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Summary. The Griffith model for the mechanics of fractures in brittle
materials is consider in the weak formulation of SBD spaces. We suggest an
approximation, in the sense of � − convergence, by a sequence of discrete
functionals defined on finite elements spaces over structured and adaptive
triangulations. The quasi-static evolution for boundary value problems is
also taken into account and some numerical results are shown.
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1 Introduction

The evolution of irreversible cracks in brittle materials can be effectively
described by Griffith’s theory ([23], [19]). The basic idea is the following
energy balance: let dl be the infinitesimal variation of crack length and let
dE be the corresponding variation of linear elastic energy. Griffith suggested
that the energy required to increase the crack should be γ dl, for a parameter
γ > 0 depending on material toughness. Then he postulated that the fracture
evolves only when −dE ≥ γ dl, which simply means that the release of
elastic energy −dE must be greater then the energy γ dl spent to increase
the fracture.

A rigorous mathematical formulation for these problems is given in the
framework of the functions with bounded deformation (see [2], [17] and
Section 2). Indeed, for these functions the symmetric part of the derivative
(in the sense of distributions) is the measure

Eu = DuT +Du = EuLn + (u+ − u−)⊗ νHn−1 Ju .(1)
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This derivative is the sum of two singular measures: the n-dimensional
Lebesgue measure Ln, with density Eu, and the (n− 1)-dimensional Haus-
dorff measure Hn−1, concentrated on the discontinuity set Ju and which
has density (u+ − u−)⊗ ν. Thus this space seems to give the natural weak
framework for the formulation of fracture problems, in particular, for a two
dimensional isotropic material, the linearized elastic energy is given by the
Hooke low

∫
�

W(Eu) dx =
∫
�

(
µ|Eu|2 + λ

2
|tr(Eu)|2

)
dx ,

where µ > 0 and λ > 0 are the Lamé coefficients, while the fracture energy
of Griffith’s type is given by

γH1(Ju) ,

where γ > 0 is called the material toughness.
In particular for the applications it is interesting to consider the evolu-

tion of the fracture when the displacement ut (at time t) satisfies a Dirichlet
boundary condition ut = g(t) on a set ∂�D ⊂ ∂� and when ∂� \ ∂�D is
traction free (for the rigorous mathematical treatise of this problem see [16],
[18] and recently [10]). In this situation, knowing the displacement ut and the
corresponding fracture Jut at time t , the behavior at time t+dt is determined
as

ut+dt ∈ argmin
{ ∫

�

W(Ev) dx + γH1(Jv \ Jut )
}

(2)

under the boundary condition v = g(t + dt) in ∂�D and the irreversibility
condition Jv ⊃ Jut . Indeed, being ut+dt a minimum point, for every function
w such that w = g(t + dt) in ∂�D and Jw = Jut we have

∫
�

W(Eut+dt )+ γH1(Jut+dt \ Jut ) ≤
∫
�

W(Ew) dx

and then

γH1(Jut+dt \ Jut ) ≤ −
( ∫

�

W(Eut+dt )−W(Ew) dx
)

which resembles the Griffith’s criterion −dE ≥ γ dl, and which suggests to
introduction of the weak Griffith energy

∫
�

W(Eu) dx + γH1(Ju) .(3)

Clearly, in view of realistic simulations of the model, which are being
developed (see [5]), we need first a discretization of the energy (3).
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Following [11] and [20], we propose in this work an approximation of
(3) by means of discrete functionals, defined on finite element spaces, and
converging (in the sense of �-convergence) to energies of the form

∫
�

W(Eu) dx + γ

∫
Ju

φ(ν) dH1 ,(4)

where the function φ(ν) depends on the choice of the mesh. In particular
the case φ(ν) ≡ 1, corresponding to isotropic fracture energies, is recovered
using an adaptive triangulation.

The discrete functionals are quite simple, indeed they are defined in the
spaces of piecewise affine functions and they are of the form

Gε(vε) =
∑
T

1

ε

∫
T

f (ε,Dvε) dx ,

where T denotes an element of the mesh and vε belongs to a finite element
space of piecewise affine functions. The function f behaves as

f (ε,Dvε) �
{
εW(Evε) when ε|Dvε|2 < η

f∞ when ε|Dvε|2 ≥ η ,

for some constants η > 0. The physical interpretation is the following: in
the elements T where ε|Dvε|2 < η the material remains elastic and does not
present any fracture, indeed its energy is

1

ε

∫
T

f (ε,Dvε) dx �
∫
T

W(Evε) dx .

On the contrary if ε|Dvε|2 ≥ η then, being |T | = cε2,

1

ε

∫
T

f (ε,Dvε) dx � f∞
|T |
ε

= f∞ c ε

which means that the energy is concentrated in a fracture because f∞ cε is
dimensionally equivalent to the Hausdorff measure H1(Ju ∩ T ).

Unfortunately the proof of the convergence result relies on a density result
which is known to be true only in SBV spaces. Overcoming this technical
problem is possible but using another discretization [1], based on finite dif-
ferences. Nevertheless this approximation seems to be sufficiently general to
predict a realistic physical behavior, as shown by some numerical results for
a model problem.
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2 Preliminaries and notations

Let � be an open bounded polygonal set in R2. For a positive constant c,
denote by K(�) the set of functions u : � → R2 such that |u(x)| ≤ c

for a.e. x ∈ �. The set � represents the initial configuration and K the
constrain. Moreover let M2×2 be the space of 2 × 2 matrices with the norm
|M|2 = ∑

i,j |mij |2 and let M2×2
sym be the subspace of symmetric matrices.

The functional framework of the problem is given by the spaces SBV 2

(�,R2) andSBD2(�,R2). For a detailed theory ofSBV andSBD functions
we refer to [3] and [2], [17] respectively, here we will recall some definitions
and basic properties.

For a function u ∈ L1(�,R2) let Su be the set of non-Lebesgue points
of u. The function u is a function of bounded variation if its distributional
derivativeDu is a vector valued measure with finite total variation in �. For
such functions it’s possible to prove that the set Su is countably rectifiable
and that for H1 − a.e. x ∈ Su there exists (in a measure geometric sense) a
normal νu and two one-sided traces u+, u−. The measureDu can be decom-
posed, by Radon-Nikodym theorem, as Du = ∇uL2 + Dsu where ∇uL2

is absolutely continuous with respect to the Lebesgue measure and Dsu is
singular. If the singular part can be written as

Dsu = (u+ − u−)⊗ νHn−1 Su ,

where Hn−1 is the (n−1)-dimensional Hausdorff measure, then we say that u
is a special function with bounded variation and we write u ∈ SBV (�,R2).
If in addition ∇u ∈ L2(�,R2) and H1(Su) < ∞ then we say that u ∈
SBV 2(�,R2).

The case of SBD function is slightly more complicated due to the pres-
ence of symmetric gradients. For SBD function it is still not known if for
H1 −a.e. x ∈ Su there exists a normal νu and the traces u+, u−. Nevertheless
we can define the set Ju ⊂ Su to be the collection of points such that there
exist the one-sided approximate limits u+ and u− with respect to a suitable
direction νu. This is enough to develop our theory, i.e. to prove compact-
ness and lower semicontinuity theorems. In particular we say that a function
u ∈ L1(�,R2) is a function with bounded deformation if the symmetric
distributional gradient Eu = ∇u + ∇uT is a vector valued measure with
finite total variation. Moreover, as in the case of SBV functions, if Eu can
be written as

Eu = EuLn + (u+ − u−)⊗ νHn−1 Ju

then we say that u is a special function with bounded deformation and we
write u ∈ SBD(�,R2). Finally, if Eu ∈ L2(�,R2) and if H1(Su) < ∞ we
say that u ∈ SBD2(�,R2).
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Even if the �-convergence holds in SBV 2(�,R2) the proof of �-liminf
requires the following compactness and lower semicontinuity result in SBD2

(�,R2) which slightly generalizes Theorem 1.1 and Corollary 1.2 in [4] to
the case of anisotropic energies.

