u‖0,p2‖ curl c‖0,p1

≤ CSc h
1
2 +σh− 1

2 −σ ′‖ curl d‖0‖u‖0,p2‖ curl c‖0

≤ CSc‖ curl d‖0‖u‖1‖ curl c‖0.

Similarly to Step 3, we used Hölder’s inequality, the approximation result
(3.8) from Step 1, the inverse estimate (3.9) from Step 2 (with q = p1

and p = 2), and the first imbedding from Proposition 2.3. Further, since
|c2(Hd; u, c)| can be bounded by Lemma 2.6, the assertion for c2 follows.

��
As a consequence of Proposition 3.2, the trilinear form C is continuous.

Corollary 3.1 Let w, u ∈ V, d ∈ X(h), b ∈ C, and (v, c) ∈ Vh × Ch. Then
there holds

|C(w, d; u, b; v, c)| ≤ Cc max{1, Sc}||| (w, d) |||A||| (u, b) |||A||| (v, c) |||A
for a constant Cc > 0 independent of the mesh-size h.

Furthermore, we have that C(w, d; v, c; v, c) = 0.

Note that, for simplicity, we have used the same notation for the continu-
ity constant Cc as in (2.12). The discrete version of the auxiliary problem in
Formulation 2.8 is then as follows.

Formulation 3.3 Find (uh, bh) ∈ Jh × Xh such that

as(uh, v) + c0(uh; uh, v) − c1(bh; v, bh) = 〈f, v〉,
am(bh, c) − c2(bh; uh, c) = (g, c)

for all (v, c) ∈ Jh × Xh.



Mixed FEM for incompressible MHD 789

The compact form of the variational problem in Formulation 3.3 is: find
(uh, bh) ∈ Jh × Xh such that

A(uh, bh; v, c) + C(uh, bh; uh, bh; v, c) = L(v, c)(3.11)

for all (v, c) ∈ Jh × Xh.
In view of (2.11) and Corollary 3.1, the forms A and C are continuous on

the discrete level. Furthermore, we have

A(v, c; v, c) ≥ Ca min{R−1
s , R−1

m Sc} ||| (v, c) |||2A,(3.12)

for all (v, c) ∈ Jh × Xh, with a constant Ca > 0 independent of the mesh-
size h, again denoted as in (2.9) for simplicity. The coercivity with respect to
c follows from the discrete Poincaré-Friedrichs inequality in (3.7). Finally,
we need the discrete counterpart of |||L |||− given by

|||L |||h := sup
(0,0)�=(v,c)∈Jh×Xh

L(v, c)
||| (v, c) |||A .

Again, |||L |||h ≤ |||L |||∗.
From Theorem 2.11, we obtain the following result.

Theorem 3.4 For f ∈ H−1(�)3 and g ∈ L2(�)3, there exists at least one
solution (uh, bh) in Jh × Xh of the problem in Formulation 3.3. We have the
stability bound

||| (uh, bh) |||A ≤ |||L |||h
Ca min{R−1

s , R−1
m Sc}

for any solution (uh, bh) ∈ Jh × Xh. Furthermore, for small data with

Cc max{1, Sc} |||L |||h
C2

a min{R−2
s , R−2

m S2
c }

< 1,(3.13)

the problem in Formulation 3.3 has a unique solution (uh, bh) ∈ Jh × Xh.

3.3 Mixed finite element approximation

With the discrete spaces from Section 3.1, the finite element approximation
of the weak problem in Formulation 2.15 reads as follows.

Formulation 3.5 Find (uh, ph, bh, rh) ∈ Jh × Qh × Xh × Sh such that

as(uh, v) + c0(uh; uh, v) − c1(bh; v, bh) + bs(ph, v) = 〈f, v〉,
am(bh, c) − c2(bh; uh, c) + bm(rh, c) = (g, c)

for all (v, c) ∈ Vh × Ch.
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Remark 3.6 Writing g = g0 + ∇φ as in Remark 2.16, it can be seen that rh

solves −(∇rh, ∇s) = (∇φ, ∇s), s ∈ Sh. Thus, for a solenoidal source term
g ∈ H0(div0; �), we have rh = 0.

