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Summary This paper is devoted to the numerical analysis of some finite
volume discretizations of Darcy’s equations. We propose two finite volume
schemes on unstructured meshes and prove their equivalence with either
conforming or nonconforming finite element discrete problems. This leads
to optimal a priori error estimates. In view of mesh adaptivity, we exhibit
residual type error indicators and prove estimates which allow to compare
them with the error in a very accurate way.
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1 Introduction

We are interested in the finite volume discretization of Darcy’s equations in
a bounded connected open set � in R

d , d = 2 or 3, with a Lipschitz–con-
tinuous boundary. These equations, introduced by H. Darcy [12] in a more
general framework, model the flow of an incompressible and isothermal fluid
in homogeneous porous media:






u + grad p = f in �,

div u = 0 in �,

u · n = 0 on ∂�.

(1)

The unknowns are the velocity u and the pressure p, while the data f rep-
resent a density of forces and n stands for the unit outward normal vector to
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the boundary of �. These equations also appear in several other models or
algorithms. For instance, when written in the slightly modified form






u + grad p = 0 in �,

div u = g in �,

u · n = 0 on ∂�,

they provide a mixed formulation of the Laplace equation with Neumann
type boundary conditions. They are also involved in the projection–diffusion
algorithm for solving the time-dependent Stokes and Navier–Stokes equa-
tions, as suggested by A.J. Chorin [5] and R. Temam [17]. The aim of this
paper is to propose and analyze accurate finite volume schemes for solving
these equations on adaptive meshes.

A very interesting and unusual feature of Darcy’s equations is that they
admit two equivalent variational formulations, whether the space of velocities
is more regular than the space of pressures or not. A third “nonsymmetric”
formulation has been recently suggested by J.-M. Thomas [19] where the
space for the solution is different from the space for the test functions. Ap-
plying the Galerkin method to these formulations leads to different discrete
problems, and all of them do not give optimal a priori and/or a posteriori
error estimates, see [3] for instance. This has determined the choice of the
formulation we work with.

We propose two finite volume discretizations of problem (1), relying on a
regular family of triangulations of the domain by triangles or tetrahedra. We
refer to R. Eymard, T. Gallouët and R. Herbin [14] for a general description
and analysis of the finite volume techniques. One of the important charac-
teristics of the systems that result from our schemes is that the mass matrix
is diagonal, which would not hold if working with the other formulations of
Darcy’s equations. We first check that the finite volume system is equiva-
lent to a finite element problem, for some appropriate choices of the discrete
spaces of velocities and pressures. In the first case, the discretization is con-
forming and relies on standard Lagrange elements, as described in [6](§ 6).
In the second one, it is not conforming and involves the well-known finite
element of M. Crouzeix and P.-A. Raviart [11]. From this equivalence, we
derive in an easy way optimal a priori error estimates.

Next, we propose error indicators of residual type. We refer to R. Verfürth
[20] for the definition and numerical analysis of this type of indicators in
the finite element framework. We prove that the error is equivalent to the
Hilbertian sum of the indicators in an optimal way (see [2] for the notion of
optimal a posteriori estimates). Moreover, these indicators are local : they are
associated either with one element of the triangulation or with an edge (or a
face) of this element, so that they are fully appropriate for an adaptive refine-
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ment of the mesh where necessary. It can also be noted that their evaluation
requires very low computational effort.

An outline of the paper is as follows.
• In Section 2, we describe the variational formulation of problem (1) and

prove its well-posedness.
• The two finite volume schemes are described and analyzed in Sections 3

and 4, respectively.

2 A variational formulation of the continuous problem

We first write the variational formulation of problem (1). Next, we prove that
the variational problem is well-posed and we recall some basic regularity
properties of the solution.

In all that follows, on each connected open set O in R
d , d = 2 or 3, with

a Lipschitz–continuous boundary and for all nonnegative real numbers s, we
use the standard Sobolev spaces Hs(O), provided with the norm ‖ · ‖Hs(O)
and seminorm | · |Hs(O). On the boundary ∂O, we use the space H

1
2 (∂O)

defined as the space of traces on ∂O of functions inH 1(O) and its dual space
H− 1

2 (∂O).

2.1 The variational formulation

Let L2
0(�) stand for the space

L2
0(�) = {

q ∈ L2(�);
∫

�

q(x) dx = 0
}
.

We set

X = L2(�)d and M = H 1(�) ∩ L2
0(�).(2)

We consider the following variational formulation of problem (1):

Find (u, p) in X ×M such that
∀v ∈ X, a(u, v)+ b(v, p) = ∫

�
f (x) · v(x) dx,

∀q ∈ M, b(u, q) = 0,
(3)

where the bilinear forms a(·, ·) and b(·, ·) are given by

a(u, v) =
∫

�

u(x) · v(x) dx, b(v, q) =
∫

�

v(x) · (grad q)(x) dx.

