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Summary. In this paper, we study the spectral properties of Dirichlet prob-
lems for second order elliptic equation with rapidly oscillating coefficients
in a perforated domain. The asymptotic expansions of eigenvalues and ei-
genfunctions for this kind of problem are obtained, and the multiscale finite
element algorithms and numerical results are proposed.
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1 Introduction

J.L. Lions (Cf. [21] pp121) proposed an open problem: “Spectral problems
connected with screens seem to be open. One can for instance consider
a bounded open set 2 and take out from 2 a perforated plane screen
F.; if we set . = Q\ F., we consider —A in 2., subject to Dirichlet’s
boundary conditions on d€2.; which is the asymptotic expansion of the
spectrum of this operator?”’ In this paper, we wish to discuss this kind of
problem.
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Fig. 1.1. Unbounded domain w Fig. 1.2. Domain

Let @ be an unbounded domain of R" with a 1-periodic structure, i.e. @
is invariant under the shifts by any z = (z1, - - - z,) € Z".

Suppose that w satisfies the following conditions

(B1) w is a smooth unbounded domain of R" with a 1-periodic structure.

(B3) The cell of periodicity w N Q is a domain with a Lipschitz boundary.

(B3) The set Q \ @ and the intersection of Q \ @ with the §- neighborhood
¢ < }L) of dQ consist of a finite number of Lipschitz domains separated
from each other and from the edges of the cube Q by a positive distance.

A domain 2° has the form: Q° = Q N ew, where Q2 as shown in Figure
1.2 is a bounded Lipschitz convex domain of R” without cavities, w as shown
in Figure 1.1 is a unbounded domain with 1-periodic structure satisfying the
conditions (B;) — (B3). ¢ is assumed to have a Lipschitz boundary, and
the boundary of a domain ©° can be rewritten as d2° = 'y U §,, where
. =0QNew, S =(02°)NQ.

Throughout this paper the Einstein summation convention on repeated in-
dices is adopted. C (with and without a subscript) denotes a generic positive
constant, which is independent of ¢ unless otherwise stated.

Consider the Helmholtz problem of second order elliptic operator with
highly oscillatory coefficients in a perforated domain 2° as follows:

au*®
LU ) = —— <l,<x) (’“)>+b< YU (x)
—Ag,o(g)Ug(x) in SZS
(1.1 Uf(x) =0, on 9Q°
U®(x) € Hy (), / p<§>|U5<x)|2dx = 1.
QE

We make the following assumptions:

(A)). Let& = e~ 'x, the coefficients a;j(§), b(¢§) and p(§) be l-periodic
in§;
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(A2). wolnl? < ai;(E)min; < vilnl% Ivo >0, 1 >0, V(1. - m,) € R
(A3). a;j(¥) = a;i(3), p(F) = po=const >0, b(x)=>0;
(Ap). aij (%), p(F), b(F) € L=(QF).

Lemma 1.1 (the extension theorem) Let Q° = Q N ew be a perforated
domain. Then for any functions in H'(QF) there exists a linear extension
operator

P.: H'(Q%) — HY(Q) such that

(1.2) | Pevliz2@) < Cllvlizzqe
(1.3) IV Pl 2 < ClIVVlL2g

By using Lemma 1.1, conditions (A;) — (A4), and Fredholm’s alternative
theorem, one then has

Theorem 1.1 Let Q° = QNew be a perforated domain. If conditions (A,) —
(Ay) are satisfied. Then the spectral problem (1.1) for L, in HO1 (2%) has a
countable set of solutions, A = Ay, u =U;(x), k=1,2,---.The ei-
genvalues A, with the possible exception of the first few, are positive and
Ay — 00, as k — oo. The eigenfunctions {U; (x)} form a basis in L*(Q°)
and in HOl (Q2°); this basis can be orthonormalized in L>(2°) and is orthog-
onal in the sense of the scalar product as follows

(1.4) (U, V), = /p(’ﬁ>uvdx, He = L2(Q).
e
QS
In some papers (see, e.g. [16,24]), it is proved that Af = e 72 A% + A%,
Let®(&), & = ’8—C , be the eigenfunction corresponding to the first ei-
genvalue A of the following boundary value problem in unbounded domain
w with l-periodic structure:

<al,<s) @(&))—A%(&)@(s) in o

G 9§
(1.5) O@E)=0, on dw, O() is l-periodicin &
[ p©O*E)ds =1
ONw

Let us formally represent the k-th eigenfunction of (1.1) in the form:
X
(1.6) Uf (x) = O uf(x)

It is easy to verify that uj (x) must satisfy the following equation:

—a—<®2< >”( ) "(x))+b< )@ (= DU

(17) — )\i (g)®2(g)uk(x) in QS

up(x) =0, on T,



528 L.-Q. Cao, J.-Z. Cui

where Af = Af —e?A%, and [ ©%(F)p(F)|uf(x)[*dx =1

e
O.A. Oleinik et al. (Ref. [24]), not only proved the convergence of A; to

)\,({0), but also obtained the estimate |A; — A,((O)l < Cre, Cy = const, and

studied the behavior of the eigenfunctions of problem (1.2) as ¢ — 0.

The goals of this paper are to propose multiscale asymptotic expansions of
eigenvalues and eigenfunctions for the Dirichlet problem of the second order
elliptic equation in perforated domains, and to give rigorous error estimates
in some cases. These expansions will play an essential role in numerical com-
putation. We would like to apply them to construct multiscale finite element
algorithms, and derive error estimates. Finally, numerical results are reported.

The remainder of this paper is organized as follows: some weight Sobolev
spaces and auxiliary lemmas are introduced in the next section. The multi-
scale asymptotic expansions of eigenvalues and eigenfunctions degenerate
on the boundary 9€2°, and some error estimates are given in Section 3. §4 is
devoted to the FE computations and error estimates of the related problems. In
section 5, the multiscale FE computing formulation and the post-processing
method are provided. Finally, some numerical results are reported.

2 Weight Sobolev spaces and auxiliary lemmas

To begin with, we wish to give some properties of weight function ® (§).

Lemma 2.1®! [fwe assume that a; (&), p(&) are smooth functions of § € R"
and w has smooth boundary, then © (&) is a smooth function in w such that
O¢) #0inwand |V:O(&)| # 0 in a neighborhood of dw.

Theorem 2.1 Under the assumptions of Lemma 2.1, then the first eigenvalue
A% of problem (1.5) is simple, and the corresponding eigenfunction © (&) has
a constant sign in w, and is unique up to a constant factor.

Proof. Introduce the space

Voer = {u € H'(QNw, dw), u is 1-periodic in &, f p(E)|u@)Pds = 1},
ONw

and the functional

a d
b = [ 0yt Q240
i J

dE.

ONw

Let A° = inf D(u) and © (%) be a function giving the minimal value. If

UEVper

O(&) € Vper then |©(8)| € V., and D(|®]) = D(O). Hence the function
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|®] is an eigenfunction corresponding to the eigenvalue A = A°. It follows
from Lemma 2.1 that |®(£)| does not vanish anywhere in w.

Now let ®( (&) be another eigenfunction corresponding to A°. By us-
ing Schmidt’s method, namely, substituting ®q (&) by the function ®(§) =
®p(§) + t® (&), we can have the function ®, is orthogonal to ®(§), i.e.

f p(E)B1(§) - B©(&)dE = 0. Since ®(£) > 0 in w, the function O (§)

ONw
changes its sign in w. However, |®(§)| is an eigenfunction with respect

to A°, and |®,| vanishes at an inner point of w, Lemma 2.1 implies that
;=0 O

Therefore we complete the proof of Theorem 2.1.

Before proceeding, we take time to introduce some notation and some
conventions (see, e.g. [24]).

Cc® (w) is the space of infinitely differential functions in @ which are
1-periodic in x, - - - X;,.

68"(50) is the space of infinitely differential functions in w that are
1-periodic in xy, - - - x,,, and Vanlsh in a neighborhood of dw.

W(a)) is the completlon of C Cee (w) with respect to the normin H' (0N Q);

W (w) is the completion of C > (@) withrespect to the normin H' (wNQ);

Vi (w) is the completion of C (w) in the norm

) 0y = [ 1OPAu? + Veulds
ONw
Vo (w) is the completion of 680 (w) in the norm
22) o, = [ 10Plulde
ONw

V(w) is the completion of 680 (w) in the norm

(2.3) 3

b = / |V:©® &) [*|ul*dE

ONw

Let Q2° = Q N ew, and the spaces Vol’p(Qg), VOP(Qf), V(QF) be the
completion of C°(£2°) in the respective norms

X
(2.4) lutllypr ey = MO (ul + Vel llr @)

X o
2.5 lelly2r ey = |I®(;)(Z | DyuDllLr e

loe|<2
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X
(2.6) lullvo.r ey = ”®(;)|M|HLP(Q£)
(2.7) lullvies = IIVe®E)|ulll2(qe)
where 1 < p < 400, in particular, we write VOI’Z(QS) = VOI(QS),and

V02(Qf) = VO(Q?), respectively. @(%) = O (&) is the eigenfunction cor-
responding to the first eigenvalue A of (1.5),and ®(£) > 0,in & € w.

Let VI:P(Qf), V2P (QF) be the completion of C“(ﬁs) in the norm (2.4)
and (2.5), respectively. In particular, V12(Q%) = VI(Q°), V3(Q) =
V2,2(Qs)

We introduce next some lemmas without any proofs ( Ref. §3, Chap III
of [24]).

Lemma 2.2 The following imbeddings

(2.8) W(w) C W) () C V()
(2.9) Viw) c VO (w)
(2.10) Viw) c V(o)

are g\ontinuous. Moreover, the imbedding (2.9) is compact, and for any
v e Vi(w) we have ®(£)v(€) € W(w)

Lemma 2.3 (the Poincaré inequality) For any u € V! (w) such that

(2.11) f O%udt =0
ONw
the inequality
(2.12) Il < C / |O1%| Veu *dg
ONw

holds with a constant C independent of u.

Lemma 2.4 For any u € C;°(Q2°) the following inequalities are satisfied

(2.13) /|VS®(5>|2|M|2dx 5co/|®<f>|2<|u|2+|vxu|2>dx,
£ £
QS QF

(2.14)

X 2 X2 X2 2 | S
/nvx(@(;))m +10(ul ]dxfclf|®<;)| (Vs + 5 lul)dx.
Q¢ Qe

If u € Vj (QF), then it holds ©(£)u € Hy (). The imbedding V, (QF) C
VO(Q¥) is compact and H' (¢, T') C V, (Q°).
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Lemma 2.5 Let the sequence u® € VO1 (2%) be such that

(2.15) Sl:p ||u€||V01(Qg) < 00

Then there is a subsequence ¢ — 0 and a function uy € HO1 (2) such that
lluo — u® llyoqery > Oas e’ — 0

Lemma 2.6 Foranyu € VO1 (R2°) the following inequality of Friedrichs type
(2.16) IIMIIV ey = /IO( ) IVeul*dx

QL

holds with a constant C independent of .

3 Asymptotic expansions of eigenvalues and eigenfunctions degenerate
on the boundary 9(2°

In this section, let us consider the eigenvalue problem (1.7) degenerate on
the surface S, of cavities.

Set formally
+oo n
(3.1) W)=Y et Y Negea ) DU(0),
=0 o1, ,q=1
+o00
(3.2) Af = Zel‘x“‘)(s),

i=0
In contrast to usual expression, now we use the following notation

o'y

(33 Dv=———"— a={a-a} (@=Lao=12""n
0Xg, + - 0Xy,

Inserting (3.1) and (3.2) into (1.7), and taking into account that NN

Bx,-
aix,» + %8%,’ one can formally obtain the following equality:
0= A’ (x) = 2O () p (S’ (x)
0 x ou’ (x)
=—8—(®2< Jaij () )
Xi

2%, X az
+®( )b( Ju (x) — )»@)( ),0( Jut(x)

__Zgl 2 Z Hyy o0 (§) DU’ (x)

ay,-,o=1
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n

00
+Y 6 Y BE)OPE)Nay .y (€) D’ (x)
=0

ap,,o=1
n

+00 s
B4 =Y > A0 Y p(E)O(E) Naya_, () D*u(x)
s=0 (=0

oy, g =1
where
_i 22 B 8]VO(%_)
(3.5) Ho@)—a&(o (&)ai; (&) %, )
_ 0 o2 ey N B 0D o
Hy (8) = 5 ® <s>al,<s;N %, ) + % (©%(&)dia, (§)No(£))
(3.6) +O7 (&), (&) N0,
0&;
For (a) =1>2
_ i 2 B aNal-nal(S) i 2 .
Hyy .0 (§) = 3&«9 (S)a,,@;—N %, ”aa@ (£)aiay (E)Nay...cr (£))
(3.7) +O%(&)a, ,»(5)M + O (&) a0y (§) Nay..oy ().