By introducing the discrete kernel

Zh := {(v, c) ∈ Vh × Ch : B(q, s; v, c) = 0 ∀ (q, s) ∈ Qh × Sh},
we have

Zh = Jh × Xh.(3.14)

Therefore, we can write the variational problem in Formulation 3.5 in the
form: find (uh, ph, bh, rh) ∈ Vh × Qh × Ch × Sh such that

A(uh, bh; v, c) + C(uh, bh; uh, bh; v, c) + B(ph, rh; v, c) = L(v, c),

B(q, s; uh, bh) = 0

(3.15)

for all (v, q, c, s) ∈ Vh × Qh × Ch × Sh.
The discrete inf-sup conditions for bs and bm in (3.2) and (3.5), respec-

tively, give the discrete analogue of Lemma 2.17.

Lemma 3.7 There is a constant γ > 0 only depending on γs and γm in (3.2)
and (3.5) such that

sup
(v,c)∈Vh×Ch

B(q, s; v, c)
||| (v, c) |||A ≥ γ ||| (q, s) |||B,

for all (q, s) ∈ Qh × Sh. In particular, γ is independent of the mesh-size h.

From Theorem 2.11, we thus obtain the discrete counterpart of Corol-
lary 2.18.

Corollary 3.2 For f ∈ H−1(�)3 and g ∈ L2(�)3, there exists at least one
solution (uh, ph, bh, rh) in Jh × Qh × Xh × Sh of the discrete problem in
Formulation 3.5. We have the stability bounds

||| (uh, bh) |||A ≤ |||L |||h
Ca min{R−1

s , R−1
m Sc}

,

and

||| (ph, rh) |||B ≤ γ −1

[
|||L |||∗ + max{R−1

s , R−1
m Sc}||| (uh, bh) |||A

+ Cc max{1, Sc}||| (uh, bh) |||2A
]
,

for any solution (uh, ph, bh, rh) ∈ Jh × Qh × Xh × Sh.
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Under assumption (3.13), the discrete problem in Formulation 3.5 has a
unique solution (uh, ph, bh, rh) in Jh × Qh × Xh × Sh.

Remark 3.8 The above results can be easily adapted to the boundary condi-
tions in Remark 2.2. In this case, we take

Ch = { c ∈ H0(curl; �) | u|K ∈ Nk(K), K ∈ Th }

and set

Sh = { s ∈ H 1
0 (�) | s|K ∈ Pk(K), K ∈ Th },

according to Remark 2.20.

3.4 Solution methods

Let us briefly discuss some solution methods to numerically find the approx-
imation (uh, ph, bh, rh) of the problem in Formulation 3.5; we also refer
to the discussions and numerical comparisons in [19, Section 7] and [14,
Chapter VII].

First, we consider the classical coupled Picard iteration that reads as fol-
lows: given (u�

h, p
�
h, b�

h, r
�
h) ∈ Jh×Qh×Xh×Sh, determine the next iterate by

solving the following linearized MHD problem: find (u�+1
h , p�+1

h , b�+1
h , r�+1

h )

∈ Jh × Qh × Xh × Sh such that

as(u�+1
h , v) + c0(u�

h; u�+1
h , v) − c1(b�

h; v, b�+1
h ) + bs(p

�+1
h , v) = 〈f, v〉,

am(b�+1
h , c) − c2(b�

h; u�+1
h , c) + bm(r�+1

h , c) = (g, c)

for all (v, q, c, s) ∈ Vh × Qh × Ch × Sh. Under assumption (3.13) on the
data, the iterates {(u�

h, p
�
h, b�

h, r
�
h)}� converge to the solution (uh, ph, bh, rh)

of the problem in Formulation 3.5 for any initial guess (u0
h, p

0
h, b0

h, r
0
h) ∈

Jh × Qh × Xh × Sh. The initial guess (u0
h, p

0
h, b0

h, r
0
h) can be found, for

example, by solving the above problem with data u−1
h = b−1

h = 0.
The coupled Picard iteration requires the solution of a fully coupled mixed