If D(�) denotes the space of infinitely differentiable functions with a
compact support in�, by using the density of D(�)d in L2(�)d , we observe
that the first equation of problem (3) is fully equivalent to the first line of (1)
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in the distribution sense. Similarly, letting q in (3) run through D(�) yields
the second line of (1) also in the distribution sense. Finally, we recall [15]
(Chap. I, Thm 2.5) that a normal trace can be defined for all functions v in
L2(�)d with a square–integrable divergence by the formula

∀ϕ ∈ H 1(�), 〈v · n, ϕ〉 =
∫

�

(
v · gradϕ + ϕ div v

)
dx,(4)

where the symbol 〈·, ·〉 here denotes the duality pairing between H− 1
2 (∂�)

and H
1
2 (∂�). Applying this formula to the velocity u of problem (3) yields

the third line in (1) in the sense of H− 1
2 (∂�). Combining these arguments

yields the following result.

Proposition 1 For any data f in L2(�)d , system (1) admits the equivalent
variational formulation (3).

Remark 1 LetH0(div, �) stand for the space of the functions inL2(�)d such
that their divergence belongs to L2(�) and that their normal trace, as defined
in (4), vanishes. Then, another variational formulation of system (1) reads

Find (u, p) dans H0(div, �)× L2
0(�) such that

∀v ∈ H0(div, �), a(u, v)−
∫

�

(div v)(x)p(x) dx

=
∫

�

f (x) · v(x) dx,

∀q ∈ L2
0(�), −

∫

�

(div u)(x)q(x) dx = 0.

(5)

There also, it is readily checked that this problem is equivalent to system (1),
however we have rather work with problem (3) in view of the discretization.

2.2 Existence and uniqueness of the solution

Problem (3) is of saddle-point type, so proving its well-posedness relies on
some rather standard arguments.

Theorem 1 For any data f in L2(�)d , problem (3) has a unique solution
(u, p) in X ×M . Moreover this solution satisfies the following estimate

‖u‖L2(�)d + ‖p‖H 1(�) ≤ c� ‖f ‖L2(�)d ,(6)

for a constant c� only depending on the geometry of �.
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Proof. The form a(·, ·) coincides with the scalar product of L2(�)d , so that
its continuity and ellipticity are obvious. The form b(·, ·) is continuous on
L2(�)d × H 1(�). Moreover, for any q in M , by taking v equal to grad q,
we have

b(v, q) = ‖v‖L2(�)d |q|H 1(�).

By using the standard Bramble–Hilbert (also called Poincaré–Wiertinger)
inequality on M , we obtain the inf-sup condition

∀q ∈ M, sup
v∈X

b(v, q)

‖v‖L2(�)d
≥ c ‖q‖H 1(�).(7)

So, the desired result follows from [15] (Chap. I, Thm 4.1) for instance.

2.3 Some regularity properties

When the function f is such that its curl belongs to L2(�)2d−3 (the curl
of a vector field is a scalar function in dimension d = 2, a vector field in
dimension d = 3), system (1) implies






curl u = curl f in �,

div u = 0 in �,

u · n = 0 on ∂�.

(8)

So, proving the regularity properties of the velocity u is achieved by iden-
tifying the largest number s such that the space of function in L2(�)d with
square–integrable divergence and curl and zero normal trace is imbedded in
Hs(�)d . The evaluation of such an s has been performed for several classes
of domains � in [8], [15] (Chap. I, § 3.5) and [1] (§ 2).

Theorem 2 For any data f in L2(�)d such that curl f belongs to
L2(�)2d−3, the solution (u, p) of system (1) is such that the velocity u be-
longs to Hs(�)d , with
(i) s equal to 1

2 without further assumption on �,
(ii) s equal to 1 when either the boundary of � is of class C1,1 or � is con-
vex.
If moreover the function f is in Hs(�)d , the solution (u, p) belongs to
Hs(�)d ×Hs+1(�).

These results can be extended to smoother domains �, for instance with
boundary of class Cm,1 for an integer m ≥ 2. However, in view of the appli-
cations, we are more interested in the following results.
• When � is a convex polygon or polyhedron, it can be derived from [13]

that there exist real numbers p > 2 and s > 1 such that, if curl f be-
longs to Lp(�)2d−3 orHs−1(�)2d−3, the velocity u belongs toW 1,p(�)d

or Hs(�)d , respectively.
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• When � is a nonconvex polygon or polyhedron, it is proved in [9]
(Thm 3.5) that the velocity u admits the expansion

u = w + grad ϕ,

where w belongs toX∩H 1(�)d and ϕ is a linear combination of singular
functions of the Laplace equation with homogeneous Neumann bound-
ary conditions (this means that ϕ belongs to H 1(�) but not to H 2(�),
while �ϕ belongs to L2(�)). When � is a polygon with largest angle
ω, π < ω < 2π , these singular functions are explicitly known and the
velocity u belongs to Hs(�)2, s < π

ω
.

3 The first finite volume scheme

We first recall some useful notation. Next we describe the finite volume
scheme. Its equivalence with a finite element problem is checked, which
leads to a priori error estimates on both the velocity and the pressure. Finally,
we propose a family of error indicators and compare them with the error.