0&;

One of new ideas of this paper is to give the following relations, which
are different from those of classical homogenization method (see, e.g. [2,18,
21,24]). Suppose that

Hy(§) =0

Hoq (S) =0

Halaz(g) = 19_1&0510!2

Ha1a2a3 (S) — Nal(%—)ﬂ_léaza3

(3.8)
H(X10l2--~0![ (é:) = Nal--u[_z(g)ﬁ_laal_lal’ [>4
where
-1
(3.9) 9 = ( / ®2(é)d$) :

ONw

and dy,q, . Ngy.w;(§), oj=1,2,---n, j=0,1,2,---, will be defined
later.
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Putting (3.8) into (3.4), one gets
3. 10)

9! ‘ 3%u’(x)
0= Noypooa () ————[— L L
Z & { Z 1 z(g) ax“l T 8xa, [ Z a 1419742 3xa1+1 3Xa,+2

So=1 a1,0142=1
l n
+b(s)®2<s>u°<x)]—zx<” > pE)OPE)Ngyoay, (£) DU (1)),
i=0 oy, 0 —i=1

One concludes from the first equation of (3.8) that

INo(§)
Gl aa( (OO0
No(§) is l-periodic in &

)=0, in w

Consider the problem
(3.12a)

{a%(@z(@“ff(S)a[avf)) OUEF'E) + FE (O*OF'€). in
N(€) is l-periodicin &, Fi(§) € Vo(w), i=0,1,-

A weak solution of this problem is defined as a function N € f/\l(a))
satisfying the following equality

ON 0
(3.12b) / @%a;; wdé = / [®2F‘ — O?Fylde
98 0€;
ONw ONw
for any v € \71(0))
Let us remark the problem (3.12 a) admits a unique solution up to an
additive constant iff

(3.13) / @*(&)F(§)de =0
ONw

Combining (3.11) and (3.13) gives Ny(§) = C, for convenience, set C = 1.
Applying the second equation of (3.8), we define

2 INg, (§) _ _i 2 ' .
(314) 8%‘, (® (S) l](é) agj )— 851 (@ (S)am](g)),m Qﬂa)

Nuy(§)=0 on 90
Integrating on both sides of the third equation of (3.8) with respect to

& over the unit cell Q N w, and bearing in mind that Ny, (§), Ny, «, (&) are
1-periodic functions in &, we thus find

N;(&)
&k

3.15) Gy = o / O2(&)(ai; ) + an ) L E) g

ONw
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Using the third equation of (3.8) again, we define

. 16)
2 8N0!10(2(§) - 2 .
a_g,@ (&)a z,(S)T) =T (® ()aia; (§) Ny (8))
—®2(S)aa1,~(€-‘) ag@ O (E)duyy (€) + 0 'y, In QN
J

Nuyo,(§) =0 on 90

Similarly, for («) =1 > 3, we define

(3.17)
2(6)a;; 6y Do ®) )9 2y,
8_&‘,(@ (&)aij (&) %, ) = 8§,~(® (8)aia; () Nay...y (§))
aNaz--ul(é)

—©2(&)aq, ;(§) 5 — O%(§) gy, (6) Noy . (€)
§j

+Neoyooy, E)O g, 10, in QN
Ny.oy& =0 on 3Q

Remark 3.1 Existence and uniqueness of the solutions Ny, (§), - - -, Ngj...q; (§)
associated with respective problems (3.14), (3.16) and (3.17), can be easily
proved by induction with respect to [ on the basis of conditions (Aj) - (A4),
Lemma 2.6, and Lax-Milgram’s lemma. Then they can be extended into the
whole w in 1-periodicity.

Using (3.10) and equating the power-like terms of ¢, we have, for/ =0

9 au’(x)

—ﬂ—lax (o=~ ) + O (E)b(E)u’ (x)
(3.18) =292 ) pEu’(x), ae Ecw
and for/ =1
J0 0
Noy ()5~ . 97 s ;’(x)>+®2(s>b<s>u°(x>
(3.19) M")@Z(sm@uo(x)} Ml)(a)@@)p(s)u"(x) =0

Equation (3.18) implies that
(3.20) A D@ pu’(x) =0

Recalling p = 0 [ ©2(&)p(§)dE =0 > 0, [[u®]l 2 = 1, it follows

ONw
that AV () = 0.
We have, following along the above lines, for [ = 2
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o> 9? {= ot a( Buo(x))
Narax 0Xg, 0Xa, 0Xq, Gesey 0Xg

+®2<s>b(5)u°(x> A<°>®2<s>p(s>u°(x)}
(3.21) Ml)(e)o%sm(s)zval(@a @ — A% E)pE)u’(x) =0

0ll

Similarly, it follows from (3.18) and AV (¢) = 0 that A¥(¢) = 0.
The remainder / > 3 can be determined successively.
On the other hand, from (3.18), an easy computation leads to the equation:

9 0
“on, @ ;‘—(x% =00 Vp(&) — 0(E)O*E)u’(x)

Since u°(x) # 0,x € , then there exist some points x €  such that
u®(x) # 0, and

1 9 au’(x)

(3.22) “ W0 o Oy o )=z9(x<°>p<§)—b(s))®2(g>zc

Integrating on the both sides of (3.22) with respect to £ over Q N w, we
thus find

(3.23) c=295—-b

where f =0 [ ©%(&) - f(&)dE

ONw
As a matter of fact, we can deduce that equation (3.18) and u’(x) =0on
a%2 are equivalent to the following homogenized Helmholtz equation asso-
ciated with problem (1.7):

Buo(x)

Euo(x)———( aij )4+ bu’(x) = 2Q5u’(x), in Q

u’(x) =0, on 8S2

(3.24)

Recalling the definition of Ny, (£), it is easy to verify that g; can be
rewritten as follows:

(3.25) 7 0 f w@ﬁ(g) U(g)w

a = 08, % dg§

ONw

The fact that a;; = a;; implies that d; = ay.
On the other hand, due to (3.25), setting w, = (N;(§) + &), then we
derive 5 5
n Wy o Wy
agmng = v / —0%a;;—d§ >0
o, g,

ONw
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Suppose that aynne = 0, for any n € R", then w,, = (N;(§) + &) =
const, for almost all £ € Q N w. Since N, (&) are 1-periodic functlons in
&, Ni(&) + & # const, it follows that n = 0. Thus it is proved that Lisa
symmetric, positive-definite linear operator.

For an integer M > 1, we define

(3.26a) ut™(x) = Zs Z Noyooy (E)Dul(x),  x € Q5

ay,- =1

(3.26b) AM =30 k=12,

It is not difficult to see that uS’M e VI(Q®). However it should be men-

tioned that, generally speaking, we do not guarantee u, M e v2(2F), due to

aNa (03 . NC{ o
[#ﬂag #0,j>1,0; =1,2,---,n, which [+]|3Q denotes

the jump of normal derivative of Ny, ...q; (S ) on 0 Q. To this end, we need to
make some assumptions on geometry and physical materials.
To begin with, we make the following assumption on the holes T = Q\ w:

(H) T is symmetric with respect to the middle hyperplanes A;,i =
1,2,---, nof the unit cell (see Figure 3.1).
Next let us make the following assumptions on the physical materials:
(Cy) aj;(x), p (x) are symmetric with respect to the middle hyperplanes

l, i=1,2,---,nof the unit cell;
(Cy) af ;(x), i # j areanti-symmetric with respect to the middle hyperplanes
,,1 =1,2,---, nof the unit cell. In particular, a;; = 0,7 # j.

(C3) aij(8), p(§) € CQV(Q Nw), 0 <y =1; b(¢) € L=(Q No).

(0,1) (1,1) (0,1) 1 (1,1)

(1y2, 1/2)

(0,0) 1 (1,0)
(0,0) (1,0) 3

Fig. 3.1. The symmetry of 0 Nw Fig. 3.2. The sides of 9 Q
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Qo

Fig. 3.3. Subdomain ¢ Fig. 3.4. Boundary layer

Let Qo = U ez + 0), ﬁg = Qo N ew, where T, is the subset of

zeTy
Z" consisting of_all z, such that e(z + Q) C Q,dist(e(z + Q), Q) >
Ce, Qf = Q°\ Qo, I'" = 09 as shown in Figs. 3.3, 3.4.

Proposition 3.1 Let uZ’M be defined as in (3.26a). Under the assumptions
(Al) — (A3), (By) — (B3), (Cl) — (C3), and (H), then we can infer that
MeviQg),k=1,2,---;1 <M <3,

The proof of Proposition 3.1 can be found in the Appendix A.

Remark 3.2 Under the assumptions of Proposition 3.1, we can prove that
homogenization method with zero boundary conditions on d Q presented in
this paper is equivalent to the classical homogenization method with periodic
boundary conditions on d Q(see, e.g. [2,6,16,18,21,24]). Furthermore, we
will improve the theoretical results (Ref. Theorem 6.3 of [6] and Theorem
3.9, Chap. Il in [24]), and obtain the higher-order asymptotic expansions of
eigenfunctions and the better convergence results.

For x e Q, using (3.4)—(3.17), and taking into account Proposition 3.1,
one derives

M () — A,i’Mp(%C)@z(g)uz’M(x)

M
=Y &7 Z He.o0 (€) DU} (x)

=0 so=1
M-2
+y & Z O (E)D(E) Nay . (§) D1 (x)

=0 oy, o=1
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M-2 n

Ze’ Y W OHEPE) Neyay (8)
1= o= 1

xD“‘uk(x)+8M "Fo(x, &)

M-2 n

al
= Z g Z Ny ooy (s)ax—axm

=0 ajp,- =1 o
n

2.0
[ a O
Wiy o
ay1,0042=1 W1 T2

+@2E)bE)ud(x) — 1V E)p(E)ud ()] + M Fy(x, ¢)
(3.27) =M 'Fy(x, e)

where Fy(x, e) is a sum of terms having the form siw(S)Dlug(x), [ <
M,i>0, k=1,2,---,%(&)isabounded function, and || Fo(x, &) |l .2(qs)
< C, C isaconstant independent of ¢, x.

Just as J.L. Lions said that study of boundary layer in composite materials
and perforated materials seem to be open (Cf. [21], pp. 121). In this paper,
we give the boundary layer equation in such a way:

(@ (a2,
(3.28) +®2(§)(b(§) AP )uf) =0, x e

wi(x) = ud(x), x € NIy
wi(x) =0, xel,

where )»,((0), ug(x) are the k-th eigenvalue and eigenfunction associated with
the homogenized Helmholtz equation(3.24), respectively, k = 1,2, - - -

Define the operator K, : VO(Q¢) — VO(Q9), such that K, ¢ = v*,
where /¢ is the solution of the problem:
Q) = — g @1y (H L)

20X —_ 02X :
+0 (g)b(g)lﬂs =0 (g)p(g)fs, in Qf

Yf=0, on I,
Y e V@), ffe Vo))

(3.29)

Using conditions (A2)—(A3), one can verify that Q, : V, (Qf) — V(Q%)
is a symmetric and positive-definite operator, therefore the inverse operator
Ke = Q7' : vOQf) — VO(Q) is a bounded self-adjoint, compact oper-
ator due to the compact imbedding: VOI(Qi) — VO(Q‘“;) (see Lemma 2.4).
Denotes by o, (K;) the set of the discrete spectra of /C,.

Suppose that

(3.30) AL @) ¢ 0a(Ke)
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It follows from Fredholm’s alternative theorem that the equation (3.28) has
one and only one solution.
The following theorem shows that condition (3.30) is true in some cases.