Proposition 1 Let � be an open bounded set in R2, let φ : R2 → R be
convex, positively 1-homogeneous and pair, let f : M2×2

sym → R be convex
and lower semicontinuous, let {uj } be a sequence in SBD2(�,R2) such that

∫
�

|Euj |2dx + H1(Juj )+ ‖uj‖∞ ≤ c < +∞(5)

then there exists a function u ∈ SBD(�,R2) and subsequence (not rela-
beled) such that

uj → u in L1
loc(�,R2) ,(6)

∫
�

f (Eu)dx ≤ lim inf
j→+∞

∫
�

f (Euj )dx ,(7)

H1(Ju) ≤ lim inf
j→+∞

H1(Juj ) ,(8)

∫
Ju

φ(ν)dH1 ≤ lim inf
j→+∞

∫
Juj

φ(ν)dH1 .(9)

Proof. From the compactness and lower semicontinuity result contained in
[4] follows the existence of a subsequence, denoted as {uj } such that uj → u

in L1
loc(�,R2) and such that inequalities (7) and (8) holds.

To prove (9) let us first consider a functionφ(v) defined asφ(v) = |〈v, ζ 〉|
for ζ ∈ S1. For ξ ∈ S1 let�ξ = {x ∈ R2 : 〈x, ξ〉 = 0},�ξ be the projection
of � on the line �ξ and �y,ξ = {t ∈ R : for y ∈ �ξ y + tξ ∈ �}. More-
over for y ∈ �ξ and ξ ∈ S1, given v ∈ SBD(�,R2) let Jv,ξ = {x ∈ Jv :
〈v+(x)−v−(x), ξ〉 �= 0}, vy,ξ : �y,ξ → R be defined as vy,ξ = 〈v(y+tξ ), ξ〉
and finally let Ay,ξ (v) and By,ξ (v) be respectively the total variation of the
absolutely continuous part and the counting measure of singular part of v′

y,ξ

in �y,ξ , namely

Ay,ξ (v) = |v′
y,ξ |(�y,ξ ) By,ξ (v) = H0(Jvy,ξ ) = #(Jvy,ξ ) .

Being {uj } ⊂ SBD(�,R2) then by Proposition 2.1 in [4] for every ξ ∈ S1

and for H1-a.e. y ∈ �ξ we have (uj )y,ξ ∈ SBV (�y,ξ ) for every j and

∫
�ξ

Ay,ξ (uj )dH1(y) < +∞ .(10)
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Moreover for H1- a.e. ξ ∈ S1 we have Juj ,ξ = Juj . Now take ξ ∈ S1 such
that Juj ,ξ = Juj for every j , then

∫
Juj

|〈ν, ξ〉|dH1(y) =
∫
�ξ

By,ξ (uj )dH1(y) ,(11)

moreover, being H1(Juj ) < +∞, there exist a subsequence, denoted {uk},
such that

lim
k→+∞

∫
�ξ

By,ξ (uk)dH1(y) = lim inf
j→+∞

∫
�ξ

By,ξ (uj )dH1(y) < +∞ .

Take ε ∈ (0, 1) and take a subsequence {ul} of {uk}, such that

lim
l→+∞

∫
�ξ

εAy,ξ (uj )+ By,ξ (uj )dH1(y)

= lim inf
j→+∞

∫
�ξ

εAy,ξ (uj )+ By,ξ (uj )dH1(y) < +∞

and such that for H1-a.e. y ∈ �ξ
uy,ξ ∈ SBV (�y,ξ ) (ul)y,ξ → uy,ξ strongly in L1

loc(�y,ξ ) .

By Fatou’s Lemma we get that

lim inf
l→+∞

(
εAy,ξ (ul)+ By,ξ (ul)

)
< +∞

for H1-a.e. y ∈ �ξ . Let y ∈ �ξ such that the previous inequality is satisfied,
then there exists a further subsequence {un} such that

lim
n→+∞

(
εAy,ξ (un)+ By,ξ (un)

)
= lim inf

l→+∞

(
εAy,ξ (ul)+ By,ξ (ul)

)
< +∞ ,

then by Ambrosio’s compactness and lower semicontinuity Theorem in
SBV (�y,ξ ) [3] there exists a subsequence {uh} such that

By,ξ (u) ≤ lim inf
h→+∞

By,ξ (uh)

≤ lim inf
h→+∞

(
εAy,ξ (uh)+ By,ξ (uh)

)

≤ lim
n→+∞

(
εAy,ξ (un)+ By,ξ (un)

)

≤ lim inf
l→+∞

(
εAy,ξ (ul)+ By,ξ (ul)

)
< +∞ .
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The previous inequality holds for H1-a.e. y ∈ �ξ so by Fatou’s Lemma∫
Juj

|〈ν, ξ〉|dH1(y) =
∫
�ξ

By,ξ (u)dH1(y)

≤ lim inf
l→+∞

∫
�ξ

εAy,ξ (ul)+ By,ξ (ul)dH1(y)

≤ ε lim sup
l→+∞

∫
�ξ

Ay,ξ (ul)dH1(y)

+ lim inf
l→+∞

∫
�ξ

By,ξ (ul)dH1(y)

≤ cε + lim
k→+∞

∫
�ξ

By,ξ (uk)dH1(y)

≤ cε + lim inf
j→+∞

∫
Juj

|〈ν, ξ〉|dH1 .(12)

It remains to prove (12) for every ξ ∈ S1. Let ζ ∈ S1 and let δ > 0 then there
exist ξδ such that |ζ − ξδ| < δ and∫

Ju

|〈ν, ξ〉|dH1 ≤ lim inf
j→+∞

∫
Juj

|〈ν, ξ〉|dH1 .(13)

It follows that∫
Ju

|〈ν, ζ 〉|dH1 ≤
∫
Ju

|〈ν, ξδ〉|dH1 + c1δ

≤ lim inf
j→+∞

∫
Juj

|〈ν, ξδ〉|dH1 + c1δ

≤ lim inf
j→+∞

∫
Juj

|〈ν, ξδ − ζ 〉| + |〈ν, ζ 〉|dH1 + c1δ

≤ lim inf
j→+∞

∫
Juj

|〈ν, ζ 〉|dH1 + c2δ

where c1 and c2 does no depend on δ.
At this point the lower semicontinuity inequality is proved for every func-

tion φ(v) = |〈v, ζ 〉| for ζ ∈ S1. If φ is convex, 1-homogeneous and pair it
can be written as

φ(v) = sup{ψ(v) : ψ(u) = 〈u, η〉 − c and ψ(u) ≤ φ(u)}(14)

In (14) it is not restrictive to take ψ linear, indeed for every ξ ∈ S1, being φ
1-homogeneous, if 〈u, η〉 − c ≤ φ(u) for every u then 〈u, η〉 ≤ φ(u). Thus
we can define a set � such that

φ(v) = sup
ξ∈�

|〈v, ξ〉| .
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By the lower semicontinuity we have for every ξ ∈ �
∫
Ju

|〈ν, ξ〉|dH1 ≤ lim inf
j→+∞

∫
Juj

|〈ν, ξ〉|dH1

≤ lim inf
j→+∞

∫
Juj

φ(ν)dH1

and by a supremum of measures argument it is easy to deduce that
∫
Ju

φ(ν)dH1 ≤ lim inf
j→+∞

∫
Juj

φ(ν)dH1

which gives inequality (9). ��
Moreover the proof of the �-limsup inequality relies on the following

approximation result which is known to be true only for SBV function. We
first introduce a set of regular functions with discontinuities.

Definition 1 Let W(�,Rm) be the set of u ∈ SBV (�,Rm) such that

1. Su is essentially closed, i.e. H1(Su \ Su) = 0
2. Su is the union of a finite number of (n− 1)-simplexes
3. u ∈ Wk,∞(� \ Su,Rm)∀k ∈ N.

The following approximation result (proved under more general condi-
tions in [14]) shows the importance of the space W(�,R2).

Lemma 1 Let g(v) be a norm in R2 and letu ∈ SBV 2(�,R2)∩L∞(�,R2),
then there exists a sequence wk ∈ W(�,R2) such that

wk −→ u strongly in L1(�,R2) ,(15)

∇wk −→ ∇u strongly in L2(�,R2) ,(16)

lim sup
k→∞

‖wk‖∞ ≤ ‖u‖∞ .(17)

For every open set A ⊂ � we have

lim sup
k→∞

∫
Swk∩A

g(ν) dH1 ≤
∫
Su∩Ā

g(ν) dH1 .(18)

Moreover we can assume that for every k the jump set Swk is a finite union
of disjoint segments which do not intersect the boundary ∂�.