3.1 Some notation

In what follows, we assume for simplicity that � is either a polygon or a
polyhedron with a Lipzchitz–continuous boundary. Let (Th)h be a family of
triangulations of the domain �, in the usual sense: each Th is a finite set of
triangles (d = 2) or tetrahedra (d = 3) such that � is the union of these
triangles or tetrahedra and the intersection of two different elements of Th,
if not empty, is a vertex or a whole edge or a whole face of both of them.
As usual, h denotes the maximal diameter of the elements of Th. We make
the further assumption that this family is regular, i.e. there exists a positive
constant σ such that, for all h and for all K in Th, the ratio of the diameter
hK of K to the diameter of its inscribed circle or sphere is smaller than σ .

Let Vh stand for the set of all vertices of elements in Th and, for anyK in
Th, let VK be the set of the d + 1 vertices of K . For each a in Vh, we denote
by λa the Lagrange function associated with a, i.e. the continuous function
on � which is affine on each element of Th, is equal to 1 in a and vanishes
at the other points of Vh. We define ωa as the support of λa , Ta as the set of
elements of Th that contain a and Ea the set of edges in the case d = 2 or
faces in the case d = 3, of elements of Th that contain a.

With any K in Th, we associate the characteristic function χK of K and
also the set EK of edges in the case d = 2, faces in the case d = 3, ofK . For
any vertex a of K , let eK,a be the edge (d = 2) or face (d = 3) of K that
does not contain a. Then nK,a stands for the unit outward normal vector to
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Fig. 1. The subdomain ωa

K on eK,a and hK,a for the length of the height of K issued from a. This is
illlustrated in Figure 1.

For any a in Vh and any e in Ea , let ne be one of the unit normal vectors to
e, which is oriented from an element K of Th toward either another element
K ′ or outside �. For any family (ϕK)K∈Th , we agree to denote by [ϕ]e

• the quantity ϕK − ϕK ′ if the interior part of e is contained in �,
• the quantity ϕK if e is contained in ∂�.

For all K in Th and any nonnegative integer k, let Pk(K) stand for the space
of the restrictions toK of polynomials with d variables and total degree ≤ k.

3.2 Description of the finite volume scheme

We consider the following problem

Find (uK)K∈Th and (pa)a∈Vh such that

∀K ∈ Th, uK −
∑

a∈VK

pa h
−1
K,a nK,a = 1

meas(K)

∫

K

f (x) dx,

∀a ∈ Vh,
∑

e∈Ea

[u · ne]e meas(e) = 0.

(9)

It is readily checked that problem (9) is a square linear system. Its number
of unknowns and equations is equal to d times the number of elements in Th
plus the number of vertices in Vh.

3.3 Equivalence with a finite element problem

In view of the variational formulation (3) of problem (1), we introduce a
finite-dimensional subspace Xh of X, a finite-dimensional subspace Mh of
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M , and we consider the following problem, obtained by the standard Galerkin
method,

Find (uh, ph) in Xh ×Mh such that

∀vh ∈ Xh, a(uh, vh)+ b(vh, ph) =
∫

�

f (x) · vh(x) dx,

∀qh ∈ Mh, b(uh, qh) = 0.

(10)

The idea is to prove that system (9) is equivalent to problem (10), for an ap-
propriate choice of the spacesXh andMh, and also for appropriate definitions
of uh and ph in these spaces.

Proposition 2 The families (uK)K∈Th and (pa)a∈Vh are a solution of problem
(9) if and only if the pair (uh, ph) defined by

uh =
∑

K∈Th

uK χK, ph =
∑

a∈Vh

pa λa,(11)

is, up to a constant on the pressure, solution of the discrete problem (10) for
the spaces Xh and Mh defined by

Xh = {
vh ∈ L2(�)d; ∀K ∈ Th, vh |K ∈ P0(K)

d
}
,

Mh = {
qh ∈ M; ∀K ∈ Th, qh |K ∈ P1(K)

}
.

Proof. It can be noted that the functions (χK, 0) and (0, χK) in the case
d = 2, (χK, 0, 0), (0, χK, 0) and (0, 0, χK) in the case d = 3,K ∈ Th, form
a basis ofXh. So taking vh in (10) equal toµχK for any vectorµ of R

d yields

meas(K)uK +
∫

K

grad ph dx =
∫

K

f (x) dx,

whence

uK + 1

meas(K)

∫

K

grad ph dx = 1

meas(K)

∫

K

f (x) dx.(12)

By integrating by parts and noting thatph |K admits the expansion
∑

a∈VKpaλa ,
we obtain

1
meas(K)

∫

K
grad ph dx = 1

meas(K)

∫

∂K
ph nK dτ

= 1
meas(K)

∑
a∈VK pa

∫

∂K
λa nK dτ,

where nK denotes the unit outward normal vector to K . First, in dimension
d = 2, for any edge e of K , if m denotes the midpoint of e, we have

∫

e

λa nK dτ = meas(e) λa(m)nK,
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moreover λa(m) is equal to zero if e is the opposite edge to a and to 1
2 on the

other two edges. In dimension d = 3, for any face e of K , if m1, m2 and m3

denote the midpoints of the edges of e, we have
∫

e

λa nK dτ = 1

3
meas(e)

3∑

i=1

λa(mi )nK,

and it can be noted that λa(mi ) is equal to zero if mi belongs to the face
that does not contain a, to 1

2 otherwise. Moreover, each midpoint of an edge
appears twice when summing up on the faces. Consequently, in both dimen-
sions d = 2 and d = 3, we derive

∫

K

grad ph dx = 1

d

∑

a∈VK

pa

∑

e∈EK−{eK,a}
meas(e)nK.