Theorem 3.1 Under the assumptions of Lemma 2.1, if assume that A(lo) ()
is the first eigenvalue of (3.24), then we have, for a sufficiently small ¢ > 0

-1
(3.31) (@) ¢ ok

Proof. Given Qf C Q°, and meas(2° \ Q) = meas($2;) > 0

Denote by A7(£2°), Xf (€27) the first eigenvalues associated with equa-
tion (1.7) and the operator Q,, respectively. The variational principle implies
that 5(°) < A%(2). Suppose that A (2°) = A5(2¢) = . Then the eigen-
function of the operator Q, with eigenvalue p expanded by zero values on
Q° \ Q, is an eigenfunction in Q°. However, it vanishes at some points of
Q°, contrary to the similar result of Lemma 2.1, therefore A{(R2°) < Xﬁ («29).

By virtue of Theorem 3.1 of Chap Il of [24], we have |1 (£2°)—1 " (Q)| <
. If0 < & < (RE(Q) — A5(29))/2, then AV(Q) < A5(Q9), ie.

017 (Q@)7" ¢ 0a(KCe)
The proof of Theorem 3.1 is complete. O

Theorem 3.2 Let w;(x) be the weak solution of boundary layer equation
(3.28), and let a;;(%), b(%), p(%) satisfy conditions (A2)—(Ag). IF L)
& 0,(K,), then it holds

(3.32) ||w,§||V1(Q?) §C||u2||1,9, k=1,2,---
where C is independent of ¢, ug.

Theorem 3.2 is an immediate consequence of Theorem 3.6, Chap.III of
[24].

Theorem 3.3 Let w®(x) be defined as in (3.28), and Qf = Q° \ Qo C R?be
shown in Figure 3.4. For convenience, we do omit the subscript k under no
confusion. Under the hypotheses of Theorem 3.2, if afj e C(), Vea;j(§) €
L™ (2°), then there exists 1 < py < +00, such that

(3.33) w(x) € V2P(QF), 1< p<po

(3.34) lwllvar@ey < Ce 214’2 .0

We refer the reader to Appendix B for details.
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For M > 1, define
(3.35)

n

M =
M (x) = M) =)+ Y Ny E)Dud(x) x € Q

— =1 oy, ,o=1

wi(x) xeQ=Q°\Q, k=12,
where Ny, ..o,(§), 1 < | < M are defined as in (3.14), (3.16) and (3.17),

respectively.

M . .
The fact that u; ™ (x) [seynae, = UP(X) lsgnae, = wi(X)lsgunoe, implies

that IZE’M(x) e V1(Qf). However, generally speaking, there exists the jump
~e, M

— ~ . . u
of normal derivative of u],:M on the interface 020N 02, i.e. [#] lagenag,
# 0. To this end, we need to treat it with some regularization operators.

Set

)
Vi={xeQ: dist(x,02p) > 5}

_ 8
(3.36) V, = {x € (R"\ Q) : dist(x, 0Ry) > X dist(x,9Q) < 8}
Vi={xeQ: dist(x, 0 <}

It is obvious to see that Q C UV
It follows from the resolution of unity theorem that there exist a set of
3
functions {y; (x)};’:1 such that: (1) ¥;(x) € CFOV); ) Y Yilx) =
I=1

1, Vx € . _

Set 25 = Qo \ V3, Q] = Q; \ V3, and choose a sufficiently small § > 0
suchthats < C-e", M >2

Define
(3.37)

ap™ () = v () - M ) + Yo ) it ) 4 s x (s ) - it ()

where J; is a regularization operator (Ref. Section 2.17 of [1]).

As M
Therefore we have i uk (x) e VI(Q?) and [—— ]|3gomagl =0.
Recalling (1.6), we define
(3.38) USM (x) = (2™ (x)
&

Lemma 3.1%4 Let A: H — H be a linear self-adjoint compact operator in
a Hilbert space H. Let u € R', and let u € H, be such that |u|ly = 1, and

(3.39) |Au — pullyg < B, B = const > 0,
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Then there exists an eigenvalue [1; of operator A such that

(3.40) lwi —ul =B

Moreover, for any d > B there exists a vector u € H, such that
(3.41) lu—illg <2Bd7", lullp =1

and u(x) is a linear combination of the eigenvectors of operator A corre-
sponding to the eigenvalues within the interval [u — d, u + d]

Lemma 3.2%4 Let Ay and )\,({O) be the k-th eigenvalues of problems (1.7) and
(3.24), respectively. Then holds

(3.42) i =2Vl < Ce, k=1,2,--
where Cy, is a constant independent of ¢.

Suppose that the multiplicity of A = )»,((0) isequaltot,i.e. )L,((O_) | < )\/((0) =
o= <A, A =0, and ud(x) is an eigenfunction of problem
(3.24) corresponding to A0, ||u2||Lz(Q) = 1. Then for every € € (0, 1) there
is a function u} such that

(3.43) i — ulllyoey < Mye

where M is a constant independent of &, ug(x); ug(x) is a linear com-
bination of eigenfunctions of problem (1.7) corresponding to the eigenvalue

Now we would like to give the following error estimate, which is an
important theoretical result in this paper.

Theorem 3.4 Let (Ay, uy) be the eigenpairs of problem (1.7), k = 1,2, - - -,
Ae =0, and let @™ (x), Ay™ be defined as in (3.35) and (3.26b), respec-
tively. If condition (3.30) is satisfied, under the assumptions of Proposition
3.1, then

Cik)-e, if M=0,1

& E,M
(3.44) |)\‘k )\k | < { Ci(k) -min(e,yy), if 2<M <4,

_ M- o.M\ 172 ~e.M
where yy = ¢ + f [oc(u, " )]) dT ,and o, (i, )] denotes
920NIR

the jump of the normal derivative of fti’M on the interface of 92y N 0L2;.
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Moreover, if the multiplicity of the eigenvalues )L,(CO) are equal to ¢, then

Cyk)-e, if M=0,1

~e. M =

where i}, is a linear combination of eigenfunctions of problem (1.10) corre-

sponding to Ap, -+ Ap,,

In particular, if the eigenvalue A,EO) is simple, then

Cyk)-e, if M=0,1

~e, M e
G400l u"”VO(mS{Cz(k)-min(e,m), it 2<M<4,

Proof. Denote by H, the space V°(Q¢) equipped with the scalar product

(U, v)y, = /p(f)(az(’i)uvdx
£ £
QS

Consider the following auxiliary problem:

dx
(3.47) =0X %) f*(x), in QF
e*(x)=0, on T,
PF(x) € Vg (29,  f7(x) € V()

At = =@ (E)ay (9 ) L 2DbE)p )

By using conditions (A;) — (A4), Lemma 2.6, and Lax-Milgram’s lem-
ma, one can prove that there is a unique weak solution ¢ € V) (2¢), for any
& e V-1(Q¥), where V~!(Q°) denotes the dual space of VO1 (2%). In other
words, A, : V] (Q°) — V~1(Q?) is a symmetric, positive homeomorphism
mapping. Let NV; = A_!, then A, is a compact, self-adjoint, and positive-
definite operator in H, due to the imbedding Vol (QF) — VOQo) is compact
(see Lemma 2.4).

Assuming that ©° is a bounded convex Lipschitz’s domain, under the as-
sumptions of this theorem, by virtue of a-priori estimates of PDEs, we can
prove that uf (x) € V*(Q°), and u,i’M(x) € V2(Q§)(Ref. Appendix A), and
w(x) € V2P(QF), 1 < p < py < +00, (Ref. Appendix B).

If x € Qf, combining (3.35) and (3.27), and recalling Proposition 3.1,
one gets

B X X . _
(3.48) A = MO (DM () = e Fo(x, e)
If x € @7, combining (3.35) and (3.28) yields

(3.49)
A" =M @2(H) p(HyipM (x) = Acwi(x) — 20O (X p(X)wf (x)
=0
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From (3.37), (3.48) and (3.49), it thus follows that

sy | AT RO 0 = Fox,e), xeQf
' ﬁZ’M(x) =0, xeT,
For any v € V~1(Q°), observe that
(Fo.v)gr =A™ =272 E)p@)iag™ v)er
= (A" =202 (™, v)grnew
+(Aw; — A0 (D) p(B)wp. varnee

A =AM OB p (D), v)vine;

0

(3.51) (A = MO (I p D) ag M vivine:
On the other hand, one has
~ XA
(Aae™ — M e QM vvine;
X X
= (A = 21O o (O™, vving;

(3.52a) (A Ag(x) — )\i’M@Z(z)p(%)Ao(x), Vyings

0

where Ag(x) = 3 (0)usM (x) — Jy # (Y3 ()iis™ (x))
Similarly

~ X XA
(Aeiip ™ — xﬁ’“@%;)p(;)ui“, V)vne:
X X
= (Aewf = MO O)pOwy, vvingg

(3.52b) AL = MO (D)D) A (). Vv

where A (x) = Y3(x)wf (x) — Js * (Y3 (x)iig " (x))
Following along the lines of the proof of Theorem 3.16 of [1], one gets

(3.53) [Aollvivnag <6, IALllviwnas <6
Denote by || /||, the norm in V' (Q°):
G50 1S = sup {17 v)izen v € V@D 0l = 1
v

From (3.50), (3.52 a), (3.52 b), (3.53), (3.54), (3.48) and (3.49), one can
obtain



544 L.-Q. Cao, J.-Z. Cui

[ M—1 -1 -1
1ol = e+ 27" lollviasnay + &7 - 1At asnay,

+( / (lov@ ) ar))

CISIALIYA

(3.55) < C{SMA_’_( / ([as(ﬁgM)])ZdF)l/Z}

920N

The fact N; = A_! implies that the above equation (3.50) is equivalent

to the following equation
(356) g™ () = M NL(@piip M) = Ne(Fp),  in Q°
' aM(x) =0, on T,

Let us apply Lemma 3.1 to (3.56), setting

-1
w@) = (Ng" ) ag™, A= N(©pip™)
~ -1
A=xM =2 H=H, B=INFol - (I I,
Lemma 3.1 ensures that
-1 -1
M
() = ()
-1 -1
0
=1047) = ()

351 =cfe / ([og(ﬁ,i’M)]>2dF)l/2}, 2<M<4

0Q20N09821

It follows from Lemma 3.2 that A; — )»,(CO), ase > 0,k=1,2,---.So,

for a fixed k, there is a small neighborhood of point )\,({0) which contains a
eigenvalue Ap such that A7, = A, Therefore

O ) < Cl{gM—l +< / ([ae(zli’M)]de)l/z}

020N

By using Lemma 3.1 again, we can conclude that
g _ _ . 2 1/2
lag — Upllyos) < Cz{SM '+ ( f ([Us(ui’M)]) dF) }
00N

In particular, if the eigenvalue )\,((0) of (3.24) is simple, then one can choose
g = coug, co = const, such that

~E & _ e 2 1/2
g™ — ugMllyoge) < Cz{SM 1+( f ([as(u,;M)]) dl") }

920NIR
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Following along the lines of the proof of Theorem 3.16 of [1], one derives

lag™ = ag My e < 8 < Ce™
Therefore
B _ » 2 1/2
(3.58) [luf — @M o, < C{eM 1+( / ([Og(ui’M)]) dF) }

30N
On the other hand, using Lemma 3.2 and the trace theorem, one gets
(3.59) lu® — M lvogey < C -
Combining (3.58) and (3.59) yields
(3.60)
lu® — g™ yoggey < C - min(e, yu),

e \2 1/2
m=e""t4 (] (le@gn)ar) ) 2= m <4
020N
For M = 0, 1, following along the lines of proof of Lemma 3.2, and using
the trace theorem, one can derive the error estimates.
Therefore we complete the proof of Theorem 3.4.