An analogous result for boundary value problems is proved [21].
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3 Statement of the convergence result

Let � be an open bounded polygonal set in R2. For a positive constant k,
denote by K(�) the set of functions u ∈ L1(�,R2) such that |u(x)| ≤ k

for a.e. x ∈ �. The set � represents the reference configuration and K the
constraint. Moreover let M2×2 be the space of 2 × 2 matrices with the norm
|M|2 = ∑

i,j |mij |2 and let M2×2
sym be the subspace of symmetric matrices.

For i = 1, 2, 3, let T i
ε be the triangulations of R2 having the geometries

represented in Figure 1. The corresponding finite element spaces, denoted
by V iε (�,R2), are the classical spaces of piecewise affine functions on T i

ε

restricted to �. Moreover given θ ∈ (0, π2 ) and an infinitesimal sequence
dε ≥ 6ε, let Tθε be the family of triangulations Tε such that for every element
the amplitude of the internal angles θi and the length of the edges ζi satisfy

θ ≤ θi ε ≤ H1(ζj ) ≤ dε .(19)

The corresponding finite element set, given by the union of the spacesV θε (�,R2)

defined on Tε, will be denoted by Vθ
ε (�,R2).

Fig. 1. Geometries of the triangulations Tiε for i = 1, 2, 3 respectively
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� ��� �

Fig. 2. An example of mesh Tε ∈ Tθε adapted along a straight line

Let ψ : [0,+∞) → [0, 1] be a non decreasing function such that

ψ(t) = o(t) for t → 0 ,(20)

(1 − ψ(t)) = o
(1

t

)
for t → +∞ ,(21)

and such that for t large the function (1 − ψ(t))t is non-increasing. Given
M ∈ M2×2 let the strain energy density be defined as

W(Msym) = µ|Msym|2 + λ

2
|tr(Msym)|2 ,(22)

for µ > 0 and λ > 0, and let

f (ε,M) = εW(Msym)(1 − ψ(ε|M|2))+ γψ(ε|M|2) .(23)

Using the structured triangulations Tiε (for i = 1, 2, 3), the discrete function-
als F iε (u) are defined as

F iε (u) =
∑
T ∈T i

ε

1

ε

∫
T∩�

f (ε,Dvε)dx(24)

if vε ∈ V iε (�,R2) ∩ K(�) and F iε (u) = +∞ otherwise in L1(�,R2). The
convergence result is the following.

Theorem 1 For every mesh T i
ε let φi : R2 → [0,+∞) be the anisotropy

function (depending only on the geometry of the triangulation) defined in
Section 4. Let the limit functional be given by

F i(u) =
∫
�

W(Eu)dx + γ

∫
Ju

φi(νu)dH1(25)
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if u ∈ SBD2(�,R2) ∩ K(�) and F i(u) = +∞ otherwise in L1(�,R2).
Then for every u ∈ L1(�,R2) and for every sequence vεj ∈ V iεj (�,R2),

converging strongly to u in L1(�,R2), we have

F i(u) ≤ lim inf
εj→0

F iεj (vεj ) .

Moreover for everyu ∈ SBV 2(�,R2) there exists a sequencevεj ∈ Vεj (�,R2),
converging strongly to u in L1(�,R2), such that

F i(u) ≥ lim sup
εj→0

F iεj (vεj ) .

For the isotropic case, we consider the functional

F θ
εj
(vεj ) =

∑
T ∈T θ

ε

1

ε

∫
T∩�

f (ε,Dvε)dx(26)

if vε ∈ Vθ
ε (�,R2) ∩ K(�) and F θ

ε (vε) = +∞ otherwise in L1(�,R2).
Then the convergence result is the following.

Theorem 2 Let the limit functional be

F θ (u) =
∫
�

W(Eu)dx + γ sin θ H1(Ju)(27)

if u ∈ SBD2(�,R2) ∩ K(�) and F θ (u) = +∞ otherwise in L1(�,R2).
Then for every u ∈ L1(�,R2) and for every sequence vεj ∈ Vθ

εj
(�,R2),

converging strongly to u in L1(�,R2), we have

F θ (u) ≤ lim inf
εj→0

F θ
εj
(vεj ) .

Moreover for everyu ∈ SBV 2(�,R2) there exists a sequencevεj ∈ Vθ
εj
(�,R2),

converging strongly to u in L1(�,R2), such that

F θ (u) ≥ lim sup
εj→0

F θ
εj
(vεj ) .

Remark 1 The easiest choice for the function ψ is given by

ψ(t) =
{

0 if t < δ

1 otherwise,

nevertheless conditions (20) and (21) allow the use of smooth functions (such
as 2

π
arctan(tn) for n ≥ 2) which are much better for the numerical imple-

mentation.
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Note that the �-limsup inequality is not complete because the proof
is based on a density argument which is not yet known for the case u ∈
SBD2(�,R2) \ SBV 2(�,R2). Complete convergence results can be stated
as follows (but these formulations cannot ensure compactness for sequences
of minima).

Remark 2 For i = 1, 2, 3 let the discrete functionals F iε (u) be defined as

F iε (u) =
∑
T ∈T i

ε

1

ε

∫
T∩�

f (ε,Dvε)dx

if vε ∈ V iε (�,R2) ∩ K(�) and F iε (u) = +∞ otherwise in SBV 2(�,R2).
The functionals F iε �-converge (as ε → 0), respect to the strong topology of
L1(�,R2), to the functional

F i(u) =
∫
�

W(Eu)dx + γ

∫
Ju

φi(νu)dH1

if u ∈ SBV 2(�,R2)∩K(�) and F i(u) = +∞ otherwise in SBV 2(�,R2).

Remark 3 Let the isotropic limit functional be given by

F θ
ε (vε) =

∑
T ∈T θ

ε

1

ε

∫
T∩�

f (ε,Dvε)dx

if vε ∈ V θ
ε (�,R2)∩K(�) and F θ

ε (vε) = +∞ otherwise in SBV 2(�,R2).
The functionals F θ

ε �-converge (as ε → 0), respect to the strong topology
of L1(�,R2), to the functional

F(u) =
∫
�

W(Eu)dx + γ sin θ H1(Ju)

if u ∈ SBV 2(�,R2)∩K(�) and F(u) = +∞ otherwise in SBV 2(�,R2).

4 The anisotropy functions

The anisotropy functions appearing in (25) have been explicitly computed
and studied in [20] for a similar functional, here we report only the main
properties useful in the sequel. Let S ⊂ � be a segment and let ν be its unit
normal, let

S iε = {T ∈ Tiε : T ∩ S �= ∅ and |T ∩ (S + tν)| �= ∅ for t ∈ (0, 1)}
then we can define Siε as the covering of S given by the union of the elements
belonging to Siε. The functions φi are defined as a Minkowsky content of S
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in the topology induced by Tiε, indeed for every segment S with unit normal
ν we have

φi(ν) = lim sup
ε→0

|Siε|
εH1(S)

(28)

so that φi(ν) measures in the limit the ratio between the measure of cov-
ering Siε and the measure of the tubular neighborhood of S. Moreover it is
not difficult to verify that the same relation is valid also for piecewise affine
curves in the plane. In Figure 3 are reported the levels curves {φi(v) = 1},
for i = 1, 2, 3 respectively. It’s clear that φi reflects the symmetry properties
of the mesh and that the more the level curve is close to a circle the more the
triangulation is isotropic, thus the values

mi = inf{φi(ν) : |ν| = 1} Mi = sup{φi(ν) : |ν| = 1}
suggests a possible measurement of the anisotropy, given by the ratio ai =
Mi/mi . In our case a1 = √

2, a2 ≈ 1.118 and a3 = 2
√

3
3 = 1.154.

These functions are convex, positively 1-homogeneous and pair. They
have an easy representation in terms of scalar products. Indeed let

ξ1,1 = (1, 0) ξ1,2 = (
√

2/2,
√

2/2) ξ1,3 = (0, 1) ,

-2
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Fig. 3. The level curves compared with the unit circle
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c1,1 = c1,3 =
√

2/2 c1,2 = 1 ,

then we can write
φ1(ν) = max

1≤k≤3
c1,k|〈ν, ξ1,k〉| .(29)

Moreover let

ξ2,k = ξ1,k for k = 1, 2, 3 ξ2,4 = (−
√

2/2,
√

2/2) ξ2,5 = (−1, 0) ,

c2,k = c1,k/2 for k = 1, 2, 3 c2,4 = c2,2 c2,5 = c2,1 ,

then
φ2(ν) = max

1≤k≤4
{c2,k|〈ν, ξ2,k〉| + c2,k+1|〈ν, ξ2,k+1〉|} .(30)

Finally let

ξ3,1 = (−1, 0) ξ3,2 = (1/2,
√

3/2) ξ3,3 = (− 1/2,
√

3/2) ,

c3,k = 1 for k = 1, 2, 3 ,

then we have
φ3(ν) = max

1≤k≤3
c3,k|〈ν, ξ3,k〉| .(31)

On the contrary the idea for the isotropic approximation is to orient the
elements along discontinuities (see Figure 2) in order to have a tubular neigh-
borhood and consequently an isotropic approximation of the Hausdorff mea-
sure. This property is explained in the following lemma (for the proof see
Appendix A in [11]).