Next, we observe that
∑

e∈EK

meas(e)nK =
∫

∂K

nK dτ =
∫

K

grad 1 dx = 0,

whence
1

meas(K)

∫

K

grad ph dx = − 1

d meas(K)

∑

a∈VK

pa meas(eK,a)nK,a.

By inserting this into (12), we obtain

uK − 1

d meas(K)

∑

a∈VK

pa meas(eK,a)nK,a = 1

meas(K)

∫

K

f (x) dx.

We also have

meas(K) = 1

d
meas(eK,a) hK,a,

which implies the first line of (9). Conversely, the first line of (9) implies that
the first equation in (10) is satisfied for all vh with one component equal to
χK and the other ones equal to zero, K ∈ Th, hence for all vh in Xh.

On the other hand, since the λa , a ∈ Vh, form a basis of the space of con-
tinuous and piecewise affine functions, taking qh equal to λa in the second
line of (10) gives

0 =
∫

ωa

uh · grad λa dx =
∑

K⊂ωa

uK ·
∫

K

grad λa dx.

The same arguments as above lead to

0 = 1

d

∑

K⊂ωa

uK ·
∑

e∈Ea ,e⊂∂K
meas(e)nK,

whence the second line of (9). The converse property is obvious.
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The continuity of the forms a(·, ·) and b(·, ·) onXh×Xh andXh×Mh and
the ellipticity of a(·, ·) on Xh are a special case of the analogous properties
on X andM which are recalled in Section 2. Moreover, for any qh inMh, by
taking vh equal to grad qh, we derive the following inf-sup condition: there
exists a constant β independent of h such that

∀qh ∈ Mh, sup
vh∈Xh

b(vh, qh)

‖vh‖L2(�)d
≥ β ‖qh‖H 1(�).(13)

Combining all these properties yields the well-posedness result.

Theorem 3 For any data f in L2(�)d , problem (9) has a unique solution
(uK)K∈Th and (pa)a∈Vh , up to an additive constant on the (pa)a∈Vh .

Note that the constant on the (pa)a∈Vh can be chosen either by enforcing
one of the pa to be zero or by enforcing the condition

∑

a∈Vh

pa meas(ωa) = 0.(14)

If (14) is used, the function ph defined in (11) is exactly the pressure of the
finite element problem, which allows for comparing it with the pressure p of
problem (3).

3.4 A priori error estimates

Thanks to (13), the following estimates concerning problem (10) are standard,
see [4], [15] (Chap. II, Thm 1.1) or [16] (Thm 10.4) for instance:

‖u − uh‖L2(�)d ≤ 2(1 + β−1) infwh∈Xh ‖u − wh‖L2(�)d

+ infqh∈Mh
‖p − qh‖H 1(�),

‖p − ph‖H 1(�) ≤ β−1
(‖u − uh‖L2(�)d + (1 + β) infqh∈Mh

‖p − qh‖H 1(�)

)
.

(15)

So evaluating the error is a simple consequence of the approximation prop-
erties of the spaces Xh and Mh.

Theorem 4 Assume that the solution (u, p)of problem (3) belongs toHs(�)d

×Hs+1(�), 0 < s ≤ 1. There exists a constant c independent of h such that
the following a priori error estimate holds between this solution (u, p) and
the solution (uh, ph) defined in (11) from problem (9) and satisfying (14)

‖u − uh‖L2(�)d + ‖p − ph‖H 1(�) ≤ c hs
(‖u‖Hs(�)d + ‖p‖Hs+1(�)

)
.(16)

This estimate is optimal and takes into account all the a priori knowledge
of the regularity of the solution (u, p), see Theorem 2.
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3.5 Error indicators and a posteriori error estimates

We first define a piecewise constant approximation fh of f by the equation

fh |K = 1

meas(K)

∫

K

f (x) dx, K ∈ Th.(17)

Indeed, it follows from the first line in (9) that, with this choice, the re-
sidual of the first line of (1), which is constant on each K and equal to
(fh − uh − gradph)|K , vanishes. So we are led to the next definition of the
error indicator

ηK =
∑

e∈EK

h
1
2
e ‖ [uh · ne]e ‖L2(e).(18)

Since the jump [uh · ne]e is constant on each e, this can be equivalently
written as

ηK =
∑

e∈EK

h
1
2
e meas(e)

1
2 | [uh · ne]e |.(19)

Proving the a posteriori error estimate relies on the following idea. We
define the bilinear form

A(U, V ) = a(u, v)+b(v, p)+b(u, q), with U = (u, p), V = (v, q),

and observe from the ellipticity of a(·, ·) and the inf-sup condition (7) on
b(·, ·) that the following “global” inf-sup condition holds [15] (Chap. I,
Lemma 4.1) for a positive constant γ (see also [4] or [16])

∀U ∈ X ×M, sup
V∈X×M

A(U, V )
‖V ‖X×M

≥ γ ‖U‖X×M.(20)

Applying this to the quantity U = (u − uh, p − ph) gives the inequality

‖u − uh‖L2(�)d + ‖p − ph‖H 1(�)

≤ γ−1 sup
V=(v,q)∈X×M

A(U, V )
‖v‖L2(�)d + ‖q‖H 1(�)

.