system in each iteration step which is quite costly. On the other hand, a wide
variety of efficient solution techniques for linear systems of this form are
available nowadays. We mention here only the very efficient and robust sad-
dle point solvers for incompressible flow problems in [12,11,31] and the
references therein. These approaches, however, need to be extended to MHD
problems of the above form by combining them with efficient H(curl; �)-
based solution techniques for Maxwell’s equations; see, e.g., [4,20,30] and
the references therein. We also point out in passing that, in typical incom-
pressible MHD applications, only the hydrodynamic Reynolds number Rs
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is large, say in the range 102–105, while the magnetic one is moderate, say
Rm ≈ 10−1 and Sc ≈ 1. Therefore, the structure of the linearized MHD
problem above is closely related to the Oseen problem of incompressible
fluid flow.

The application of Newton’s method gives rise to similar linear MHD
problems in each iteration step. The convergence of the iterates is generally
faster, but only guaranteed for initial guesses that are sufficiently close to the
exact solution; cf. [19,14]. Finally, we mention the decoupled Picard iteration
that reads as follows: given (u�

h, p
�
h, b�

h, r
�
h) ∈ Jh × Qh × Xh × Sh, find the

next iterate (u�+1
h , p�+1

h , b�+1
h , r�+1

h ) ∈ Jh × Qh × Xh × Sh by solving:

as(u�+1
h , v) + bs(p

�+1
h , v) = 〈f, v〉 − c0(u�

h; u�
h, v) + c1(b�

h; v, b�
h),

am(b�+1
h , c) + bm(r�+1

h , c) = (g, c) + c2(b�
h; u�

h, c)

for all (v, q, c, s) ∈ Vh × Qh × Ch × Sh. However, this procedure only con-
verges for initial guesses that are sufficiently close to the exact solution and is
instable for higher Reynolds numbers; cf., e.g., [19, Proposition 7.2] or [14,
Section VII.5]. On the other hand, the equations completely decouple into a
standard Stokes problem for the iterate (u�+1

h , p�+1
h ) and a standard Maxwell

problem for (b�+1
h , r�+1

h ) for which efficient solvers are available, as discussed
above. Improved iterative procedures that decouple into an Oseen-type prob-
lem and a Maxwell problem were recently developed in [14, Section VII.5].

Remark 3.9 If the linearized MHD problems above are convection-domi-
nated, it might be necessary for their efficient solution to include suitable
stabilization terms in the bilinear forms in order to avoid numerical insta-
bilities. This can be done by employing the techniques recently developed
in [15]. However, as our analysis is mainly concerned with the incorporation
of the divergence constraint div b = 0 via the mixed approach, this point
is not further investigated in the present paper and remains to be addressed
elsewhere.

4 Error analysis

In this section, we show that the mixed finite element method proposed in For-
mulation 3.5 yields quasi-optimal error bounds in the mesh-size h. We then
discuss the convergence rates that are obtained under standard smoothness
assumptions.

4.1 Error bounds

We begin by addressing the error in (u, b). We assume that the data is suffi-
ciently small so that both the continuous and the discrete problem are uniquely
solvable.
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Theorem 4.1 Assume that
Cc max{1, Sc} |||L |||∗
C2

a min{R−2
s , R−2

m S2
c }

<
1

2
.(4.1)

Let (u, p, b, r) ∈ J × Q × X × S be the solution of the problem in Formula-
tion 2.15 and let (uh, ph, bh, rh) ∈ Jh × Qh × Xh × Sh be its approximation
given in Formulation 3.5. Then we have that

||| (u − uh, b − bh) |||A ≤ C inf
(v,c)∈Vh×Ch

||| (u − v, b − c) |||A
+ C inf

(q,s)∈Qh×Sh

||| (p − q, r − s) |||B,

with a constant C > 0 that is independent of the mesh-size h.

Proof. We proceed in several steps.

Step 1 We first note that the error satisfies

A(u − uh, b − bh; v, c) + B(p − ph, r − rh; v, c)

+C(u − uh, b − bh; u, b; v, c)

+C(uh, bh; u − uh, b − bh; v, c) = 0(4.2)

for all (v, c) ∈ Vh × Ch. This can be easily seen by subtracting the dis-
crete formulation (3.15) from the continuous one in (2.19) and by using the
trilinearity of the form C. Note that all the terms are well-defined due to
Corollary 3.1.