Lemma 2 Let S be the union of a finite number of disjoint segments Sm, then
there exists a family of triangulations Tε ∈ T θ

ε such that

lim sup
ε→0

|Sθε |
ε

= sin θ H1(S) ,(32)

where Sθε is the covering of S in Tε.

5 Γ-liminf inequality

The proof of the �-liminf inequality is based on the measure theoretic
argument (see [7] Proposition 1.16), which requires the localization of
the functionals.

Definition 2 LetA ⊂ � be an open set, the localized functionals are defined
as

F iε (vε, A) =
∑
T ∈T i

ε

1

ε

∫
T∩A

f (ε,Dvε) dx

if vε∈V iε (�,R2) ∩K(�) and F iε (vε, A) = +∞ otherwise in L1(�,R2).
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We consider first the case of the structured triangulations.

Proposition 2 For i = 1, 2, 3, denote by F i(u) the �- lim infε→0 F
i
ε (u) and

take u ∈ L1(�,R2) such thatF i(u) < +∞, then u ∈ K(�)∩SBD2(�,R2)

and ∫
�

W(Eu) dx + γ

∫
Ju

φi(νu) dH1 ≤ lim inf
ε→0

F iε (vε)(33)

for every sequence vε ∈ V iε (�,R2) converging strongly to u in L1(�,R2).

The proof of Proposition 2 requires some preliminary lemmas on the
localized functionals.

Lemma 3 For some positive constants α, β, for every open set A ⊂ � and
for every function vε ∈ V iε (�,R2) there exists v ∈ SBD2(�,R2) satisfying

∫
Aε

W(Ev) dx + αH1 (Jv ∩ Aε) ≤ F iε (vε, A) ,(34)

|{x ∈ � : vε(x) �= v(x)}| ≤ βεF iε (vε, A) ,(35)

where Aε = {x ∈ A : d(x, ∂A) > ε}.
Proof. Let τ > 0 such that

sup{εW(Msym) for ε|M| < τ } ≤ γ

and define

ψ̃(t) =
{

0 for t < τ

ψ(t) otherwise.
(36)

Then the function

f̃ (ε,M) = εW(Msym) = εW(Msym)
(

1− ψ̃(ε|M|2)
)

+γ ψ̃(ε|M|2)(37)

satisfies f (ε,M) ≥ f̃ (ε,M). Indeed if ε|M|2 ≥ τ then ψ̃(ε|M|2) =
ψ(ε|M|2), while for ε|M|2 < τ , being εW(Msym) ≤ γ we have

f̃ (ε,M) = εW(Msym)
(

1 − ψ(ε|M|2)
)

+ εW(Msym)ψ(ε|M|2)
≤ εW(Msym)

(
1 − ψ(ε|M|2)

)
+ γψ(ε|M|2) = f (ε,Du) .

Moreover, being ψ(t) non decreasing, ψ̃(t) ≥ ψ(τ) for t ≥ τ so that for
ε|M|2 ≥ τ

f̃ (ε,M) = εW(Msym)
(

1 − ψ(ε|M|2)
)

+ γψ(ε|M|2) ≥ γψ(τ) .
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Finally, given an open set A ⊂ � and given vε ∈ V iε (�,R2) let Ai
ε = {T ∈

T i
ε : T ⊂ A} and

Ai,�
ε = {T ∈ Ai

ε : ε|Dvε|2 ≤ τ } Ai,�
ε = {T ∈ Ai

ε : T /∈ Ai,�
ε } .

Define Ai,�ε ⊂ � and Ai,�ε ⊂ � as the union of the elements belonging to Ai,�
ε

and Ai,�
ε respectively. Then it follows by the previous inequalities that

F iε (vε, A) ≥
∑
T ∈Aiε

1

ε
f (ε,Dvε)|T |

≥
∑
T ∈Ai,�ε

1

ε
f̃ (ε,Dvε)|T | +

∑
T ∈Ai,�ε

1

ε
f̃ (ε,Dvε)|T |

≥
∑
T ∈Ai,�ε

W(Evε)|T | +
∑
T ∈Ai,�ε

1

ε
γψ(τ)|T | .(38)

Let v ∈ SBD2(�,R2) be defined as

v =
{
vε in Ai,�ε
0 in � \ Ai,�ε ,

then from (38) follows

|{x ∈ � : vε(x) �= v(x)}| = |Ai,�ε | =
∑
T ∈Ai,�ε

|T | ≤ ε

γψ(τ)
F iε (vε, A) ,

which proves (35) for β = 1/(γψ(τ)). Moreover, being H1(∂T ) ≤ ciε, it
easy to check that for a positive value of α we have

1

ε
|T |γψ(τ) ≥ αH1(∂T ) .

Thus from (38) follows

F iε (vε, A) ≥
∑
T ∈Ai,�ε

W(Ev)|T | +
∑
T ∈Ai,�ε

αH1(∂T )

≥
∫
Aε

W(Ev) dx + αH1(Jv ∩ Aε) ,

which proves inequality (34). ��
Lemma 4 Let i = 1, 2, 3, for every δ ∈ (0, 1) there are some positive con-
stants α, β, η (depending only on δ) such that for every vε ∈ V iε (�,R2)

and for every vector ξi,k (appearing in (29) (29) (29)) there exists v ∈
SBD2(�,R2) satisfying

α

∫
Aε

W(Ev) dx + βH1(Jv ∩ Aε) ≤ F iε (vε, A) ,(39)
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|{x ∈ � : vε(x) �= v(x)}| ≤ η ε F iε (vε, A) ,(40)

and for i = 1 and i = 3

(1 − δ)γ

∫
Jv∩Aε

ci,k|〈νv, ξi,k〉| dH1 ≤ F iε (vε, A) ,(41)

while for i = 2

(1−δ)γ
∫
Jv∩A

(
ci,k|〈νv, ξi,k〉|+ci,k+1|〈νv, ξi,k+1〉|

)
dH1 ≤ F iε (vε, A) .(42)

Proof. Step 1. For a given δ ∈ (0, 1) let τδ such that (1 − δ) < ψ(t) for
t ≥ τδ. Let α1 < 1 such that for ε|M|2 < τδ we have α1εW(M

sym) < γ .
Moreover define

ψ̃(t) =
{

0 for t ≤ τδ
ψ(t) otherwise,

(43)

and

f̃ (ε,M) = α1εW(M
sym)

(
1 − ψ̃(ε|M|2)

)
+ γ ψ̃(ε|M|2) .

Being f (ε,M) a convex combination of εW(Msym) and γ then f (ε,M) ≥
min{εW(Msym), γ }. By the choice of τδ and α1 it follows that for ε|M|2 < τδ
we have

f̃ (ε,M) = α1εW(M
sym) ≤ min{εW(Msym), γ } ≤ f (ε,M) .

Clearly f̃ (ε,M) ≤ f (ε,M) also for ε|M|2 ≥ τδ, being ψ̃(ε|M|2) =
ψ(ε|M|2) and α1 < 1. As in the previous proof let Ai

ε = {T ∈ T i
ε : T ⊂ A}.

Let

Ai,�
ε = {T ∈ Ai

ε : ε|Dvε|2 ≤ τδ} ,

Ai,�
ε = {T ∈ Ai

ε : T /∈ Ai,�
ε } ,

and define Ai,�ε and Ai,�ε as the union of their elements. For T ∈ Ai,�
ε we have

ψ̃(ε|Dvε|2) = 0, then

1

ε
f̃ (ε,Dvε) ≥ α1W(Evε) .