Corollary 3.1 Let A%, A5, A\ be the eigenvalues of (1.1), (1.7) and (3.24),
respectively. Under the assumptions of Theorem 3.4, then

AL =e A0+ 2§

|)\'€_)\“9’M|< Cl(k)'87 lf MZO,I
CRE ) - minte, ), i 2= M <4,

(3.61)

Moreover, if the multiplicity of the eigenvalues )»,((0) are equal to t, then

(3.62)
f ~5,M__5 Cz(k)‘é‘, lf M:O,l

where Ui is a linear combination of eigenfunctions of problem (1.1) corre-
sponding to Ay, -+ Ny,

In particular, if the eigenvalue )»,(co) is simple, then
(3.63)

X . Crkk)-e, if M=0,1
10" — Ut 2 5: 2(k) e, if

Ca(k) - min(e, ym), if 2<M <4,

_ M-1 ~e,M 2 12
where yy = ¢ + S/ [oe (it ")) dT , 2<M<A4.
90NN
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Corollary 3.2 Under the assumptions of Theorem 3.4, then the following
error estimates hold:

(3.64)
VM — 2, < | 20 € i M =0,1
k KIVIED) =1 k) - min(e'2, D), if 2<M <4,
(3.65)

Cyk) -2, if M=0,1

X —¢
o=usM — .
190G = Udlmeany {Cz(k) min' 2, v, i 2= M <4,

_ oM-1 ~e,M 2 172
where yy = € + f [oe (it ")) dT , 2<M<A4.
020N02

Remark 3.3 It should be pointed out that, if ©° is the union of entire cells,

under the assumptions of Theorem 3.4, and ug e HM+2(Q), then we have

f—aoM < CeM " and |uf ™ —iif|lyoey < C)EM™!, 2 <M <4

4 Finite element methods for the related problems

For simplicity, we here discuss only 2-D problems without loss of generality.

4.1 FEM for Computing the First Eigenvalue A° and Eigenfunction © (£)
of Problem (1.5)

To begin with, one can see that the variational formulation of the first eigen-
value problem (1.5) is the following:

@.1)
[y R O s = A° [ p©)OEwE)dE, Yo e H'(QNw,0)

O0Nw ONw
OE) e H(QNw, dw), O() is 1-periodic in &
[ p®10E)7ds =1

ONw

Let J"0 = {K} be aregular family of triangulations of the unit cell Q New,
hy = mI?x{h k }- Define a linear finite element space

4.2)
Wi, ={veC(@Nw) : vlgeP(K), vhp=0}CH (QNw,iw)
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Define finite element solution (Ago, ©®y,) corresponding to (A, ©®)
satisfies the following integral equality

(4.3)
[ ay® e g = A, [ p©) O, v ©)dE, Vo, € Wi,
ONw J ! ONw
On(§) is l-periodicing, [ p(§)|O4(§)|%dE =1

ONw
and
A = inf D(v) = inf /w(g)a—”a—vdg
o ™ e, veWn, YT 9E; g

ONw

We can easily obtain the following results:

Proposition 4.1 Assume that a;;(§), p(§) satisfy conditions (Az) — (A3),
and a;j(§), p(§) € C(ﬁs), Vea;j(§) € L(Q2°), then holds

(4.4) A? < A) < A’ +Chj

4.5) 1©) — Oy () ll0.0n0 < Ch§1O]12.0n0

4.2 FEM for calculating periodic functions Ng,...q;(§)

Suppose that J" = {K} is the same partition of Q N w as in §4.1. Define a
linear finite element space

(4.6)
Vie={veC@QNw): vlx € Pi(K), v]sp=0}C H(QNw,30)

Proposition 4.2 LetNal...aj(é), aj=1,2,---n, j=1,---,1 betheweak
solutions associated with problems (3.14), (3.16) and (3.17), respectively,
and let Nﬂ’l’;’_.,a_l_ (&) be the corresponding FE solutions of Ny,...q;(§) in Vi, If

a;j (&), p¢) € C(§8), Veaij(§) € L>(Q2°), then it holds

l
(4.7) INayoas = N2 o 19100y < ChoO_ | Neyoa 112, 0000)
j=1

where C > 0 is independent of hy, ¢, Noyoajs J = 1,--- .1



548 L.-Q. Cao, J.-Z. Cui

4.3 FEM for computing eigenvalues and eigenfunctions
of the Homogenized helmholtz equation

In practice, we need to solve the modified homogenized Helmholtz equation
as follows
(4.8)
L () = =50 @lo 2% i (x)) + b0 (x) = 205l (x), in @
°(x)=0 on IR

where

NI(&)
s

(4.9) a 19,10/ ho(é)(au@)%-alk(é) )dé§

ONw

and

4.10) b = vy, f O, ©)bE)dE, p" =y, f ®;, E)pE)dE

ONw ONw
Note that ®,(§), Nj}.”’ (&) are defined as in (4.3) and (4.7), respectively.

Proposition 4.3 Suppose that mesh parameter hy is sufficiently small, then
the coefficients (&f’j‘)) satisfy the following properties:

(4.11) al = al
2 2 2
@12) Yy m <Y amn; <fiay i, YOn.m) € R

where (L1, (1o > 0 are constants independent of h.

Proof. One can directly verify that

e / @%ﬁ)@zvh“(s) +6)an ()5 (Nj”(s) +£))dé
onw m

The condition @y, (§) = @ (§) yields ~ a/* = a’?

Let &Z —a;j ="1ij = f(l) + rl(jz), where

(1) 2067 % oarhosgy = (Nhogy
Fiy = /®(§)8€I(N é) N(é))azm(é)asm(N (§) — N;(§))dé

ONw
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and
Py IND©)
= Dy = 9) [ O (€ E) + a(®) e
ONw hO
+0 [ (O}, &) — O2())(ai; ) + au(®) a;s)) 2t
ONw

It follows from Proposition 4.1, 4.2, and Cauchy-Schwarz inequality that
121 + 17D 1e < ChYIN L2, 000 I N 12, 000

where || A|| ¢ denotes the Frobenius norm of a matrix A, and C is a constant
independent of Ay.
Choosing a sufficiently small 4y > O such that

~

M1
Ch3lINill2. 000N 112,000 < ==

32
then it holds
N 2 2 2 2
%ZU?S Z&?joninj: Z&ijninj-FZfimij(ﬂz 71 Z
i=1 ij=1 ij=l ij=1 i=1
where 1; = % >0, =/ + 5 ' > () are independent of . O

Next we will analyze the perturbation of the eigenvalues and eigenfunc-
tions as computing numerically the coefficients of the homogenized differ-
ential operator.

Theorem 4.1 Assume that (A uk) and (k,(co), 122) k=1,2--- are the
eigenvalues and eigenfunctions of the eigenvalue problems (3.24) and (4.8),
respectively. Then it holds

(4.13) A = 201 < Ch3INGIE ore

Moreover, if the multiplicity of the eigenvalue X,(CO) isequaltot, ie.

) o _ ) ) O _
Aoy <dy = = M1 < Mgy A =0
then
0 -0 2 2
(4.14) ||uk - uk“LZ(Q) = CkhonNin,an

where 122 is a linear combination of eigenfunctions of problem (4.8) corre-
sponding to the eigenvalues A(O) . )»,({OJL -
The proof of Theorem 4.1 can be found in Appendix C.

By making use of the interior regularity estimates for PDEs, we can prove

the following theorem without any difficulty (Cf. [13,17]).
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Theorem 4.2 Under the assumptions of Theorem 4.1, assume that 2y CC
Q' cc Qas shownin Figure 3.3, and ug(x) e HY+2(QY), then the following
estimate holds:

(4.15) lu(x) — @ () lls.0 < ChglIN; I3, o lug llpr+2.0
wheres =0,1,--- , M,k=1,2,---,1 <M <4

For simplicity, suppose 2 C R? is a bounded smooth domain, J" = {e} is
a regular family of subdivisions of €2, and satisfies the following properties:

(F1). The elements are uniform rectangles in the interior domain ¢y CC €;

(F,). The elements are regular triangles in region Q; = Q \ Q, and the
elements are (curved) triangles near the boundary 0€2;

(F3). Any face of any element e; is either a subset of the boundary 0€2, or a
face of another element e, in the subdivision.

Define a finite element space: r > 1
(4.16)  SHQ)={veC®): v|.€P.le), v|sa=0}C H (R

Q,, e isarectangle
P., e isatriangle
of finite element spaces (see [5]).

The discrete variational formulation of the modified homogenized Helm-
holtz equation (4.8) is the following:

where P, = , here we follow P.Ciarlet’s notations

@.17)  AGiQ,, vi) = A" @Y o vn), Yo € S3(Q), k=12,

where

ou dv &
_ ~h h
(4.18) A(u,v)_/(aijogja—xi—kb Ouv>dx
Q

Next we will concentrate on discussing FE computations and the post-pro-
cessing technique of the first eigenvalue and eigenfunction associated with
problem (4.8). In practice, the proposed method in this paper is suitable for
the computations of other eigenvalues and eigenfunctions.

To begin with, let us introduce some notation. Set ||w||f‘ = A(w, w),
where A(-, -) as shown in (4.18). Define a Ritz-Galerkin projection operator
Ry, : H} (Q) — SH(Q) such that

(4.19) A — Ryu,vp) =0, ue H)(Q), Vv, € SH(RQ)
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Proposition 4.4 Assume that (A§ ), O) and (A Lhe 12(1)’ ) are the first eigen-
values and eigenfunctions of problems (4.8) and (4.17), respectively. Then
the following relations hold

_ =02
(4.20) 0< AW _so MW=l g, ¢ pie
T (w,w) (w, w)
~0 ~0
a(@y ,, u - ,
@21 0<i®< M _50 LAWY o)
(u]h,ulh) ’ (v, v)

and

~0 ~0 ~0 ~02
a(Rutty, Rutty) 50 _ I1Rutty — iyl

4.22 0<% -0 <
22 UM T (R, Ry YT (Rl Ryit))

Proof. (4.21) is a straightforward consequence of this relation S{)’(Q) C
HO1 (€2). It remains to give the proofs of (4.20) and (4.22).

Remark that w3 = XEO)(w, ﬁ?)z + [|lw — (w, uo)uoll2 , hence we have

2 2
w w ~ w, u)u
lwlla _ I ||A<)\‘§0) lw — (w, @)at I3
lwlig

(4.23) ):(10) = 5 = <
1
weH} (Q), w0 | wlg lwllg

On the other hand, one can directly verify that
Alw — (w, ul)ul,aul)—() Ya € R
Consequently
lw =@} = lw = (w, @)al I3 + | w, @il =il = w— . i)all;
From (4.23), one gets

~0\~02 ~02

0 < A(w, w) - < lw— (w, ay)uilly < lw— iyl
- M = 2 2
(w, w) lwlly lwllg

Putting w = Rhﬁ(l) into (4.20), and recalling (4.21), one derives

| Ryit) — @15
(Rpit?, Ryitd)

0<i® 30 <

Theorem 4.3 Under the assumptions of Theorem 4.2. Suppose il €

H'Y(Q), then the following estimate holds

(0 () r
(4.24) 0<il) —a” < cn?



552 L.-Q. Cao, J.-Z. Cui

Proof. 1t is well known that
IRyity — il < Ch?||af 2
||Rhu1 - u1||A = Chzr“fh”fﬂ
Hence we can choose a sufficiently small 2 > 0 such that
~ ~ - 1
I Rwiifllo = Nl llo — Ch*[lal 2 = 5
2
The use of inequality of (4.22) gives
0.<if — &Y < chair,,

To implementing post-processing technique, let us recall some supercon-
vergence results for computing the first elgenfunctlon of (4.17).
For convenience, set A = Ago), Ap = )\1 he o Wh = u?h, and assume

that H, is the eigenspace of the operator Cho with respect to eigenvalue
A= )»EO). Define a projection operator P : L? — H,, such that

l
(4.25) Pu =y (u, u;)u;

where u;,i = 1, -- -1, form a set of orthonormal basis of H,.
Let K be the inverse operator of L, then K is a bounded self-adjoint
compact operator due to Proposition 4.3.