Step 2 Let (v, c) be in the discrete kernel Zh. Recall that Zh = Jh × Xh,
according to (3.14). Using the orthogonality property from Step 1, we have

A(v − uh, c − bh; v − uh, c − bh)

+ C(v − uh, c − bh; u, b; v − uh, c − bh)

+ C(uh, bh; v − uh, c − bh; v − uh, c − bh)

= A(v − u, c − b; v − uh, c − bh)

+ C(v − u, c − b; u, b; v − uh, c − bh)

+ C(uh, bh; v − u, c − b; v − uh, c − bh)

−B(p − ph, r − rh; v − uh, c − bh).(4.3)

Again, all the terms in (4.3) are well-defined. We note that

C(uh, bh; v − uh, c − bh; v − uh, c − bh) = 0,

in view of the skew-symmetry of the form C in Corollary 3.1. Since (v −
uh, c − bh) belongs to the kernel Zh, we have

B(p − ph, r − rh; v − uh, c − bh) = B(p − q, r − s; v − uh, c − bh)

for any (q, s) ∈ Qh × Sh.
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Using the continuity properties of the forms A, C, B, and the stability
bounds for ||| (u, b) |||A and ||| (uh, bh) |||A in Corollary 2.18 and Corollary 3.2,
respectively, the right-hand side of (4.3) can be bounded from above by

r.h.s. ≤ ||| (v − uh, c − bh) |||A
[

max{R−1
s , R−1

m Sc}||| (u − v, b − c) |||A
+ Cc max{1, Sc}||| (u − v, b − c) |||A||| (u, b) |||A
+ Cc max{1, Sc}||| (u − v, b − c) |||A||| (uh, bh) |||A
+ Cb||| (p − q, r − s) |||B

]

≤ C||| (v − uh, c − bh) |||A
[
||| (u − v, b − c) |||A + ||| (p − q, r − s) |||B

]
.

Next, using the coercivity property (3.12) of the form A on the kernel Zh,
continuity of C in Corollary 3.1, the stability bound for ||| (u, b) |||A in Corol-
lary 2.18, and assumption (4.1) allows us to bound the left-hand side of (4.3)
from below by

l.h.s. ≥ Ca min{R−1
s , R−1

m Sc}||| (v − uh, c − bh) |||2A
− Cc max{1, Sc}||| (v − uh, c − bh) |||2A||| (u, b) |||A

≥ 1

2
Ca min{R−1

s , R−1
m Sc}||| (v − uh, c − bh) |||2A.

Combining these bounds yields

||| (v − uh, c − bh) |||A ≤ C||| (u − v, b − c) |||A + C||| (p − q, r − s) |||B.

Therefore, by the triangle inequality,

||| (u − uh, b − bh) |||A ≤ C||| (u − v, b − c) |||A + C||| (p − q, r − s) |||B,

for all (v, c) ∈ Zh, (q, s) ∈ Qh × Sh.

Step 3 Let now (v, c) ∈ Vh × Ch be arbitrary. Let (w, d) ∈ Vh × Ch be a
solution of

B(q, s; w, d) = B(q, s; u − v, b − c) ∀(q, s) ∈ Qh × Sh.

From the inf-sup condition in Lemma 3.7 and the continuity of the form B,
there exists a solution to this problem that satisfies

||| (w, d) |||A ≤ C||| (u − v, b − c) |||A;(4.4)
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see [5, Section II.2.2] for details. Then, (w + v, d + b) ∈ Zh can be inserted
in the bound of Step 2. With the triangle inequality, we obtain

||| (u − uh, b − bh) |||A ≤ C||| (u − v, b − c) |||A
+ C||| (w, d) |||A + C||| (p − q, r − s) |||B.

Referring to (4.4) finishes the proof. ��
Next, we bound the error in (p, r).