(21)

Theorem 5 There exists a constant c independent of h such that the follow-
ing a posteriori error estimate holds between the solution (u, p) of problem
(3) and the solution (uh, ph) defined in (11) from problem (9) and satisfying
(14)

‖u − uh‖L2(�)d + ‖p − ph‖H 1(�)

≤ c

( ∑

K∈Th

η2
K + ‖f − fh‖2

L2(�)d

) 1
2

.
(22)
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Proof. Thanks to (21), we must evaluate for any V = (v, q) in X ×M the
quantity

A(U, V ) = a(u − uh, v)+ b(v, p − ph)+ b(u − uh, q).(23)

From the first line of problem (3), we have

a(u − uh, v)+ b(v, p − ph) = ∫

�
(f − uh − gradph) · v dx

= ∫

�
(fh − uh − gradph) · v dx

+ ∫

�
(f − fh) · v dx.

As already noted, the quantity fh−uh−gradph vanishes on eachK , whence

a(u − uh, v)+ b(v, p − ph) ≤ ‖f − fh‖L2(�)d‖v‖L2(�)d .(24)

To handle the last term of (23), we note that, for any qh in Mh,

b(u − uh, q) = −b(uh, q) = −b(uh, q − qh)

= −
∑

K∈Th

∫

K

uh · grad (q − qh) dx,

Integrating by parts gives

b(u − uh, q) = −
∑

K∈Th

∫

∂K

uh · nK (q − qh) dτ.

This last expression can be written as (with λe equal to 1 or 1
2 according as e

is contained in ∂� or not)

b(u − uh, q) = −
∑

K∈Th

∑

e∈EK

λe

∫

e

[uh · ne]e (q − qh) dτ

≤
∑

K∈Th

∑

e∈EK

‖ [uh · ne]e ‖L2(e)‖q − qh‖L2(e).

By going to a reference triangle and taking qh equal to the image of q by
Clément’s regularization operator [7] (for instance), it is readily checked that

‖q − qh‖L2(e) ≤ c h
1
2
e ‖q‖H 1(�K)

,

where �K stands for the union of the elements of Th that share at least a
vertex with K . This yields

b(u − uh, q) ≤ c
∑

K∈Th

ηK ‖q‖H 1(�K)
,

whence

b(u − uh, q) ≤ c




∑

K∈Th

η2
K





1
2

‖q‖H 1(�).(25)

Inserting (24) and (25) into (21) yields the desired estimate.
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Proving an upper bound for the error indicator relies on rather standard
arguments. For a reference element K̂ and one of its edges ê, we introduce a
lifting operator R̂ from the space of polynomials on ê vanishing at the end-
points of ê (d = 2) or on ∂ê (d = 3) into the space of polynomials on K̂
vanishing on ∂K̂ \ ê such that

∀ϕ̂ ∈ Pd(ê), |R̂ϕ̂|H 1(K̂) ≤ ĉ ‖ϕ̂‖L2(ê).(26)

Then, by affine transformation, a lifting operator RK,e is constructed for all
K in Th and all e in EK .

Theorem 6 There exists a constant c independent of h such that the follow-
ing estimate holds for all K in Th and for the indicator ηK introduced in
(18)

ηK ≤ c ‖u − uh‖L2(ωK)
d ,(27)

where ωK denotes the union of the at most d+ 2 elements of Th that share at
least an edge (d = 2) or a face (d = 3) with K .

Proof. For each e in EK , we assume without restriction that e is also an edge
or a face of another element K ′ of Th (indeed, if e is contained in ∂�, K ′ is
chosen to be empty). Let ψe denote the bubble function associated with e,
i.e. the product of the d barycentric coordinates associated with the vertices
of e. We define the function q on � by

q =






RK,e([uh · n]e ψe) on K,

RK ′,e([uh · n]e ψe) on K ′,
0 on � \ (K ∪K ′).

We have

‖ [uh · ne]e ψ
1
2
e ‖2

L2(e)
= ∫

e
[(u − uh) · ne]e q dτ

= ∫

∂K
(u − uh) · nK q dτ

+ ∫

∂K ′(u − uh) · nK ′ q dτ.

By integration by parts, since div (u − uh) is zero in both K and K ′, this
yields

‖ [uh · ne]e ψ
1
2
e ‖2

L2(e)
= ∫

K∪K ′(u − uh) · grad q dx
≤ ‖u − uh‖L2(K∪K ′)d |q|H 1(K∪K ′).

To conclude, we derive from (26) that

|q|H 1(K∪K ′) ≤ c h
− 1

2
e ‖ [uh · ne]e ψe‖L2(e) ≤ c h

− 1
2

e ‖ [uh · ne]e ψ
1
2
e ‖L2(e),
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and we recall from [6] (form. (25.14)) that

‖ψ
1
2
e ‖L2(e) =

√
2 d!

(2d)!
h

1
2
e ,

whence

‖ [uh · ne]e ψ
1
2
e ‖L2(e) =

√
2 d!

(2d)!
‖ [uh · ne]e‖L2(e).