Lemma 4.11%%! Let R), : HO1 () — S{)’(Q) be the Ritz-Galerkin projection
operator. Then we have, for qo > 2, 1 < g < qo

(4.26) MR K — AK|loo > 0, ash— 0

(4.27) [RhK oo = C

Lemma 4.2 Letu = Pu, € H, C Wh9(Q), g > 2. Then the follow-
ing estimates hold

(4.28) lullrt1,4 = C

(4.29) IRyK(I — Rpulloe < Ch2,  (r >2)

Proposition 4.5 Let (A, Hy) be the solution of problem (4.8) and (A, V;)
be the solution of problem (4.17), and V, C Sé’(Q). If H, ¢ W*than
HO] (), g > 2, then there exists u € H, such that

(4.30) IRhu — upllo.e < Ch™2, (r 2 2)

where uy, € V.
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I
Proof. Setu = Pup = Y (up, u;)u;, and u = Ryu — uy — P(Ryu — uy)
j=1
Observe that (i, u) = 0, for any u € H,, and hence u € HAL.
It follows from Fredholm’s alternative theorem that the operator (I —AK)
has a bounded inverse operator. Consequently, there exists a constant § > 0

such that

(4.31)
Slltlloo0 = 11 — AK)itl0,00
= [ = AK)(Rpu — un)llo,00
= ||)\,RhK(I — Rh)u + ()»thK - AK)(Rhu — uh)
+()\,_)\,h)RhKRhu||0,oo, (since up =AthKuh,u =)»Ku)
< MRy K (I —=Rp)ullo,co+ 1A Ry K =K |loo || Rntt — 0,00+ Ch?"

Hence due to Pu — Puy = 0, one derives
| P(Rpu — up)llo,co = Il P(Rpu — u)llo,00

I
= Z(Rhu —u,uj)ujllooco

l
Z | (Rt — u, u ) llujllo,c0
j:

I

1
> sla(Ruu —u,uj —ul)|llujllo.co
j=

!
< Ch¥ 3 Ml lluj st llujllo.co < CH [l
j=1

The use of the triangle inequality gives

(4.32)
IRy = i llo.co < Nltllo.co + 1P (Rytt — un)llo,co < llillo.co + Ch*

Putting (4.31) into (4.32), one obtains

(1 = § 1A Ry K — XK [loo) | Ritt — unllo,00
< $IIRWK (I — Rp)ullo.co + Ch*" [[ull ;41

Using Lemma 4.1 and Lemma 4.2, and choosing a sufficiently small 4 > 0,
one gets

1
(4.33) SIRw = unllo.co = ChH 2l 414

Let now show how the above superconvergence results can be applied
to implement post-processing technique of D% (x), where @' is the first
eigenfunction associated with problem (4.8).
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Fig. 4.1. Triangular mesh Fig. 4.2. Rectangular mesh

By using the nodal values of the bi-r-th ( r-th )finite element solution, we
can construct a bi-2r-th (2r-th) interpolation function at a new larger element
with respect to a coarse mesh as shown in Figure 4.1 and 4.2, which is called
as the interpolated FEM by Lin Qun et al., see [20]. Denote by Igf) the
bi-2r-th (2r-th) order interpolation operator.

Lemma 4.3 Ler 7, : HY(Q) — Sg(Q) be a usual Lagrange’s interpo-
lation operator. Then the interpolation operators I and Igf) satisfy the
following properties:
@34) T ulnp < Cllulln,y 1= p<o0,m=0,1, Yue ()
where C > 0 does depend on r, p but is independent of u, h.

@Y =15 =1, 51 =1,

VP e Ty, I3 u(P) = Tu(P) = u(P,), u < C(Q)
where Toh is the set of nodal points of J" restricted to Q

(4.35) =I5  ullmp e < CH ™ ullors1 .k

Yue WTLP(E), m=0,1,1<p < +00,VE € J*|q,,

): 0)

Theorem 4.4 Assume that ( ~0(x)) are the first eigenvalue and eigen-
7(0)

function of problem (4.8), respecttvely, and (Ay ), i 1., (X)) are the correspond-
ing FE solutions of (k(o) ~0()c)) in S0 (). Let the partition J" satisfy the
above conditions (Fy) — (F»), and, Qo CC Q' CC Q. Then the following
error estimate holds:
(4.36)

189 ¢e) = T3, () llo.gy + hlla(x) — T4, (¥) 1.0, < CA™

where C > 0 is independent of h, hy, r > 2
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Proof. By using Lemma 4.3, Proposition 4.5, and recalling the inverse
inequality in a finite element space(Cf.[5]), one derives
12" = 23 e
= 175" @it — 19 ) e
< C|Zpit} — i ;.2
< ClMuit) — Rpitf|l1 0 + | Rait) — i ;11,2
< CH @l 42.00 + Clli® — iyl .0, + Ch | Ry — i 4 llo.0q
< Ch™ il 2.0, 520

and consequently

~0 (2r) (2r)~0 (2r) ~0 (2r) ~0
(17 —IrM1h||1520<||M1—Ir e + 125, a7 — Ly, i) e

=< Ch't! ||”1 2,9

The remainder can be completed similarly. m|

4.4 FEM for solving boundary layer equation

In practice, we need to solve the modified boundary value problem as follows,

(4.37)
awk (x)

2 (Dyag(L) )+ 02 (2 (B(E) — A p(ENTE() =0, x € Qf
wk(x)—O, x el

Wi =i ,(x) x€dQNIQ, k=12

where O, (£) is FE solution of ®(§) in Wp,, (5»,({%, u . »(x) is FE solution of
G2, @0(x)) in S!(K).
Let 1 = {e} be a regular family of triangulations of subdomain Q¢ =

Q° \ Qo as shown in Figure 3.4, where h; = max {h,}, 0 < h—é << 1.
e

ecFM
Define a linear finite element space:

(4.38) S Q) ={eC@): vlePie) vlrug =0}
From (3.28), respectively (4.37), one can prove that
(4.39)

(@2( Jaig (9 2= 00y 4 0205y (%) — 20 p(E)) (wf — B (0)

— 0} ) Gk — (02 — 0 )(b(E) — 1 p(E)yig

o @%,O)A(O)p(g)w,iu) + 07 e =iy, x el
wp —wp(x) =0, xel;
w§ — WE(x) = u(x) — i ,(x)  x € IR NI,

awk
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Theorem 4.5 Suppose that wi € H'(Q%, ') solves the variational equa-
tion (3.28) with (A(O) ug(x) defined as (3.24), and w;, € H'(Q%,T,) solves
the variational equation (4.37) with ()»,((021, ﬁg ») defined as in (4.17). Let
wk’h1 (x) be the FE solution of wy (x) in Sh (€21). Under the assumptions of
Theorem 3.3, then we have the following estimate.‘

(4.40)
i h :
) = 5, Dlvrap < C{C) +ho+ ], 1< p < po < oo

where C is constant independent of €, hy, h, hy; and hy, h, hy are the mesh
sizes associated with Q N w, 2, Qf, respectively. r > 2 is the degree of
piecewise polynomials of Sg(Q) defined as in (4.16).

Proof. By Theorem 3.3, we have
[ (x) — Wy, O llvirge = Chl [l Ily2. PR
(4.41) <C( )”ukh”ZpQ <C(—2)Iluk||2psz

On the other hand, by using (4.37), Proposition 4.1, Theorem 4.1 and
Theorem 4.3, one gets

(4.42) lwe () — W) v sy = CLA" + ho}

Combining (4.41) with (4.42), and using the triangle inequality, we can
complete the proof of (4.40). O

5 Multiscale finite element method

To begin with, let us introduce the first-order difference quotient as
follows (Cf. [3]):

0

(5.1) 8yl (N = e

(N) Je(Np)

eca(Np) i

where o (N ) denotes the set of elements with node N,; T(N,) is the number
of elements of o (N,); 122’ »(x) denotes the FE solution of ftg(x) in S(})’(Q);

dii ity
[%] (N ) is the value of the derivative g )]C‘jh at node N, relative to ele-
1

ment e.
Similarly, define any higher-order difference quotients as follows:

(5.2)

d
> Z Xy ~kh(P)avf/] (Np)

eca(Np) j

81 “Xoy ﬂk,h(NP)

Xal

f( Ny)
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where d is the number of nodes in e, P; are the nodes of e, ¥;(x) are Lag-
range’s shape functions, j =1,2---d

Therefore, the multi-scale finite element computing formulation can be
written as follows:

(5.3)

M n .,
GEMBo (N a,(Np) + 38 3 NI €N, o i 4 (Np), Ny € 9
k,h,hy p’ — =1 oy, 0=l

Wi, (Np), NpeQf

(5.4) UPhiio (N, = On (N (N,)

where the integer 2 < M < 4, hg, h, h; are the mesh parameters of 0 N
w, 2, Qf, respectively.

To improve computing accuracy for ﬁ,ii%;l’io, we will make use of the
post-processing technique (see Theorem 4.4).

(5.5)

M
pie Mo i, (0 + Y Z Nl )L
Py, (X) = =1 o=l !

Wi, (), x€Qf

3 (o), x €

Xa/

Let us recall that Iz(ir) denotes the bi-2r-th (2r-th) order interpolation operator.
(5.6) PULM (x) = @ (&) - P 0 (x)

Finally, let us give some convergence results for the eigenvalues and
eigenfunctions.

Theorem 5.1 Let (A%, Uf(x)), (A5, ul(x)), 0, ul(x)), G, adx))
be the eigenpairs of problems (1.1), (1.7), (3.24) and (4.8), respectively;
and let (A°, ®(&)) be the first eigenpair of problem (1.5), and wy (x) and
wy, (x) be solutions of boundary layer equations (3.28) and (4.37) correspond-

ing to (A(O) uk(x)) and ()\,(coil, ﬂg n (X)), respectively. Let Ny, .., (§), o) =

1,2,---, 1 < j <, 1| >1beperiodic functions defined in unit cell
0N Let G0, a0 ), (), ©0 (§)), NI, (&), and G, (x) be the FE

solutions associated with (A,((O), 122) (AY, ®%(#)), Ny, ..oy (§), and wi(x),
respectively. Under the assumptions of Theorem 3.4, then the following error
estimates hold:

AL =e 2N+ 2

C~(s—|—h0+h2’), if M=0,1

(57 af — A < . ) .
C-{mm(s,yM)+h0+h’}, if 2<M <4,
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(5.8) lluf(x) = Piig i) llviey)
C. 81/2+h0+h2r*M}, if M=0,1
C Amin(e2, y /% + ho + h2r—M}, if 2<M <4,

(5.9) U @) = PUSE" )l e
C. sl/2+ho+h2r—M}, if M=0,1
C Amin(e2, y1» + ho + th*M}, if 2<M <4,

A

(5.10) |U{ (x) = Ony(§)wy p,, ()11 p.02¢
C.{el/2+h0+h’+(h—§)}, if M=0,1
< &
N C-{min(el/z,y;,,/2)+ho+hr+%)}, if 2<M <4,

where yy = {eM_l + ( f ([Ug(ﬂ,i’M)])zdF)l/z},Z <M <4 and
9NN

1 < p < po < +00,C > 0is a constant independent of ¢, hy, h, hy; and

Qo CC Q is the union of periodic cells, Q] = Q° \ Qo, r > 2 denotes the

degree of piecewise polynomials in Sg (2) defined as in (4.16), and hy, h,

hy are the mesh parameters of Q N w, 2, Qf, respectively, 2r > M + 1,

O0<h <<€ k=12, -

Proof. For x € ﬁé, from (3.61), (4.14), (4.36), (4.7), (4.15) and (4.36), we
obtain
uf (x) = Piig i () = uf () = up ™ )+ up ™ ) = Paghil ()
= uf () — usM (@) + ud(x) — @) + adx) — I8Vl , ()
M n
!
€

6 Y (Napea () = N2 () D*ul(x)

(511) l;ll (xl,mr;(xl:l
+ZZ DY 1szr.‘.c,, (&)D* (ud(x) — aY(x))
=1 A1, 0=

+Y e Y Nbo @D 8 T, (x)

a,- o =1

Mz

ay Xy

.\
Il
—

and consequently

g (x) — Pt i () v )
C-{e"? 4+ hg+h>M), ifM=0,1
=\C - min(s' 2, y)P) + ho + B2 M, if2 < M < 4
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On the other hand, for x € Qf, we have
(5.12) ug(x) — ﬁ},‘ihl(x) = up(x) — wi(x) + wy(x) — ﬁ),i,hl(x)
It follows from (3.45) and (4.40) that
llug (x) — W, ) lvrras
c-{e+no+n+ (M)} it M=o
= C- {min(sl/z, vl +ho+ k" + %)} if 2<M <4,
where Q¢ = Q° \

To summarize the above results, we can complete the proof of Theorem
5.1. O

6 Numerical results

In this section, let us show some numerical results of the first eigenvalue and
eigenfunction.