Theorem 4.2 Assume (4.1). Let (u, p, b, r) ∈ J×Q×X×S be the solution
of the problem Formulation 2.15 and (uh, ph, bh, rh) ∈ Jh × Qh × Xh × Sh

its approximation given in Formulation 3.5. Then we have that

||| (p − ph, r − rh) |||B ≤ C inf
(v,c)∈Vh×Ch

||| (u − v, b − c) |||A
+ C inf

(q,s)∈Qh×Sh

||| (p − q, r − s) |||B,

with a constant C > 0 that is independent of the mesh-size h.

Proof. Fix (q, r) ∈ Qh × Sh. From the inf-sup condition in Lemma 3.7, we
have

γ ||| (ph − q, rh − s) |||B ≤ sup
(v,c)∈Vh×Ch

B(ph − q, rh − s; v, c)
||| (v, c) |||A ≤ T1 + T2,

with

T1 = sup
(v,c)∈Vh×Ch

B(p − q, r − s; v, c)
||| (v, c) |||A ,

T2 = sup
(v,c)∈Vh×Ch

B(ph − p, rh − r; v, c)
||| (v, c) |||A .

Obviously, using the continuity of B in (2.20),

T1 ≤ Cb||| (p − q, r − s) |||B.

In view of (4.2), we further have

B(ph − p, rh − r; v, c) = A(u − uh, b − bh; v, c)

+ C(uh, bh; u − uh, b − bh; v, c)

+ C(u − uh, b − bh; u, b; v, c).

Therefore, we obtain with the continuity of the forms A and C

T1 ≤ ||| (u − uh, b − bh) |||A
[

max{R−1
s , R−1

m Sc}

+ Cc max{1, Sc}||| (u, b) |||A + Cc max{1, Sc}||| (uh, bh) |||A
]
.



796 D. Schötzau

Taking into account the stability bounds for (u, b) and (uh, bh) in Corol-
lary 2.18 and Corollary 3.2, respectively, gives

||| (ph − q, rh − s) |||B ≤ C||| (u − uh, b − bh) |||A + C||| (p − q, r − s) |||B.

The triangle inequality and the bound in Theorem 4.1 complete the proof. ��
Let now {Vh}h, {Qh}h, {Ch}h, and {Sh}h be sequences of finite element

spaces, assuming that

inf
(v,c)∈Vh×Ch

||| (u − v, b − c) |||A → 0, h → 0,

inf
(q,s)∈Qh×Sh

||| (p − q, r − s) |||B → 0, h → 0.

Note that due to the density of C∞(�) functions in the continuous spaces,
these assumptions are justified; see [23, Theorem 3.26] for the density of
C∞(�)3 in H(curl; �).

We then immediately have the following result.

Corollary 4.1 Assume (4.1). Let (u, p, b, r) ∈ J×Q×X×S be the solution
of the problem in Formulation 2.15 and {(uh, ph, bh, rh)}h its approximations
obtained with the above sequence of spaces. Then we have

lim
h→0

||| (u − uh, b − bh) |||A = 0, lim
h→0

||| (p − ph, r − rh) |||B = 0.

Remark 4.3 The result in Corollary 4.1 ensures the convergence of the finite
element approximations in non-convex polyhedra as h → 0. It is known that
such a convergence result cannot hold if the magnetic field is approximated
by nodal (i.e. H 1-conforming) elements. This is due to the fact that in non-
convex polyhedra the strongest magnetic singularities do not lie in H 1(�)3;
see [8]. In convex or smooth domains, on the other hand, quasi-optimal error
bounds for nodal FEM discretizations of the MHD equations (2.1)–(2.4) have
been established in [19, Theorem 6.4].

4.2 Convergence rates

Let us finish this section by discussing the convergence rates that are obtained
from Theorem 4.1 and Theorem 4.2.