While for T ∈ Ai,�
ε we have ε|Dvε|2 > τδ and then

1

ε
f̃ (ε,Dvε) ≥ 1

ε
γψ(ε|Dvε|2) ≥ 1

ε
γ (1 − δ) .
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Thus, arguing as in the previous Lemma we can write

F iε (vε, A) ≥
∑
T ∈Aiε

1

ε
f̃ (ε,Dvε)|T |

≥
∑
T ∈Ai,�ε

α1W(Evε)|T | + γ
∑
T ∈Ai,�ε

1

ε
ψ(ε|Dvε|2)|T |

≥
∑
T ∈Ai,�ε

α1W(Evε)|T | + γ (1 − δ)
∑
T ∈Ai,�ε

1

ε
|T | .(44)

Step 2. Consider the case i = 1 and i = 3. The function v is defined as
v = vε on Ai,�ε thus by (44) follow inequality (40) for η = 1/γ (1 − δ) and
inequality

α1

∫
A
i,�
ε

W(Ev) dx ≤ F iε (v, A
i,�
ε ) .(45)

On Ai,�ε we proceed element by element and component by component, de-
fining v first on the boundary of the element and then in its interior, in such
a way that, for a suitable choice of β1 and α2 the following inequalities hold

α2

∫
T

W(Ev) dx ≤ |T |
ε
,(46)

Sv ∩ ∂T = ∅ ,(47)

β1H1(Jv ∩ T ) ≤ |T |
ε
,(48)

∫
Jv∩T

ci,k|〈νv, ξi,k〉| dH1 ≤ |T |
ε
.(49)

Then from (44), (47) and (49) follows (41) while from (46)–(48) follows

α2γ (1 − δ)

∫
A
i,�
ε

W(Ev) dx + β1H1(Jv ∩ Ai,�ε ) ≤ F iε (u,A
i,�
ε )

and thus by (45) follows the existence of α and β such that (39) holds.
Let ζj denote the edges of ∂T and let aj and bj be the endpoints of ζj .

We proceed by components. Let vnε be the nth component of vε and let ∂jvnε
be the slope of vnε along ζj . If T ∈ Ai,�

ε it’s clear that

ε|∂jvnε |2 ≤ 2τδ .(50)

Now, consider a triangle T ∈ Ai,�
ε and an edge ζj then, proceeding by com-

ponents, we set vn = vnε on ζj if ε|∂jvnε |2 ≤ 2τδ, otherwise we set

vn(taj + (1 − t)bj ) =
{
vε(bj ) if t < 1/2
vε(aj ) if t ≥ 1/2.

(51)
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In this way vn is no longer continuous on ∂T but now its slope is uniformly
controlled on ∂T \ {m1,m2,m3}, where mj denotes the middle point of the
edges ζj .

Given ξi,k let Ji,k be the bold set represented in Figure 4 for T 1
ε and in

Figure 5 for T 3
ε . It’s easy to see by a simple trigonometric argument that for

every k we have ∫
Ji,k

ci,k|〈ν, ξi,k〉| dH1 ≤ |T |
ε
,(52)

and that for a sufficiently small parameter β1 > 0 we get

β1H1(Ji,k ∩ T ) ≤ |T |
ε
.(53)

Given ξi,k, both the components of v are defined is such a way that the
discontinuity set Jvn ⊂ Ji,k, so that Jv ⊂ Ji,k and consequently inequalities
(48) and (49) hold as a consequence of (52) and (53). The construction is
the same for all the choices of ξi,k. Let Rm for m = 1, 2, 3 be the regions of
T \ Ji,k . On ∂Rm \ Ji,k = ∂R ∩ ∂T the component vn is already assigned,
by construction it is continuous because the middle points are all separated,
and its slope is uniformly bounded by

√
2τδ/ε. As a consequence, its value

on ∂T defines in each region an affine function vn such that |∇vn|2 ≤ c/ε

(see [20] for details), where c depends only on δ and on the mesh. Then, for
a suitable constant α2, inequality (46) holds and the proof is concluded.

1,1
1,3

1,2

(a) (b) (c)

ξ ξ
ξ

Fig. 4. The sets of discontinuity for T 1
ε

3,1
3,2

3,3

(a) (b) (c)

ξ ξ
ξ

Fig. 5. The sets of discontinuity for T 3
ε
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Step 3. Consider now the case i = 2. The function v is defined again as
v = vε on Ai,�ε thus by (44) follows inequality (40) for η = 1/γ (1 − δ)

and (45) holds. As before we can proceed component by component but this
time it is not possible to define vn element by element because the anisotropy
is the result of the orientation of all the triangles contained in the squares
Q (see Figure 6 (a)) which represent the smallest periodic structure of the
mesh. Thus let Qε be the set of squares Q ⊂ A. We partition Qε into the
subsets Qε,m for m = 0, . . . , 4, according to the number of triangles T ⊂ Q

belonging to Ai,�
ε . In particular (44) becomes

F iε (vε, A) ≥
∑
T ∈Ai,�ε

α1W(Evε)|T | + γ (1 − δ)
∑
T ∈Ai,�ε

1

ε
|T |

≥
∑
T ∈Ai,�ε

α1W(Evε)|T | + γ (1 − δ)
∑
Q∈Qε

( ∑
T⊂Q : T ∈Ai,�ε

|T |
ε

)

≥
∑
T ∈Ai,�ε

α1W(Evε)|T | + γ (1 − δ)

4∑
m=1

( ∑
Q∈Qε,m

m|T |
ε

)
.(54)

Given k = 1, . . . , 4 the function vn will be defined in such a way that for
Q ∈ Qε,m

Jv ∩ ∂Q = ∅ ,(55)

α2

∫
Q

W(Ev)dx ≤ m|T |
ε

,(56)

β1H1(Sv ∩Q) ≤ m|T |
ε

,(57)

∫
Sv∩Q

(
c2,k|〈νv, ξ2,k〉| + c2,k+1|〈νv, ξ2,k+1〉|

)
dH1 ≤ m

|T |
ε
.(58)

(a) (b)

Fig. 6. The periodic structure of T 2
ε . Discontinuity set J1 for the case Q ∈ Qε,1
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If all the previous inequalities are satisfied then the proof is concluded, in-
deed, considering (54), from (55) and (58) follows (42) while from (55)–(57)
follows the existence of α and β such that (39) holds.

First of all note that by symmetry it is sufficient to consider the case
k = 1 (ξ2,1 = (1, 0), ξ2,2 = (

√
2/2,

√
2/2)). As before, we proceed by com-

ponents, defining vn first in ∂Q and then the interior. Note that v is already
defined in Q ∩ Ai,�ε . Let T ⊂ Q such that T ∈ Ai,�

ε and let ζj be the edge
of ∂T ∩ ∂Q. If ε|∂jvnε |2 > 2τδ then vnε is defined in ζj as in (51) otherwise
we take vn = vnε . Let Jm be the sets represented in Figure 6–8. By a simple
trigonometric argument it easy to check that

∫
Jm∩Q

(
c2,k|〈ν, ξ2,k〉| + c2,k+1|〈ν, ξ2,k+1〉|

)
dH1 ≤ m

|T |
ε
,(59)

and clearly there exists β1 such that

β1H1(Jm ∩Q) ≤ m|T |
ε

.(60)

Note that the sets Jm are defined in such a way that for every connected
component C ofQ\Ai,�ε the slope of vn is uniformly bounded by

√
2τδ/ε on

∂C ∩ ∂Q. Thus we can extend the values of vn inside C in such a way that

(a) (b) (c)

Fig. 7. Discontinuity set J2 for the case Q ∈ Qε,2

(a) (b)

Fig. 8. Discontinuity sets J3 and J4 for the cases Q ∈ Qε,3 and Q ∈ Qε,4 respectively
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Jvn ⊂ Jm and ∫
Q

|∇vn|2 dx ≤ c
m|T |
ε

.(61)

Once the components are defined in this way, property (55) is clearly satis-
fied, (56) and (57) follows easily and finally inequality (58) is proved from
(59). ��
Proposition 3 Let u ∈ L1(�,R2) and letA be an open set in�, if F i(u,A)
< +∞ then u ∈ SBD2(�,R2) ∩K(�) and

H1(Ju ∩ A) < +∞ ,(62)
∫
A

W(Eu) dx ≤ F i(u,A) .(63)

Moreover for i = 1 and i = 3 and for every k = 1, . . . , 3 we have

γ

∫
Ju∩A

ci,k|〈νu, ξi,k〉| dH1 ≤ F i(u,A) .(64)

Finally for i = 2 and for every k = 1, . . . , 4 we have

γ

∫
Ju∩A

(
c2,k|〈νu, ξ2,k〉| + c2,k+1|〈νu, ξ2,k+1〉|

)
dH1 ≤ F i(u,A) .(65)

Proof. Let εj ↘ 0 and vεj ∈ V iεj (�,R2) such that vεj → u in L1(�,R2)

and lim infεj→0 F
i
εj
(uεj , A) < +∞. Up to taking a subsequence (denoted

again as vεj ) it is not restrictive to suppose that F iεj (vεj , A) ≤ c < +∞.
Let us first prove inequalities (62) and (63). For every vεj let vj ∈

SBD2(�,R2) be the function given by Lemma 3. From the convergence
in L1(�,R2) of vεj and from (35) it follows that vj converges to u and by
(34) that

∫
Aεj

W(Evj ) dx + αH1(Jvj ∩ Aεj ) ≤ F iεj (vεj , A) ≤ c .