Estimates (22) and (27) are fully optimal, in the sense of [2]. Moreover,
estimate (27) is local, so that the ηK ,K ∈ Th, provide an appropriate tool for
automatic refinement of the mesh.

4 The second finite volume scheme

We now work with another type of finite volume discretization, which leads to
the introduction of a nonconforming finite element. This section is organized
as the previous one.

4.1 Some further notation

We introduce the set Eh of all edges (d = 2) or faces (d = 3) of elements
in Th, and the subset E0

h made of all elements e in Eh that are not contained
in ∂�. For any e in Eh, we denote by he the length or diameter of e and me

the midpoint (d = 2) or barycenter (d = 3) of e. With this e, we associate
the function ϕe which is affine on each element of Th, is equal to 1 in me and
vanishes on all other me′ , e′ ∈ Eh, e′ �= e. Let also Te be the set of elements
of Th that contain e, and ωe the union of the elements in Te. Note that ωe is
the support of ϕe.

We use the same definition as in Section 3 for the jump [·]e.

4.2 Description of the finite volume scheme

We consider the following problem

Find (uK)K∈Th and (pe)e∈Eh such that

∀K ∈ Th, uK − 1

meas(K)

∑

e∈EK

pemeas(e)nK = 1

meas(K)

∫

K

f (x) dx,

∀e ∈ Eh, [u · ne]e = 0.

(28)

Problem (28) results into a square linear system, where the number of equa-
tions and unknowns is equal to d times the number of triangles (or tetrahedra)
in Th plus the number of edges (or faces) in Eh.
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4.3 Equivalence with a finite element problem

The problem that we introduce now, in comparison with (10), is slightly
different: indeed, we still employ a finite-dimensional subspace Xh of X but
now the finite-dimensional subspace M̃h is no longer contained inM , which
means that we are working with a nonconforming discretization of problem
(3). We consider the following problem

Find (uh, ph) in Xh × M̃h such that

∀vh ∈ Xh, a(uh, vh)+ bh(vh, ph) =
∫

�

f (x) · vh(x) dx,

∀qh ∈ M̃h, bh(uh, qh) = 0,

(29)

where the bilinear form bh(·, ·) is now defined by

bh(vh, qh) =
∑

K∈Th

∫

K

vh · grad qh dx.

Here also, we check that system (28) is equivalent to problem (29), for
an appropriate choice of the spaces Xh and M̃h and appropriate definitions
of uh and ph.

Proposition 3 The families (uK)K∈Th and (pe)e∈Eh are a solution of problem
(28) if and only if the pair (uh, ph) defined by

uh =
∑

K∈Th

uK χK, ph =
∑

e∈Eh

pe ϕe,(30)

is, up to a constant on the pressure, solution of the discrete problem (29) for
the space Xh introduced in Proposition 2 and the space M̃h of functions of
L2

0(�)

• such that their restrictions to each element K of Th belong to P1(K),
• which are continuous at each point me, e ∈ E0

h .

It must be observed that the space Xh coincides with that in Section 3
while the nonconforming space M̃h coincides with the one introduced in
[11], up to the boundary conditions.

Proof. The solution (uh, ph) of problem (29) admits the expansion (30). We
now prove the equivalence in two steps.
1) As in the proof of Proposition 2, since, in dimension d = 2 for instance,
the functions (χK, 0) and (0, χK), K ∈ Th, form a basis of Xh, the first line
of (29) is equivalent to the system of equations, for all K in Th,

meas(K)uK +
∫

K

grad ph dx =
∫

K

f (x) dx.
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To evaluate the integral, we note that
∫

K

grad ph dx =
∑

e∈EK

∫

e

ph nK dτ =
∑

e∈EK

pe meas(e)nK.

This yields the equivalence with the first line of (28).
2) Next, we observe that the ϕe, e ∈ Eh, form a basis ofMh. Taking qh equal
to one of these ϕe in (29) leads to

0 =
∑

K∈Te

uK ·
∫

K

gradϕe dx =
∑

K∈Te

uK · nK meas(e),

whence the result. Here also, the converse property is obvious.

Since problem (29) is a nonconforming discretization of problem (3), its
analysis is a little more complex. However, the continuity of the form a(·, ·)
on Xh × Xh and its ellipticity are still derived from the same properties on
X ×X. To study the form bh(·, ·), we introduce the mesh-dependent norm

‖q‖H 1
h (�)

=



∑

K∈Th

‖q‖2
H 1(K)





1
2

.(31)

Indeed, when M̃h is provided with this norm, the form bh(·, ·) is continuous
on Xh × M̃h, with norm bounded independently of h. Moreover, since the
range of M̃h by the gradient operator is contained inXh, the following inf-sup
condition is derived by taking vh equal to grad qh:

∀qh ∈ M̃h, sup
vh∈Xh

bh(vh, qh)

‖vh‖L2(�)d
≥




∑

K∈Th

|qh|2H 1(K)





1
2

.(32)

We now intend to prove that the quantity in the right-hand side of this in-
equality is equivalent to the norm ‖ · ‖H 1

h (�)
defined in (31).