Example 6.1 Consider the Helmholtz equation as follows:

6.1)
LU (x) = —a%(aij(g)agxix)) FhEUE () = Ap(BUs (), in @
Us(x) =0 on 9Q°

where Q° = Q N ew as shown in Figure 6.1, the periodicity cell Q N w as
shown in Figure 6.2, dw N Q denotes the surface of cavities restricted to

— 1
ONo, &¢=1;

(n] | (u] (w0 (]| (]| [ | [w] | [a] | {]| [w]
(]| (o] | (o] [o] | (] | (]| [o] | (w0 | (] | [W]) [m] | (W) ~*
(]| [u] | [w] | (o] [o] | ] | ] | (]| (] | (o]} ] [w]
(a]| ]| (] (w]| [w] | (80 [u] | (0| [w] | [w] ] | [u]
(]| [0 (o] | (o] | ] | ()| (w0 | [0 (o]} (W]) (] (O]} 2o
(]| (o] | (] | (] (o] | (o | (o] | [w]} ] | (]| (W] (] Aiji
(]| (] | (o | (o] | (u] | [o] | | [w] | (]| ]| (]| [w]
ne|EEeuoeuEmm ., a,
(]| (] | (o] | [w] | [o] | ] | [u] | {o] | ] | ()| [u] | [w]
(] | (w] | (o0 (] | (] (]| (]| (o] | [w] | (]| [o0} [0
(]| (o] | (o] (o] | (o] | [w] | (o] | [a]| [u] | (W} [w] | [a]
mmmmmmmmmm 0 1/3 2/3 1
Fig. 6.1. Domain Q° Fig. 6.2. Unitcell 0 Nw
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Since it is impossible to find the first eigenvalue and eigenfunction by us-
ing analytic method, we have to replace (A®, U?(x)) with their FE solutions
in a very refined mesh. For solving directly the original problem, we need to
implement the triangular subdivision of ¢, which is such that the disconti-
nuities of the coefficients a;; coincide with sides of the triangulations (which
needed 37696 triangles and consequently was longer and more expensive)

Here we use the subspace iterative method for computing numerically the
first eigenvalue and eigenfunction.

In (6.1), assume that b(’g—c) =0, p(%) =1
Case 1: aijo = 8[j7 aij1 = ZO.O(SI'J‘;

Case 2: aijo = 8ijv aij1 = 0.002(3[]‘;

Case 3: aijo = 5,‘/', aij1 = 0-00481‘/';

Case 4: aijo = aij1 = aij;

Case 5: aijo = Sijs aij1 = 114.055./;
1

Case6: an =an = g mmry7e) FsinGry ey 2 =41 =0,
o
Note that §;; = 1,ifi = j; §;; =0, if i # j.

It is interesting to compare with computational amount shown in Table 1.

Notice that symbols I, I1, I11, 1V denote different partitions over the
domain 2 for solving numerically the homogenized Helmholtz equation,
respectively.

Remark 6.1 Let us have a glance at Table 3. By comparing with the above
numerical results, we can deduce that the first eigenvalues between the

Table 1. The comparison with computational amount

original equation cell problem homogenized equation  boundary layer

1 11 111 IV
elements 37696 1296 10224 2556 1136 284 3024
nodes 19813 1369 5245 1345 613 165 1764

Table 2. The computational results of relative eigenvalues

A° homogenized problems A0
1 11 111 1V
case 1 46.6267 15.6964 15.7280 15.7805 16.0637
case 2 0.02879 10.2488 10.2694 10.3037 10.4886
case 3 0.05754 10.2684 10.2890 10.3234 10.5086
case 4 11.4159 15.4760 15.5072 15.5589 15.8382
case 5 56.7032 14.1307 14.1592 14.2064 14.4614

case 6 3.05553 4.14434 4.06663 4.0802 4.15343
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Table 3. The comparison of computational results: A. eigenvalues

original problem A* approximate solutions e "2A% + A
1 11 111 1A%
case 1 7893.03423 7161.94335 7161.97494 7162.02744 7162.31064
case 2 14.81526 14.39436 14.41498 14.44926 14.63417
case 3 19.31837 18.55469 18.57536 18.60970 18.79497
case 4 1748.16067 1659.3776  1659.40873  1659.4605 1659.73971
case 5 9215.64367 8179.3855 8179.41392 8179.46118 8179.71614
case 6 452.12864 444.13998  444.06227  444.0758 444.1491

Table 4. The comparison of computational results: B. eigenfunctions

leoll; 2 lleill; 2 leall; 2 lleoll 1 lletll 1 lleall 1

1940, 2 U1, 2 131, 2 10101l ;1 [ZHD 1UST 41
Case 1  0.040199 0.039678  0.039765 0.061445 0.061531  0.061464
Case2  2.051521 0.024299  0.024305 1.480773  0.030492  0.030489
Case3  2.048649 0.005567 0.005577 1.478613 0.015898  0.015882
Case4  1.246650 0.021465 0.021211  0.915519  0.036834  0.036413
Case 5 0.155731 0.054466  0.054471  0.142533  0.078790  0.078787
Case 6 1.177821 0.101529 0.101532 0.911825 0.243411  0.234077

original problem and the corresponding homogenized equation are very close,
and this is a very important conclusion in engineering applications.

Now let us introduce some notations. U®(x) denotes the FE approximate
solution of the first eigenfunction for the original problem (6.1) by direct
numerical computation in a very refined mesh. u°(x) denotes the FE ap-
proximate solution of the first eigenfunction for the homogenized Helmholtz
equation (3.24) in a coarse mesh I. U; (x), U; (x) are respectively the first-
order and the second-order multi-scale FE solutions calculated by multi-
scale FE scheme (5.4), set eg(x) = U®(x) — O(&)u’(x), e1(x) = U?(x) —
Ui (x),ex(x) =U*(x) — U5 (x).

The comparison of some computational results for the first eigenfunctions
will be shown in Table 4 (also see Figures 6.4—6.7). It should be stated that
the proposed method in this paper is a robust one for calculating the eigen-
values and eigenfunctions of second order Helmholtz equation in periodically
domains ( with stiff inclusions).

Concluding Remarks It should be mentioned that the proposed method in
this paper can be applied to solve elastic systems of second order elliptic equa-
tions without any difficulty. From the numerical point of view, this method
is also suitable for calculating the eigenvalues and eigenfunctions of sec-
ond order Helmholtz equation in a perforated domain with a quasi-periodic
structure.
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Fig. 6.4a. Case2:solution U*® Fig. 6.4b. Case2: MFEM U;

Fig. 6.4c. Case2: MFEM U;{ Fig. 6.4d. Case2: e;(x) =U*® — U;

Finally, we would like to state that the theoretical results and numerical
algorithm presented in this paper have wide applications in physics, mechan-
ics and industry engineering. If one wishes to calculate the eigenvalues (such
as the natural frequencies, energy levels) of composite materials in a perforat-
ed domain, then only one needs to solve the first eigenvalue problem over unit
cell(see (1.5)) and the homogenized Helmholtz equation in whole domain €2
(see (3.24)), due to Theorem 3.4. According to the superposition principle,
the natural vibration modes of original problem consist of two parts, the
first one is the natural vibration modes of the homogenized problem,which
reflect the macroscopic behaviors of structure; and the second one are the
periodic solutions Ny,..q(§),/ > 1,a; = 1, ---, n, which depict the local
fluctuations of solutions considered.

Appendix A: The proof of proposition 3.1

For simplicity, we here consider only 2-D problem without loss of generality.
We can directly prove the following lemmas under some assumptions on
the geometry of the unit cell and physical materials.
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Fig. 6.5a. Case3:solution U*® Fig. 6.5b. Case3: MFEM U;

0.8+
0.8

04

Fig. 6.5c. Case3: MFEM U; Fig. 6.5d. Case3: e2(x) =U® —U;

Lemma A.1 Let ©(§) be the first eigenfunction of problem (1.5). Under
the assumptions (H), (A1) — (A3), (B1) — (B3), (C1) — (C2), and a;;(§) €
C’(Q Nw), p(&) € L®(Q N w), then we can show that O (£) is symmetric
with respect to the middle hyperplanes A;,i =1,2,--- , n.

LemmaA.2 Let Ny, (§), Noya,(§), -+ s Neyyooy(§),j = 1,2,--- ,n, j =
1,2,---,1 be the solutions of problems (3.14), (3.16) and (3.17), respec-
tively. Under the assumptions of Lemma A.1, then we can show that Ny, (§),
Ny, (§)y -+, Noyooy(§), 2 = 1,2, -+ ,n, j =1,2,--- | are symmetric
or anti-symmetric with respect to the middle hyperplanes A;, i = 1,2,--- , n.
For example,

Ni1,6) = —Ni(1 = &1, &), Ni(&1, 6) = Ni(§1, 1 — &);

N2(&1,62) = Na(l — &1, &), Ny (&1, 6) = —Na(61, 1 — &2);

Ni(§1, &) = Nu(l — &1, &), Ni(§1, 6&) = Nu(§1, 1 — &);

N (&1, &) = Noo(1 — &4, 62), Nn(&1, &) = Noa(&1, 1 — &2);

Ni2(§1, &) = —Nio(1 = &1, &), Ni2(§1,8) = —Nia(61, 1 — &);

No(§1,62) = —Nau(1 — &1, &), Ny (81, 62) = —Noy (81, 1 — &2).
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0.8+
0.8
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Fig. 6.6a. Case4:solution U*® Fig. 6.6b. Case4: MFEM U}

0.8+
0.8
044

0.2+

Fig. 6.6c. Case4: MFEM Uy Fig. 6.6d. Case4: ei(x) = U® — Uy

Recalling (3.14), under the assumption (Cy) (see §3), we have

0T IN: (&)
wn | al@©lwo=,

Ni(§) =0 on 090

+an®)]=0.in 0N

2
Set A = @) (an® + ¥ a;;© B, Ax = 02@) (an®) +
j=1 j

2

Y %—?) Hence (A.1) can be rewritten as the following form:
j=1 J

d 0
(A.2) 3_§1(A11) + 8_52(1\21) =0

Set v(€) = (/™ & — 1)(e™™% — 1), my # 0,my # 0. It is obvious
that v(€) € H'(Q Nw, 3Q).

The variational formulation of problem (A.2) is the following:

2
i27 Z m / Ap (E)(eP™mE — o ZTmisiydE = ()
k=1

ONw



Spectral properties of Dirichlet problem 565

Fig. 6.7c. Case5: MFEM Uy Fig. 6.7d. Case5:ej(x) =U® — Uy

and consequently

A3)  mycD, — ) +madd, —d ) =0, my #0,my#0

mimy mymy Omz

where ¢, = [ Aye?ids, fn]l)o— [ Apermmiige,
ONw 0Nw
. 1 ‘
Al = [ Ayeimmige, dl) = [ Aseimiae,
OoNw oNw

Lemma A.3 Under the assumptions of (H), (A1) — (A3), (By) — (B3), and
(C1) — (C3), then we can prove that the corresponding Fourier series of
the function F (&1, &) = A1(&1, &) is absolutely uniform convergence on
[0, 1] x [0, 1].