Let η > 0, if εj is small enough then Aη ⊂ Aεj and then
∫
Aη

W(Evj ) dx + αH1(Jvj ∩ Aη) ≤ F iεj (vεj , A) ≤ c .

Then by the compactness and lower semicontinuity result of Proposition 1
we have that u ∈ SBD2(Aη) and

∫
Aη

W(Eu) dx + αH1(Ju ∩ Aη) ≤ lim inf
j→+∞

F iεj (vεj , A) .
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Since the previous inequality holds for every η we have
∫
A

W(Eu) dx ≤ lim inf
j→+∞

F iεj (vεj , A) ,

H1(Ju ∩ A) < +∞ .(66)

Applying the same reasoning for every sequence εj ↘ 0 and for every
sequence vεj it follows that

∫
A

W(Eu) dx ≤ F i(u,A) .(67)

Finally, to show inequalities (64) and (65), let this time vj be the function
given by Lemma 4 then, as for the previous inequalities, (64) and (65) will
follow from the lower semicontinuity inequality (9). ��
Proof of Proposition 2. The �-liminf inequality follows applying the usual
supremum of measures argument and considering the representations (29)–
(31) of the anisotropy functions. The constrain u ∈ K(�) follows by point-
wise convergence. ��

Consider now the isotropic case.

Proposition 4 Denote by F θ (u) the �- lim infε→0 F θ
ε (u) and take u ∈

L1(�,R2) such that F θ (u) < +∞. Then u ∈ K(�) ∩ SBD2(�,R2) and
∫
�

W(Eu) dx + γH1(Su) ≤ lim inf
ε→0

F θ
ε (vε) ,(68)

for every sequence vε ∈ Vθ
ε (�,R2) converging strongly to u in L1(�,R2).

Proof. Following the proof of Lemma 3 we can easily obtain (34) and (35).
Arguing as in the proof of Proposition 2, we get (66) and (67). It remains
to consider the H1-term. We prove first a result on the localized functional
similar to Lemma 4. For every δ ∈ (0, 1) there are some positive constants
α, β, η such that for every vε ∈ V θ

ε (�,R2) and for every ξ ∈ S1 there exists
v ∈ SBD2(�,R2) satisfying

α

∫
Aε

W(Ev) dx + βH1(Jv ∩ Aε) ≤ F θ
ε (vε, A) ,(69)

|{x ∈ � : vε(x) �= v(x)}| ≤ η εF θ
ε (vε, A) ,(70)

sin θ (1 − δ)γ

∫
Jv∩Aε

|〈νv, ξ〉| dH1 ≤ F θ
ε (vε, A) .(71)
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Following exactly the proof of Proposition 4 we get again inequality (44).
Define vε = v on Ai,�ε , so that from (44) we have (70) and

α1

∫
A

4,�
ε

W(Ev) dx ≤ F θ
ε (v, A

θ,�
ε ) .

We want to define v on Ai,�ε in such a way that (46)–(48) and

sin θ
∫
Jv∩T

|〈νv, ξ〉| dH1 ≤ |T |
ε

(72)

are satisfied. We can proceed element by element and component by com-
ponent. Note that for a constant c > 0 if T ∈ Aθ,�

ε then ε|∂jvnε |2 ≤ cτδ for
every edge ζj ⊂ ∂T . Let now T ∈ Aθ,�

ε and let ζj ⊂ ∂T . If ε|∂jvnε |2 > cτδ
then we define vn on ζj as in (51) otherwise we set vn = vnε .

Given ξ ∈ S1, following the idea of [11], let the edges of ∂T be ordered
according to

〈m1, ξ〉 ≤ 〈m2, ξ〉 ≤ 〈m3, ξ〉 ,
where mj denotes the middle point of ζj . We define the discontinuity set J
as the union of the segments [m1,m2] and [m2,m3]. Then by [11] we have

H1(J ) ≤ 2|T |
ε sin θ

,(73)

∫
J

|〈νv, ξ〉| dH1 ≤ |T |
ε sin θ

.(74)

Note that J contains all the middle pointsmj and that the components vn are
continuous on ∂T \ {m1,m2,m3} and that their slope is uniformly bounded
by

√
cτδ/ε. Consequently for every connected component of T \ J the value

of vn on ∂T defines an affine function whose gradient is controlled by c/ε
(see [11] Remark 3.5) and for a suitable choice of α1 we have (69). Moreover
in this way Jvn ⊂ J and then (72) follows from (74). Then the �-liminf
inequality is obtained following the proof of Proposition 2. ��

6 Γ-limsup inequality

Proposition 5 Let i = 1, 2, 3 then for every u ∈ SBV 2(�,R2) ∩ K(�)
there exists a sequence vε ∈ V iε (�,R2) such that

vε −→ u strongly in L1(�,R2) ,(75)

lim sup
ε→0

F iε (vε) ≤ F i(u) .(76)
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Proof. Step 1. Consider first u ∈ K(�) ∩ W(�,R2) with compact sup-
port, then, by Definition 1, Su is the union of the disjoint segments Sm, for
1 ≤ m ≤ k. Let Sim,ε be the coverings of Sm and consider ε sufficiently
small in such a way that they are pairwise disjoint. Let Siu,ε be their union

and�iε = � \ Siu,ε. Being Su ⊂ Siu,ε by regularity we have u ∈ C∞(�iε,R2),

thus vε can be defined in�iε as the Lagrange interpolation of u. Moreover�iε
contains all the knots of the mesh T i

ε because the sets Sim,ε are disjoint and
their interior do not contain any vertex by definition. Thus the function vε is
defined in the whole set �, it clearly belongs to V iε (�,R2) and it satisfies
also the constraint vε ∈ K(�).

By a standard result on finite elements (see [12]) there exists a constant
C, which does not depend on ε and u, such that

‖u− vε‖m,q,T ≤ C |T | 1
q
− 1
p ε2−m |u|2,p,T .(77)

Then for every triangle T �⊂ Siu,ε, for m = 0, q = 1 and p = ∞ we have

∫
T

|vε − u| dx ≤ C |T | ε2 |u|2,∞,(�\Su) .

Considering that ‖vε‖∞ ≤ ‖u‖∞ and that |Siu,ε| → 0 it follows easily that
vε converges strongly to u in L1(�,R2). Moreover for m = 1, q = 2 and
p = ∞ for every triangle T �⊂ Siu,ε we have

∫
T

|Dvε −Du|2 dx ≤ C |T | ε2 |u|2
2,∞,(�\Su) .

Denote by Dε the function Dvε1�iε (where 1�iε is the characteristic function
of �iε). Then Dε converges strongly to Du in L2(�,M2×2), indeed from
|Siu,ε| = O(ε), the regularity of u and the previous inequality it follows that

∫
�

|Dε −Du|2 dx ≤
∫
�iε

|Dvε −Du|2 dx +
∫
Siu,ε

|Du|2 dx

≤ cε2 |u|2
2,∞,(�\Su) + |Siu,ε| |u|21,∞,(�\Su) .(78)

To prove (76) we must consider separately the behavior in �iε and Siu,ε. We
start with �iε. By the previous inequality it follows that

lim sup
ε→0

∫
�iε

W(Dvsymε ) dx = lim sup
ε→0

∫
�

W(Dsym
ε ) dx

=
∫
�

W(Eu) dx .(79)
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Moreover, being (1 − ψ(t)) ≤ 1, we have

lim sup
ε→0

∫
�iε

(
1 − ψ(ε|Dvε|2)

)
W(Dvsymε ) dx ≤ lim sup

ε→0

∫
�iε

W(Dvsymε ) dx

≤
∫
�

W(Eu) dx .(80)

As u ∈ W 1,∞(� \ Su,R2) then |Dvε| ≤ c uniformly in �iε and thus by (20)

lim sup
ε→0

∫
�iε

γ

ε
ψ(ε|Dvε|2) dx ≤ lim sup

ε→0

∫
�iε

γ

ε
ψ(εc2) dx = 0 .(81)

Let us consider now the behavior in Siu,ε. If S ⊂ � is a segment and Siε is
its covering, then, being (1 − ψ(t))t bounded in [0,+∞), it follows that

lim sup
ε→0

∫
Siε

(
1 − ψ(ε|Dvε|2)

)
W(Dvsymε ) dx

≤ lim sup
ε→0

∫
Siε

c

ε

(
1 − ψ(ε|Dvε|2)

)
ε|Dvε|2 dx

≤ c lim sup
ε→0

|Siε|
ε

≤ cH1(S) .(82)

Let now δ > 0, let Sδu = {x ∈ Su : |u+ −u−| ≥ δ} and (Sδu)
i
ε be its covering.