Furthermore, in view of the a posteriori analysis of problem (29), we want
to prove this equivalence property on the “non discrete” space

M̃(Th) = {
q ∈ L2

0(�); ∀K ∈ Th, q|K ∈ H 1(K)

and ∀e ∈ E0
h,

∫

e

[q]e dτ = 0
}
,

(33)

the main idea being that M̃(Th) contains both the spaces M̃h andM . The next
lemma states a generalized Bramble–Hilbert inequality. Its proof relies on an
argument due to M. Crouzeix [10] (see also [18] (Chap. V, Th. 4.3) for an
analogous result concerning a similar problem with homogeneous Dirichlet
boundary conditions).
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Lemma 1 There exists a constant c independent of h such that

∀q ∈ M̃(Th), ‖q‖H 1
h (�)

≤ c




∑

K∈Th

|q|2
H 1(K)





1
2

.(34)

Proof. Let q be any function of M̃(Th). We must check that

‖q‖L2(�) ≤ c




∑

K∈Th

|q|2
H 1(K)





1
2

.(35)

We start from the formula

‖q‖L2(�) = sup
g∈L2(�)

∫

�
q(x)g(x) dx

‖g‖L2(�)

.(36)

For any g in L2(�), we denote by g0 the function g minus its mean value
on � and we consider the Laplace problem with homogeneous boundary
conditions






−�ϕ = g0 on �,

∂nϕ = 0 on ∂�,
∫

�
ϕ(x) dx = 0.

The regularity properties of the Laplace operator in a polygon or a polyhedron
yield the existence of a real number s > 1

2 such that its solution ϕ belongs to
Hs+1(�) and satisfies

‖ϕ‖Hs+1(�) ≤ c ‖g0‖L2(�) ≤ c′ ‖g‖L2(�).(37)

We have
∫

�

q(x)g(x) dx =
∫

�

q(x)g0(x) dx = −
∑

K∈Th

∫

K

q(x)(�ϕ)(x) dx.

So we derive by integration by parts

∫

�
q(x)g(x) dx = ∑

K∈Th

(∫

K
grad q(x) · gradϕ(x) dx

−1

2

∑

e∈EK

∫

e

[q]e(τ )(∂nϕ)(τ ) dτ
)
.(38)

Bounding the first term in the right-hand side is easy:
∣
∣
∣
∣

∫

K

grad q(x) · gradϕ(x) dx
∣
∣
∣
∣ ≤ |q|H 1(K)|ϕ|H 1(K).(39)
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To handle the second term, since ∂nϕ vanishes on ∂�, we consider an edge
or face e in E0

h which is shared by two elements K and K ′ of Th. It follows
from the definition of M̃(Th) that q|K and q|K ′ have an equal mean value on
e, that we denote by qe. By going to the reference subdomain made of two
elements K̂ and K̂ ′ that share a common edge or face ê, we obtain with the
usual notation

| ∫
e
[q]e(τ )(∂nϕ)(τ ) dτ |
≤ cmeas(e)

∑

κ∈{K,K ′}
h−1
κ ‖q̂|κ̂ − qe‖L2(ê)‖grad ϕ̂|κ̂‖L2(ê).

Note that

‖q̂|κ − qe‖L2(ê) ≤ ĉ |q̂|H 1(κ̂), ‖grad ϕ̂|κ̂‖L2(ê) ≤ ĉ ‖grad ϕ̂‖Hs(κ̂).

So, going back to the triangles or tetrahedra K and K ′, we derive

1

meas(e)
|
∫

e

[q]e(τ )(∂nϕ)(τ ) dτ |

≤ c
∑

κ∈{K,K ′}
h−1
κ meas(κ)−

1
2 hκ |q|H 1(κ) meas(κ)−

1
2 hκ ‖gradϕ‖Hs(κ),

whence

|
∫

e

[q]e(τ )(∂nϕ)(τ ) dτ | ≤ c
∑

κ∈{K,K ′}
|q|H 1(κ) ‖ϕ‖Hs+1(κ).(40)

The desired inequality follows by inserting (37) to (40) into (36).
By combining (32) and Lemma 1, we derive the inf-sup condition

∀qh ∈ M̃h, sup
vh∈Xh

bh(vh, qh)

‖vh‖L2(�)d
≥ β̃ ‖q‖H 1

h (�)
,(41)

where the constant β̃ is independent of h. This yields the well-posedness of
problem (28).

Theorem 7 For any data f in L2(�)d , problem (28) has a unique solution
(uK)K∈Th and (pe)e∈Eh , up to an additive constant on the (pe)e∈Eh .

Here also, the best way for choosing the constant on the (pe)e∈Eh in order
to prove a priori and a posteriori estimates is to enforce the condition

∑

e∈Eh

pe meas(ωe) = 0.(42)
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Remark 2 It can be observed from (28) and the definition of the space Xh
that the velocity uh defined in (29) is exactly divergence–free. Furthermore,
the space Ṽh defined by

Ṽh = {
vh ∈ Xh; ∀qh ∈ M̃h, bh(vh, qh) = 0

}
,(43)

is imbedded into the space

V = {
H0(div, �); div v = 0 in �

}
.(44)

So the second and third lines in (1) are exactly satisfied by the discrete solution
uh.

4.4 A priori error estimates

Even with the present nonconforming discretization, the a priori error esti-
mate is easy to derive thanks to Remark 2.