First, we assume that the following standard approximation property holds
for the velocity-pressure space pair Vh × Qh:

inf
v∈Vh

‖u − v‖1 + inf
q∈Qh

‖p − q‖0 ≤ Chmin{s,k}[ ‖u‖s+1 + ‖p‖s

]
,(4.5)

for (u, p) ∈ Hs+1(�)3 × Hs(�), an exponent s > 1
2 , and an approximation

order k ≥ 1.
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Then, for k ≥ 1, we have for the pair Ch × Sh:

inf
c∈Ch

‖b − c‖curl + inf
s∈Sh

‖r − s‖1 ≤ Chmin{s,k}[ ‖b‖s + ‖ curl b‖s + ‖r‖s+1
]
,

(4.6)

provided that b ∈ Hs(�)3, curl b ∈ Hs(�)3, and r ∈ H 1+s(�), for an
exponent s > 1

2 . The approximation property for b in the norm ‖ · ‖curl can
be found in, e.g., [1, Proposition 5.6], whereas the one for r follows from
standard approximation theory for H 1-conforming spaces.

Using (4.5) and (4.6), we conclude that the results in Theorem 4.1 and
Theorem 4.2 yield the following convergence rates.

Corollary 4.2 Assume (4.1) and let Vh × Qh satisfy (4.5). Let the exact
solution (u, p, b, r) to the MHD equations (2.1)–(2.4) satisfy

u ∈ Hs+1(�)3, p ∈ Hs(�),(4.7)

and

b ∈ Hs(�)3, curl b ∈ Hs(�)3, r ∈ H 1+s(�),(4.8)

for a regularity exponent s > 1
2 . Let (uh, ph, bh, rh) ∈ Jh ×Qh ×Xh ×Sh be

the finite element approximation in Formulation 3.5. Then we have the error
bound

||| (u − uh, b − bh) |||A + ||| (p − ph, r − rh) |||B
≤ Chmin{s,k}

[
‖u‖s+1 + ‖p‖s + ‖b‖s + ‖ curl b‖s + ‖r‖s+1

]
,

with a constant C > 0 independent of the mesh-size h.

Remark 4.4 We point out that, for the error bound in Corollary 4.2 to hold, it
is not necessary that the magnetic field b belongs to H 1(�)3. However, a pre-
cise characterization of the regularity properties of the complete MHD system
in (2.1)–(2.4) does not seem to be available in the literature and is beyond the
scope of the present paper. The regularity assumptions for (u, p, b) in (4.7)
and (4.8) are realistic for linear MHD problems in polyhedra as they can be
derived from corresponding results for linearized Navier-Stokes and Max-
well problems, respectively; see, e.g., [9,2,7,8] and the references therein.
We also recall that for a divergence-free source term g (often encountered
in practice) we have r = 0 and the assumption r ∈ Hs+1(�) is trivially
satisfied.
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Remark 4.5 The numerical tests in the recent note [28] have confirmed the
convergence rates in Corollary 4.2 for a two-dimensional linear MHD prob-
lem in a non-convex polygon where nodal FEM is known to fail to converge to
the exact magnetic field. There, the approximation was based on quadrilateral
meshes using standard Q2 − Q0 − Q1 elements for the approximation of the
velocity u, the pressure p and the multiplier r , respectively, combined with
lowest-order Nédélec’s elements for the magnetic field b (in two dimensions
these elements correspond to rotated Raviart-Thomas elements).

5 Conclusions

In this paper, we have presented a new existence and uniqueness theory for
the equations of incompressible magneto-hydrodynamics, based on a varia-
tional setting that employs the space H(curl; �) for the magnetic field. Our
results are valid in general Lipschitz polyhedra with possible reentrant edges
or vertices; these are domains for which nodal FEM for the magnetic field is
known to fail to converge to the exact solution. A new mixed finite element
approximation has then been proposed using Nédélec’s first family of ele-
ments for the magnetic field. Our analysis shows that the method is stable and
quasi-optimal in the mesh-size. The first numerical tests in [28] demonstrate
the ability of the proposed method to resolve highly singular solutions whose
magnetic components have regularity below H 1(�).

As our finite element schemes have essentially been devised for the dis-
cretization of the elliptic operators underlying the incompressible MHD equa-
tions in polyhedra, they may suffer from the usual numerical instabilities in
highly transport-dominated situations and have to be stabilized with tech-
niques similar to those proposed in [15]. This remains to be addressed else-
where.
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