Being u ∈ W 1,∞(� \ Su,R2), for ε sufficiently small we have |Dvε| ≥ δ
4ε

for T ⊂ (Sδu)
i
ε. Then, considering that ε|Dvε|2 diverges in (Sδu)

i
ε and that

(1 − ψ(t))t is decreasing for t large we deduce that

lim sup
ε→0

∫
(Sδu)

i
ε

(
1 − ψ(ε|Dvε|2)

)
W(Dvsymε ) dx

≤ lim sup
ε→0

∫
(Sδu)

i
ε

1

ε

(
1 − ψ(ε|Dvε|2)

)
cε|Dvε|2 dx

≤ lim sup
ε→0

|(Su)iε|
ε

(
1 − ψ

( δ2

16ε

)) δ2

16ε
c

≤ cH1(Sδu) lim sup
ε→0

(
1 − ψ

( δ2

16ε

)) δ2

16ε
= 0 .(83)

Then, for every δ > 0, by inequalities (82) and (83), we have

lim sup
ε→0

∫
(Su)iε

(
1 − ψ(ε|Dvε|2)

)
W(Dvsymε ) dx

≤ lim sup
ε→0

∫
(Sδu)

i
ε

(
1 − ψ(ε|Dvε|2)

)
W(Dvsymε ) dx

+ lim sup
ε→0

∫
(Su)iε\(Sδu)iε

(
1 − ψ(ε|Dvε|2)

)
W(Dvsymε ) dx

≤ CH1(Su \ Sδu) ,
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which proves (for δ → 0) that

lim sup
ε→0

∫
(Su)iε

(
1 − ψ(ε|Dvε|2)

)
W(Dvsymε ) dx = 0 .(84)

Finally, for every segment Sm, from (28) follows

lim sup
ε→0

∫
Sim,ε

γ
ψ(ε|Dvε|2)

ε
dx ≤ γ lim sup

ε→0

|(Sm)iε|
ε

= γ

∫
Sm

φi(ν)dH1 .

(85)
Then by inequalities (80)–(81) and (84)–(85) it follows that

lim sup
ε→0

F iε (vε) ≤
∫
�

W(Eu)dx + γ

∫
Ju

φi(νu)dH1 = F i(u) .(86)

So the�-limsup inequality is proved foru ∈ K(�)∩W(�,R2)with compact
support. Here the compact support is not strictly necessary, it just prevents
technical problems near the boundary ∂�.

Step 2. Denote by F i(u) the �-limsup. By the previous step, if u ∈ K(�)∩
W(�,R2) with compact support then F i(u) ≤ F i(u). Consider now u ∈
K(�) ∩ SBV 2(�,R2) with compact support. By Proposition 1 there exists
a sequence of functionswk ∈ K(�)∩W(�,R2)with compact support such
that (15)–(18) hold. Then by the lower semicontinuity of F i it follows that

F i(u) ≤ lim inf
k→+∞

F i(wk) ≤ lim sup
k→+∞

F i(wk) ≤ lim sup
k→+∞

F i(wk) ≤ F i(u) .

It remains to remove the hypothesis on the compact support. Let u ∈ K(�)∩
SBV 2(�,R2), from Lemma 4.2 in [11] follows the existence of a func-
tion u′ ∈ SBV 2(R2,R2) with compact support such that u′ = u in �,
‖u′‖∞ = ‖u‖∞ and H1(Su′ ∩ ∂�) = ∅. Let �′ be a rectangle containing
the support of u′, then there exists a sequence vε ∈ V iε (�,R2) such that
lim supε→0 F

i(vε,�
′) ≤ F i(u,�′). Considering the �-liminf inequality, we

have

F iε(u,�′) ≥ lim sup
ε→0

F iε (vε,�
′)

≥ lim sup
ε→0

F iε (vε,�)+ lim inf
ε→0

F iε (vε,�
′ \�)

≥ F i(u,�)+ F i(u,�′ \�) .
Then

F i(u) = F i(u,�) ≤ F i(u,�′)− F i(u,�′ \�) = F i(u,�) = F i(u) ,

which completes the proof. ��
Consider now the isotropic approximation.
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Proposition 6 For every u ∈ SBV 2(�,R2) ∩ K(�) there exists a
“sequence” vε ∈ V θ

ε (�) such that

vε −→ u strongly in L1(�,R2) ,(87)

lim sup
ε→0

F θ
ε (vε) ≤ F θ (u) .(88)

Proof. Step 1. Let u ∈ K(�) ∩ W(�,R2) with compact support, and let
Su be the union of the disjoint segments Sm. By Lemma 2 there exists a mesh
Tε ∈ T θ

ε such that (32) holds. Using this mesh we can repeat the proof of
Proposition 5 and we get (80),(81) and (84). Finally, by (32) we have

lim sup
ε→0

∫
Sim,ε

γ
ψ(ε|Dvε|2)

ε
dx ≤ γ lim sup

ε→0

|(Sm)iε|
ε

= γ sin θ H1(Su) ,

and then the �-liminf inequality is proved for u ∈ K(�) ∩ W(�,R2) with
compact support.

Step 2. See the proof of Proposition 5. ��

7 Boundary value problems

Let � be an open, bounded, connected set in R2 having Lipschitz bound-
ary and let �0 be an open bounded set. Suppose that � ∩ �0 �= ∅ and that
∂�D = ∂� ∩ �0 �= ∅ is polygonal. Let g ∈ W 2,∞(�0,R2). Finally let
�′ = � ∪�0, �′

0 = �0 \�.
For a constant k ≥ ‖g‖∞, define the constrain K(�′) = {‖u‖∞ , ≤ k

u = g in �′
0}. Being g ∈ W 2,∞(�0,R2) we can clearly define its Lagrange

interpolation and we denote it by gε. Denote by�′
0,ε the union of the elements

T ∈ Tiε such that T ⊂ �′
0. Then we can introduce the discretized constrain

Kε(�) = {‖u‖∞ , ≤ k u = gε in �′
0,ε}.

The discrete functional is now defined as

Gi
ε(vε) = 1

ε

∑
T ∈Tεi

∫
T∩�′

f (ε,Dvε) dx ,(89)

if vε ∈ V iε (�
′,R2) ∩ Kε(�′) and Gi

ε(vε) = +∞ otherwise in L1(�′,R2),
while the limit functional is

Gi(u) =
∫
�′
W(Eu) dx +

∫
Su

φi(νu) dH1 ,(90)

if u ∈ SBD2(�′,R2) ∩K(�′) and Gi(u) = +∞ otherwise in L1(�′,R2).
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Proposition 7 For every mesh Tiε let φi : R2 → [0,+∞) be the corre-
sponding anisotropy function. Then for every u ∈ L1(�,R2) and for every
sequence vεj ∈ V iεj (�,R2), converging strongly to u in L1(�,R2), we have

Gi(u) ≤ lim inf
ε→0

Gi
ε(vε) .(91)

Proof. Up to extracting a subsequence we can suppose thatGi
ε(vε) ≤ c < ∞

and then by L1-convergence follows u ∈ K(�). Inequality (91) is proved as
in Proposition 2. ��
Proposition 8 For every i = 1, 2, 3 and for every u ∈ SBV 2(�,R2) there
exists a sequence vεj ∈ V iεj (�,R2), converging strongly to u in L1(�,R2),
such that

Gi(u) ≥ lim sup
ε→0

Gi
ε(vε) .