2
Proof. Set Fi&1,62) = A, &) = 0% (n(®) + L ;) T
=

Under the assumption of (Cy), using Theorem 6.17, Theorem 6.18 of [13],
and Theorem 7.2 of [14], one can show that the following process is valid.
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For m; # 0, and m, # 0, let E,(nll)mz denote the m, m, th Fourier coeffi-
cient of F,, ; thus

If we integrate by parts with respect to &, holding &; fixed, then by peri-
odicity we obtain

I 1
5’(”1])”12 = —iZJTmQ// Fgleiznm'é}déj
0 0

Integrating by parts again yields

(A.4) D — A ?myimycV)

mymy mymy

If we let ¢, COm , for my # 0, denote the m,-th Fourier coefficient of F,,

then C<()2 = —l27TI1126(()”2 , and similarly, for m; # 0, we have c,(nll)0 =
(1 ) (

—i2nmc,, . Finally, we define COO) to 0. Bessel’s inequality applied to
Fy,, F,, and F¢ ¢, implies that

+o0 1 1
(A.5) DD / f [F + F2 + F2 ld&1d&
mimy=—00 0 0

and by using Cauchy inequality, we obtain:

(A.6)
Dl = “’I+Z|~fnl?mz +Z|~$?o +ZI1§22
< 11+ (X 2)‘ (Lot 2)‘”
~ 12 , < 1/2 RNV
() (D ) L) ;0

Because of (A.5), the last sum above is finite. Consequently, we complete
the proof of Lemma (A.4). m|

For the reader’s convenience we give here the following lemmas, which
are some well-known results.
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Lemma A.4 Assume that f(x, y) is continuous on a bounded domain R(a <
x < b,c <y <d), and there exists a continuous partial derivative fy’ (x, y).
Then the following equality holds, forc <y < d

b b
0
A7) o [ s = [ fi s

Lemma A.5 Suppose that f(x, y) is a even function on domain [—a, a] X
[_ba b]r ie. f(_x, y) = _f(xa )7)» f(xs _Y) = _f(x7 y) Then it holds

mmx . nmwy

A8 ,Y) ~ D,nsi in—_
(A.8) fx,y) Z sin ; sin 5

m,n=1

b a

where Dy, = % of{ fix, y)sin%sin% dxdy

Lemma A.6 Suppose u,(x) € [a,b]l,n = 1,2,---, and {u,(x)} is uni-
+00 +o0 b

form convergence on [a,b), i.e. > u,(x) = S(x), then ) fun(x)dx =
n=1 n=1a

b

fS(x)dx.

Theorem A.1 Under the assumptions of Lemma A.3, we have

(A.9) mic) 4+ madV =0, m; #0,my#0

mimy mimy
Furthermore
(A.10) micl)y +madg,) =0, my #0,m # 0
Proof. Integrating on both sides of (A.2) with respect to &;, one gets
31 &1
/8(1\ )d€+/ 8(1\ )dé§r =0
9E, 11)d§1 9%, 21) A&
1/2 1/2

Lemma A.4 ensures that

&
0
A+ 3_52(/ A21d§)) = ¢2(&2)

1/2
- 3 -
Set Ay = f Ay d&;. One can directly verify that A, is symmetric and
1/2

anti-symmetric with respect to the middle hyperplane A; and A,, respec-
tively, due to A;; are all symmetric with respect to the middle hyperplanes
Ay, As.
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From Lemma A.5, we have
AID  Ay(E, &) ~ Z(—])m‘+’"2+lozmlmcos2nm1§1 - Sin2mmo€y

It follows from Lemma A.3, lemma A.5 and equation (A.8) that

0 ~
35, Ban = - D (=1 Ay cos2mmEy - cos2mmags + $a (&)
2

miy,m3

Using Lemma A.6, and integrating on both sides of the above equation
with respect to &, one gets

B (_1)m1+mz
Ay = — Z TmzAmlmzcos%rmlél - sin2mmyé;

mp,m3

&
(A.12) +/¢z(§2)d§2 + ¢1(&1)

1/2
Comparing (A.11) and (A.12) gives
(A.13) 2T motty my = Amimy, M1 7 0,mp #0
On the other hand, recalling the definition of the coefficients of Fourier series

and integrating by parts, we have

A2160s27rm1§1 - sin2mwmy&yd€1dé,

Cmymy

o,
o

1 &

I
= [sin2wmy6d&, [( [ Ay (t, &)dt)cos2um§,d§,
0 0 172

1 11
[ [ A ()sin2mm & - sin2wmy§rd§ d&>
00

2wm,

(A.14) S

Letusrecall that A;, Ay are symmetric and anti-symmetric with respect
to the middle hyperplanes A, A,, respectively. Lemma A.5 implies that

(A.15) A~ Z(—l)”"J“mzAmlmzcosanlSl - cos2mmo&r

(A.16) Aot ~ Y (=)™ By, sin2mwmy € - sin2mwmoé
From (A.13) and ( A.14), we get

mlAm1m2 +m23m1m2 = Oa ni # 0’ nmy # 0
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Comparing with the relation of the coefficients between real Fourier’s
series and complex Fourier’s series(see [28], pp190), one can get

(A.17) micV 4 mydV

mypma mypma

=0,m #0,my #0
Combining (A.3) and (A.17) yields

(A.18) micyy + mods,)

Ony =0, mi #O,mz;«éO
Therefore we complete the proof of Theorem A.1. O

Theorem A.2 Under the assumptions of Theorem A.l, we can infer that
0:(N1), 0e(N>) are continuous on the boundary 0 Q, where og(Ny), 0 (N>2)
denote the normal derivatives of N1(§) and N, (&), respectively.

Proof. Recalling the definition of N (&), we have

& [02@ (0@ HE +an©)] =06 e 0o

(A.19) {
Ni(§)=0,8§ €00

Set v1(£) = €228 _ 1 the variational formulation of (A.19) is the follow-
ing:

0,m»>

(A.20) /[A“]vl(é)dr‘ +i2rmyd” =0

I

where side /; as shown in Figure 3.2, and [A ;] denotes the jump on the side
l] of 0 Q

Because of Aj1l;, = Aiil,, i.e.[A11]l;, = 0, one gets dé})nz =0.

Putting it into (A.18), one has c}, = 0.

Similarly set vy (£) = ¢/27™$1 — [, the variational formulation of (A.19)
is the following:

(A21) / [A21]02(8)dT + i2mycl))y = 0

I3

where side /3 as shown in Figure 3.2, and [A,;] denotes the jump on the side
I3 0f 0.
Consequently

(A22) / [Aa]ua()dT = 0
I3



570 L.-Q. Cao, J.-Z. Cui

Integrating directly on both sides of (A.19), we have

(A.23) /og(Nl)dF =0
00

Observing that f [A11]dT = 0, thanks to Lemma A.2, and using (A.23),

one derives f[A21]dF =0.

To summarlzed the above results, we can deduce that

/[Azl]eihmlsld& =0,Vm, € Z
I3

The completeness of the function family {e27"151 ;‘]’i_oo implies that

[A21]l;; = 0, a.e.. Hence we can include that oz (Ny) is continuous on 9 Q.
The remainder can be completed similarly.

Remark A.1 From LemmaA.1 and Lemma A.2, we know that N (£)(N(§))
is anti-symmetric(symmetric) and symmetric(anti-symmetric) with respect
to the middle hyperplanes Aj, A, respectively, and hence we have
fQﬁw @%(£)Ny(§)dé = 0,k = 1, 2. Therefore the proposed method in this
paper is equivalent to the classical homogenization method (see,e.g.[2,6, 16,
18]).

It remains to prove that o (Ny,a,), 0t (Vo aye;) are continuous on the
boundary 0Q, o; = 1, 2.

From Lemma A.2, we can directly verify that oz (N|2), 0z (N2) are con-
tinuous on the boundary d Q. Hence next we only consider oz (Ny1), 0z (N22).

From (3.16), we have:

(A.24)

12|02 ©) (@ O YL + aa @M )] = —0%© | an Gt +an @]
+9_16Al11,‘$§ e0Nw

Ni1(§) =0, &§€0dQ

2
Set Avi = O2E) (an©NE) + L a1, ),
j=1

;
2
Ao = 0@ (@M ) + X azy &) G ).
j=1 y

Similarly to (A.3), one gets

—i2mmi (el — ) — i2wma(dll) — d,.)

mimy m10 mimy 0Omy

(A.25) = =), ot o mi £ 0,my #0

m]mz



Spectral properties of Dirichlet problem 571

where () = [ Ain@e?™EdE, cd= [ AynE)ePmidE;

mypmz
ONw ONw
e 1 ;
dilh, = | Mon®e?Eds, dy,) = [ Aoni(§)ePRdE,
ONw ONw
and 1), . ¢! cfh) are stated as in (A.3).

Set G(&, &) = %(Az,u)

2
= 5 (P OE@ONE + 3 a©) b)),

Following the lines of the proof of Theorem A.1, we can obtain the following
theorem:

Theorem A.3 Under the assumptions of Theorem A.l, then the following
equalities hold:

(A26)  —i2wmycl))) —i2mmyd))) = —cl), . my#0,my#0

mim mimy mipmy?

Furthermore

A27)  i2mmich )+ i2mmadly) = g+ e my # 0,my # 0

Omo

Theorem A.4 Under the assumptions of Theorem A.3, we can prove that
0t (Nyyay), @j = 1,2, are continuous on the boundary 9 Q, where o (N, a,)
denote the normal derivatives of Ny, 4, (&), respectively.

Proof. Setv;(£) = (!5 —1), vy(£) = (¢!>™1€1 —1), then the variational
formulations of equation (A.24) are the following:

/ [A1 11 ()i ()T = i2wmady,) — cih)
I

/ [ ©)I0a®)dy = i2mmy M) — e
I3

Theorem A.3 ensures that

/[A1,11(€)]v1(€)d1" +/[Az,11(§)]vz(r§)dF
I I3

. 1 | . 11 1 1
(A.28) = zanzdémz) + lZﬂmlcfm& — c(()nzz — Cr(nl)O =0

Set A, = [[A1L11]€27™52dEy,  pw, = [[Ax11]e?™™51dE, my #0
I

I3
my #0; A= [[Ar1ld&, o= [[Ar111dé
I I3
(A.28) implies that
(A.29) Amy — do + my — o =0
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Integrating directly on both sides of (A.24), one gets Ay + 1o = 0, and
consequently

(A.30) Jomy + oy = 0, m1 # 0, my # 0

Let m, — 400, for any fixed m, and using Riemann-Lebesgue lemma
(see [28]), one derives w,, = 0, for Vm; # 0. Similarly, one has 1,,, = 0,
for Vm, # 0. Hence one can deduce that [A 11] = const, [A;] = const.
Therefore it implies that oz (N11) has a constant sign in the neighborhood of
a0.

The fact f 0:(N11)dI' = 0 gives o¢(N11)|ap = 0, a.e.. Similarly, one

20
can prove that oz (N22)|sg = 0, a.e.. Furthermore, we have c,(ﬂ1 11()) = 0 thanks
to ey = 0.

The proof of Theorem A.4 is complete.

Following the lines of proofs of Theorem A.2 and Theorem A.4, one can
prove the following theorem:

Theorem A.5 Under the assumptions of Theorem A.3, we have 6z (Ny,aya3)
a; = 1,2, are continuous on the boundary dQ, where 0z (Ny a,a;) denote
the normal derivatives of Ny, a,a;(§), respectively.

Remark A.2 1tshould be mentioned that, generally speaking, o (N1111) is not

continuous on the boundary 9Q, due to f @2($)GE(N1111)dF =
1Y

S/ ®2(-§)(Zau 81“+a11(-§)N11(§)—ﬁ‘lmen(S))dS= [ e

Qﬁw ONw

( Z ai; 8N “1 )dé # 0. Therefore, under the assumptions of Theorem A.2,

We can at most obtain the fourth asymptotic expansion.
To summarized the above results, we have the following result:

Theorem A.6 Under the assumptions of Theorem A.3, then the following
regularity estimates hold : uiM IS V2(Q ), 1 < M < 3, in other words,
UM =0 - uf™ e HX(Q), where Q) CC Q°.

Appendix B: Regularity estimates of the solution for boundary layer
equation (see (3.28))

For simplicity, here let us consider only 2-D problems, and it can be treated
similarly in other cases (Cf. [15]).
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We first discuss the boundary value problem over concave domain 2; C
R? as shown in Figure 3.4 as follows:

{—Au = f(x) in
(B.1a)
ux)=0 on 08

Let {o j}?’: | denote the angular points of 2y, respectively, and B;m, j
1,--- N are the corresponding internal angles, namely, 8; < 8, < ---
By, Vi= ,3%.

Itis obvious that 1 < By <2, 3 <yw < 1. Suppose that

(B.1b) Vi=lxeQ :Ix—ojl<r;}, j=1,---,N

IA I

satisfy
(B.1c) Vinv, =0, Vo=Q \ULV,

Lemma B.1!'>! Let u be the unique solution of problem (B.1a). If f € L*(Q),
then it holds

N
(B.2) u(x) =Y _cj(fHu;+U(x)

j=1

where U(x) € H*(Q1) N Hol(Ql), U2 < C|lfllo, and the constants
cj(f) satisfy
le; (I = Clifllo

Note that u; are some functions independent of f, u, and satisfy the fol-
lowing conditions

T Ify; > 1,thenu;(x) =0;

(') uj(x) = 0 outside of V;;

(') If % < y; < 1, then there exists the following formula in a neigh-
borhood of o;

(B.3) uj = pYisiny;0, if (p,0)€eV;
where V; = {(p,0): O<p<r;, 0<0<pB;m}
Remark B.1 By using (B.3), one can show that

(B4) |D*ul < Cp?i~ ™

in a neighborhood of o

It remains to complete the proof of Theorem 3.3.

It follows from the finite covering theorem that there exist the finite
points Py, - - - Pg, and the corresponding neighborhoods O;, [ =1,---s,
such that
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i) U_,0 D Qy;
(i) diam(O;) < &Ry, Ry will be chosen later.
(i) Z; =1{j : O;NO; #0,}, o@;) < so, where o(Z;) denotes the
number of elements in Z;, respectively,i = 1, - - - s and s is a constant.

By means of the resolution of unity theorem, there exist a set of functions
qbl(x) € Cg°(R"), I=1,---5,suchthat0 < ¢;(x) < 1, suppe;(x) C O,

and Zqﬁl(x) =1, in

Let D, = _8_)61,(@2(%)01']‘(%)%)'» w' = lilwf, w; = ¢ - w',
and consequently
(B.5) Dew; = ¢ - Dew® +
where
(B.6)
m = g‘i[ 2( ) <al,< Nw +2al,< )@( Ve (@( )w* (x)
+®2(2—C)aij(§)wj] - ®Z(§)aij()8—c)[g—ff %ljc)] +w’ aiigb)lcj]

Recalling the definition of ® (&) (see (1.5)) and Lemma 2.4, and taking
into account condition Vea;;(§) € L°°(2°), one derives

(B.7)
_1.X 1.X 1
® 1(;)mllo,p,omf =[® 1(;)’71”0,;;,(’),“21 < C?stllvn,p(o,mf)

VR > 0, let

X x
we(R) = max max Iaij(—) —a;j (=), x,x" €]
i,j |x—x'|< & &

For any fixed xo € O; N Qf, set A® = (q; j( 0}), it follows from condition
(Aj3) that there exists a orthogonal matrix T such that

el __ )\]0 _
TAT—<O)\2 =D

where T’ denotes the transpose of a matrix 7.
We have A; > o > 0, i = 1,2, due to condition (A,). If let B =

D~'2T, then BA*B’ = and ||B|| < ID7' </ %. Hence we have
IB~Y = |DY?| < ZA, = Za,,( 0) < My, where M is a positive

constant independent of e
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Iflet O, = BOO;NKQ), O =BO,NQE), thend(y) =v(Bly) e
VZP(OF), forany v € V2P (0O, N QF), where p will be stated below.

(B.8) C||U||v2~ﬁ((’),mszf) = ||ﬁ||vz.p(@;) = C/||U||v2vl’((9msz§)
Let
82 e
800 = =0y ) g
32w 3*w!
—0%(% )(a,,( 0) —a;; (% ))ax —®2(x)au( )ax
(al,( ) — al,(x))®2(x)a w’ +(k“’)p( )— b(x))®2( Jwy (x)
o) + 7 (@2 a“’l

From (1.8), respectively (2.14), we have

(B.9a) / |Vx<®<;—c>>|2dxscle*2 f |®<;—C>|2dx
O[ﬂQi OlﬂQ‘i

If assume that @(%) is a smooth function, and diam(Q)) is sufficiently
small, using proof by contradiction, then one can prove that

BIb) VO < Coe1OC), aexecO N
e e
From (B.7), (B.8), (B.9a), (B.9b) and condition V¢a;;(§) € L>(Q°), we
obtain
(B.10)
107" - gllo.p.ones = 107" - gllo.p.0ine,

< w(R)wf llv2ronas) + Csz lw®llvironas)

On the other hand, if let w§ (y) = wf (B~'y), £(y) = g(B™'y), Oy =
©(e~'B~!(y)), then one gets
xo. 0%ws
aij(_o) !
£ 0x;0x;

= Awj(y), y=Bx

Moreover . A
—O(AD; (y) =07 () - &)
Using Lemma B.1, and replacing L” (Q;) with L5 (€21), 1 < p < +o0,
we can deduce that there exists W; (x) € V2”’(@1) such that
(B.11)

2"8

167 == o6, = CONOMELN, 0, = CIO™ - 2lly,.0
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where L% () = {f(x) L [ o) flrdx < —1-00}, and1 < p < py =
Q

3 ’82/3 Ii T < 400, and By is the maximum internal angle of BS2;.

N
From (B.8), (B.11) and (B.10), one obtains
1
||wf||v2vﬁ((’)mszf) = C(P){ws(R)||w1£||v2~v(0m§z§) + 8—2||w18||v1vp((9m§27)}
Since a; j()g_c) eC (58), then there exists a constant Ry > 0 such that

1
R — f O0<R<R
we(R) < 3C(p) or < R < Ry

and consequently

) 0
lwi lvzrones) < C(Petlwillvironas) + I1ull2,p,0n0:}
-21,,0
<= C(p)e“llull2, p,one

Therefore

S N
-29,,0
||w8||v2117(s2*§)=|| E wf||vz,p(9i)§ E ||w18||v2~/'((’)ms27)fc(17)8 l|u ||2,p,s2
=1 =1

Appendix C: The difference between the eigenvalues
and eigenfunctions of the homogenized Helmholtz equation (3.24)
and those of the modified homogenized Helmholtz equation (4.8)

Here we formulate some results in the spectral theory of linear abstract
operator, which are useful for applications considered below.

Let H;,0 < v < 1, be a family of Hilbert spaces with scalar prod-
ucts (u, v)3,, and let Hy be a Hilbert space with a scalar product (u, v),.
Consider bounded linear operators B, : H, — H., By : Ho — Ho. We
assume that spaces H-, H, and operators B;, By are subject to the following
conditions.

(D). There exist continuous linear operators R : Hy — H, such that

(C.D IReully, < collullm,, VYu € Ho
where the constant ¢y is independent of 7; moreover,
(C2) lim (™, v ), = @, 0,
provided that

lim [|u® — R.u®|7, =0, lim [[v° — R0z, =0,
T—0 T—0

ut, v eH, u’ °eH,
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(II). The operators B;, By are positive, compact and self-adjoint, and the
norms || B; || = ||B:|lz(#,) are bounded by a constant independent of 7.
(). If f7 € H,, f° € Ho and

(C3) lim || /7 = Re fllp, =0
then
(C4) fim [|Be f* = ReBo f . = 0

(IV). For any sequence f* € H, such thatsup || f7|#, < oo, there exists

T
a subsequence f7 and a vector w® € H, such that

(C5) 1B f7 = Rewllzg, — 0, as ©' =0
Consider the spectral problems for the operators B, :

ub e Hey Bouk = pkuk, k=12,
(C.6) pl>p2>.o>puk ukso

(W, u}) = S,

and the spectral problem for By:

uﬁeHo, Bouﬁz,u{f)ug, k=1,2,---
(C.7) phy=pd>-o>pk uk >0

(u69 ug’) = 817"7
where &, is the Kronecker symbol.

Lemma C.1"'% 24 Let the space H., Ho and operators By, By satisfy condi-
tions I-1V, then for sufficiently small T

(C.8)
Ik — bl <2 sup IB:R.u — R Boullp,, k=1,2,-

UEN (11, Bo), llull =1
where ,u’;, Mlé are eigenvalues of problems (C.6) and (C.7), respectively.
N(;ﬂé, By) = {u € Hoy, Bou = ,u’(‘)u} is the eigenspace of operator By corre-
sponding to the eigenvalue /ﬂé.

Lemma C.2U% 24 Agsume thatk > 1,t > 1 are integers, and

(C9) MI(§71 - //L](; —_ .. = /’L,(;+t71 - M§+l
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i.e. the multiplicity of the eigenvalue Mlé is equal to t (here ug = 00). Then
forany w € N(/ﬂé, Bo), lwll#, = 1, there exists a linear combination i, of
eigenvectors u*, - - - u**=1 of problem (C.6), such that

(C.10) lar — Rewlly, < MillB:Rew — R Bowlln,
where the constant My, does not depend on t.
It remains to complete the proof of Theorem 4.1.

Proof. In Lemma C.1, Lemma C.2, choose 0 < 7 = hy << 1, Hp, =
Ho = L*(R), Ry, = I is an identity operator.

Define the operators By, : Hp, — Ha, setting By, £10 = w", where w
is the weak solution of the following problem:

ho

Lhywh = fr in Q
(C.11) { wh =0 on 0%

where w0 € H'(Q), f" e L*(Q).

It follows from Proposition 4.3 that the norm || B, || is bounded. The com-
pactness of the operator By, : Hpy — Hy, is due to the compact imbedding
H0 () C L*(Q). The fact that Eho is symmetric guarantees that By, is a
self-adjoint operator in Hy,, since

By [, hO)H (Bhofh0 O)LZ(Q) (w O,gho)ﬁ(sz)
= (w' ﬁho O)LZ(Q) (Ehow v °)L2(Q) (f, By, g" 2@

where w = By, f0, v = By, g"t

Below we need to verify that conditions (I)—(I'V) are valid on purpose to
use Lemma C.1 and Lemma C.2.

It is easy to see that Condition I is valid due to Ry, = 1.

In a similar way, we define the operator By : Hy — Ho by By f = w,
where w is the solution of the following Dirichlet problem:

(C.12)

(C.13) w=0 on 0

{ Lw=f in
where w € HO1 (Q), f e L¥(Q)
Thus condition II has also been verified.
From (C.11) and (C.13), one obtains

(C.14)
d a(who —w) r o 0

where 7;; = aho

ij —Clij.
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Since w’(x) — w(x) € HO1 (€2), it follows from Proposition 4.2 and
Poincaré-Friedrichs’ inequality that

(C.15)

[who —w|} o < CBW" —w, w" —w)
< C[ [y dwD =) g AR R wydx
=< C{h(z)”Ni”Z,Q”N/ ||2,Q||w||l,9||wh0 —wllig+Clf"

~llo.gllw' = wio.q |

where B(u, v) = [ (&fljoaaTuj% + (13)uv>dx.
Q ) i

Consequently
(C.16) lw" —wlli.q < CAGINiIE pllwlh.e + CILF™ = fllog
If f' — fin L?>(Q) as hy — 0, by using (C.16), we have
(C.17) wh > w in HO1 () as hg—0

Therefore condition III holds, too.
Returning to Condition IV, for any sequence f"° e L?(2) such that

S]UP | fho 2 < 00
ho
Since L?(R) is a reflexive Hilbert space, it follows from Eberlein’s Theorem

that there exists a subsequence f e L2() such that f"o X f e LX(Q).
Similarly to (C.15), one can obtain

g 2
[[w"o —w||1’§2 /
< CB(w" — w, whO—w)

<cfi w d(w' = w) T W gy + CJ(f"% = ) (' —w)dx

l] x

(C.18)

—J1+J2

Ji = 0as hy — 0is due to the fact ||7;;[lp < Ch%||Ni||2,Q||Nj”2,Q~ Since

"5 f e LX(Q). as b)) — 0, then J, — 0, as hjy — 0. Thus w0 — w in
H'(Q), as hjy — 0. Therefore condition IV is verified.

Setting uﬁ (A(O)) L Mo = (A(O)) 1 it follows from Lemma C.2
that
(C.19)

G = =2 sup 1Bow — Bow |7,

weN(()~1Bo).  [wllxy=1

where N ((A(O)) ' By) defined as in Lemma C.2.
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Forany w € N((\")™", By),  |wllx, = 1, define

Zhovho =w in Q

(C.20) { vho =0 on 0
Ev =w in
(€21) { v=20 on 0%

The same computation as in the proof of Proposition 4.2 shows that
ho 2 2

(C.22) [v" = vl < ChyliNillz

and moreover

T(0)\— 0)\—
)T =) =2 sup 1Bryw — Bowllzg,,
weN ()1 Bo). llwll+,=1
< Cv" —vlli.a < Ch§IINilI3

i.e.
() 0 2 2
A0 — 20| < Cih3INiIE o

Lemma C.2 ensures that

0_ =0 2 A 112
g — igllo,e < ChgliNillz o O
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