Proof. It follows by a density result with respect to boundary value problems,
proved in [21], and by Proposition 5 . ��
Remark 4 Note that this formulation takes into account the case of a fracture
along the set ∂�D where the boundary condition is assigned. Indeed we can
write∫

�′
W(Eu) dx =

∫
�

W(Eu)dx +
∫
�′

0

W(Eg)dx =
∫
�

W(Eu)dx + C ,

∫
Su

φi(νu) dH1 =
∫
Su∩�

φi(νu) dH1 +
∫
Su∩∂�D

φi(νu) dH1 .

Then the minimum problem min{F i(u)}, for u ∈ SBV 2(�′,R2) ∩ K(�′),
becomes

min
{
F i(u,�)+ γ

∫
Su∩∂�D

φi(ν)dH1
}

for u ∈ SBV 2(�′,R2) ∩K(�′) .

Proposition 9 Let εj ↘ 0 and wεj be a sequence of minima of Gεj (vεj ),
then there exists a subsequence which converges strongly in L1(�′,R2) to a
function u ∈ SBD2(�′,R2).

Proof. Using the technique of Lemma 3, we know that for every εj there is
a function vj ∈ SBD2(�′,R2) such that

∫
�′
εj

W(Evj ) dx + αH1 (Jvj ∩�′
εj
) ≤ Gi

εj
(wεj )

|{x ∈ �′ : wεj (x) �= vj (x)}| ≤ β εGi
εj
(wεj ) .
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By Proposition 1 vj is compact in SBD2(�′
εj
,R2) and then (up to a subse-

quence) it converges to a function uj ∈ SBD2(�′
εj
,R2). The convergence

result follows by a diagonal procedure for an increasing sequence of sets�′
εj

converging to �′. ��
By a standard argument in the theory of �-convergence [15] we have the

following result on the convergence of minima.

Proposition 10 Letwεj and u as in Proposition 9. If u ∈ SBV 2(�′,R2) then
it is a minimum of the functionalGi(u) restricted to SBV 2(�′ R2)∩K(�′).

Remark 5 Clearly, using the same arguments, we can prove similar conver-
gence and compactness results for the isotropic case.

8 Numerical results for a quasi-static evolution
of a pre-existing fracture

This section presents some numerical results obtained for a model problem.A
detailed analysis of the numerical implementation and a comparison between
benchmark experimental results is out the purposes and will be the subject
for a further investigation [5].

Considering the notations of Section 7 and following [18] let the boundary
condition be given by a monotonically increasing function g(t, x) = t ĝ(x)

for ĝ(x) ∈ W 2,∞(�0,R2) and let S ⊂ � be a segment representing the
initial fracture. Moreover let 0 = t0 < t1 < . . . < tn = T be a uniform
discretization of the time interval [0, T ] and let ĝε(x) ∈ V iε (�0,R2) be the
Lagrange interpolation of ĝ(x). Finally for a given k > 0, letKε,t (�′) = {u ∈
L1(�′,R2) : ‖u‖∞ ≤ k , u = t ĝε(x) in �′

0,ε} and Sε,t0 be the covering of
S in the mesh Tiε. Then for t = t0 our discrete functional becomes

Gi
ε,t0
(vε) = 1

ε

∑
T ∈Tiε\Sε,t0

∫
T∩�′

f (ε,Dvε) dx .(92)

Given

wε,t0 ∈ argmin{Gi
ε,t0
(uε) for uε ∈ V iε (�′,R2) ∩Kε,t0(�′) } ,(93)

the discrete set of crack, denoted by Jε,t0 , is given by the elements T ∈ Tiε
such that the local Griffith’s criterion εW(Ewε,t0) > γ is satisfied. In order
to ensure the irreversibility of the fracture we define Sε,t1 = Sε,t0 ∪ Jε,t0 and
consequentlyGε,t1 as in (92). Proceeding by induction, the evolution will be
given by the sequence of functions wε,ti for i = 0, . . . , n.
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By an obvious rescaling argument it is not restrictive to suppose that
γ = 1. Let c = (µ + λ

2 ) and s > 1, then a good choice for the control
function ψ(z) is

ψ(z) = 2

π
arctan

(
(cz)s

)

which gives

ψ(ε|Duε|2) = 2

π
arctan

(
εs

(
µ+ λ

2

)s
|Duε|2s

)
.

Indeed, considering (µ+λ
2 )|Duε|2 as an approximation of the energyW(Euε),

the local Griffith’s criterion becomes

ε(µ+ λ

2
)|Duε|2 > 1 = γ ,

suggesting that the function ψ(z) should change its behavior around z = 1.
From the numerical point of view the difficulties come from the minimi-

zation of the functionGi
ε,ti

. Indeed in order to reproduce accurately Griffith’s
criterion we should use a function ψ(z) having a fast transition between 0
and 1. This is clearly obtained taking s large, indeed in this way the bulk and
surface energies are computed carefully, because the function f (ε,M) has
the following behavior

f (ε,M) �
{
εW(Msym) for εc|M|2 < 1
γ otherwise.

Unfortunately the numerical minimization for s large is very difficult due to
the sharp layer at z = 1 (the algorithm seems to be unable to overcome the
layer and thus the solution does not exhibit any motion of the crack). For
this reason we need a graduated-non-convexity strategy (in short GNC). For
every time step tj let 1.5 = s1 < . . . < s8 = 8.5 with sn+1 − sn = 1 and
let Gi,sk

ε,tj
be the corresponding discrete functional. Starting from s1 the idea

consists in computing a solution of Gi,sk
ε,tj

taking as initial guess the solution

ofGi,sk−1
ε,tj

. Clearly forGi,s1
ε,tj

the initial guess is the solution at time tj−1, while
for Gs0

ε,t0
it is uε ≡ 0, being g(0, x) ≡ 0.

For every time tj and every value sk the minimization is performed by
a quasi-Newton algorithm for non-convex functions using a quadratic back-
tracking as line search strategy (we refer to [22] and to the references therein
for the details).

Our model problem is defined in the set � = (0, 2) × (0, 1), the initial
fracture is the segment with extrema (0, 0.5) and (0.55, 0.5). The boundary
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condition ĝ(x) is given on the sets ∂�upD = {(x1, 1) for x1 ∈ (0, 2)} and
∂�downD = {(x1, 0) for x1 ∈ (0, 2)} and it is defined as

ĝ(x) =


(0, 0.5) for x ∈ ∂�upD
(0,−0.5) for x ∈ ∂�downD .

The Lamé constants are µ = 9 and λ = 12 and the fracture toughness is
γ = 1. Let us try to give a rough estimate of the critical time tc when the
crack should start to move. Suppose that the crack tip is located at the point
(L, 0.5), we expect the fracture to evolve horizontally from left to right. We
will restrict our analysis to the set (L, 2)×(0, 1) because the value of the ener-
gy in (0, L)× (0, 1) remains basically constant until loss of cohesion occurs.
Considering the geometrical symmetries of the problem we can approximate
the elastic energy by

(µ+ λ

2
)

∣∣∣ ∂û
∂x2

∣∣∣2
t2(2 − L) ,

where û(x) is the affine function in � having boundary condition ĝ(x) on
∂�D. Let ce = (µ + λ

2 )| ∂û∂x2
|2 and let dl, the increase in fracture length, be

the unknown. Then the energy is

Gt(dl) = cet
2(2 − L− dl)+ γ dl = dl(γ − cet

2)+ cet
2(2 − L) ,

which is a linear function of dl. The minimum problem becomes

min
0≤dl≤(2−L)

dl(γ − cet
2)+ cet

2(2 − L) .

Thus for (γ − cet
2) > 0 the minimum is attained in dl = 0 (the crack does

not move) while for (γ − cet
2) < 0 it is attained at dl = (2 − L) (loss of
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Fig. 9. Initial configuration
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Fig. 10. Configurations from t = 0.250 to t = 0.266 with dt = 0.002

cohesion). Even if the real behavior is not so simple, because of the influ-
ence of lower order terms, we can take as critical time the value tc such that
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Fig. 11. Comparison of elastic, fracture and total energies

γ = cet
2
c . In our case tc � 0.258. The computed results seem to obey to this

estimate, being the numerical critical time tnc = 0.252.
Finally, Figure 10 and 11 show the evolution of the fracture and the

behavior of the energies. It is clear that at time t = 0.262 the fracture starts
“running” in order to reach the global minimum corresponding to the loss of
connection.
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