Theorem 8 Assume that the solution (u, p)of problem (3) belongs toHs(�)d

×Hs+1(�), 0 < s ≤ 1. There exists a constant c independent of h such that
the following a priori error estimate holds between this solution (u, p) and
the solution (uh, ph) defined in (30) from problem (28) and satisfying (42)

‖u − uh‖L2(�)d + ‖p − ph‖H 1
h (�)

≤ c hs
(‖u‖Hs(�)d + ‖p‖Hs+1(�)

)
.(45)

Proof. As explained in Remark 2, the space Ṽh is contained in V, so letting
v run through Ṽh in (3) leads to

∀vh ∈ Ṽh, a(u − uh, vh) = 0.

This yields, for any vh in Ṽh,

‖u − uh‖2
L2(�)d

= a(u − uh,u − uh) = a(u − uh,u − vh),

whence
‖u − uh‖L2(�)d ≤ inf

vh∈Ṽh
‖u − vh‖L2(�)d .

By combining this estimate with the inf-sup condition (41) and [15] (Chap. II,
form. (1.16)) (see also [4] or [16]), we obtain

‖u − uh‖L2(�)d ≤ c inf
wh∈Xh

‖u − wh‖L2(�)d ,

whence the error estimate on the velocity. Using once more the inf-sup con-
dition (41) gives, for any qh in M̃h ∩H 1(�),

‖ph − qh‖H 1
h (�)

≤ β̃−1 sup
vh∈Xh

bh(vh, ph − qh)

‖vh‖L2(�)d
.
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We have

bh(vh, ph − qh) = ∫

�
f (x) · vh(x) dx − a(uh, vh)− bh(vh, qh)

= a(u − uh, vh)+ b(vh, p)− bh(vh, qh).

Since the bilinear forms b(·, ·) and bh(·, ·) coincide on L2(�)d ×H 1(�), we
derive

‖p − ph‖H 1
h (�)

≤ β̃−1 ‖u − uh‖L2(�)d

+(1 + β̃−1) inf
qh∈M̃h∩H 1(�)

‖p − qh‖H 1(�).

The error estimate on the pressure is thus an easy consequence of that on
the velocity and on the approximation properties of the space M̃h ∩ H 1(�)

which coincides with the space Mh of Section 3.

4.5 Error indicators and a posteriori error estimates

We keep working with the approximation fh of f defined in (17). Here, the
family of error indicators is indexed by the elements e of E0

h . Indeed, we
introduce the family of indicators ηe, e ∈ E0

h , defined by

ηe = h
− 1

2
e ‖ [ph]e‖L2(e).(46)

From the previous line, these indicators are only linked to the nonconformity
of the method, this comes from the fact that the residuals of the last two lines
in (1) vanish, see Remark 2, and also that the residual of the first line vanishes
thanks to the choice of fh.

Remark 3 Let ai , 1 ≤ i ≤ d, denote the endpoints or vertices of e. Moreover,
if e is shared by two elements K and K ′, let ei and e′i denote the opposite
edge or face to ai in K and K ′, respectively (see Figure 2). Then it can be
checked from [6] (form. (25.14)) (or also by using an appropriate quadrature
formula) that, in the case of dimension d = 2,

ηe = 1√
3

| [[ph]]e|,(47)

where [[ph]]e stands for the alternate sum pe1 − pe′1 + pe′2 − pe2 . A similar
formula holds in dimension d = 3, it reads

ηe = 1

2
h

− 1
2

e meas(e)
1
2




3∑

j=1

[[ph]]2
j





1
2

,(48)

where [[ph]]1, [[ph]]2 and [[ph]]3 now stand for the alternate sums pe2 −
pe′2 +pe′3 −pe3 , pe3 −pe′3 +pe′1 −pe1 and pe1 −pe′1 +pe′2 −pe2 , respectively.
So in both cases the quantity ηe is easy to compute since it involves 2d nodal
values of the discrete pressure.
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Fig. 2. The degrees of freedom involved by ηe

We now prove the a posteriori estimate; it seems that the analogue of (21)
cannot be used in the present situation, due to the lack of conformity of the
method.

Theorem 9 There exists a constant c independent of h such that the follow-
ing a posteriori error estimate holds between the solution (u, p) of prob-
lem (3) and the solution (uh, ph) defined in (30) from problem (28) and
satisfying (42)

‖u − uh‖L2(�)d + ‖p − ph‖H 1
h (�)

≤ c
(∑

e∈E0
h

η2
e + ‖f − fh‖2

L2(�)d

) 1
2
.(49)

Proof. The estimate is established in two steps.
1) We have

‖u−uh‖2
L2(�)d

= a(u−uh,u−uh) =
∫

�

(f −uh) · (u−uh) dx−b(u−uh, p).

However, as already observed, both u and uh belong to V , so that the last
term vanishes. By adding and subtracting bh(u − uh, ph), we obtain

‖u − uh‖2
L2(�)d

=
∑

K∈Th

∫

K

(f − uh − gradph) · (u − uh) dx

+bh(u − uh, ph).(50)

Bounding the first term in the right-hand side of (50) relies on a Cauchy–
Schwarz inequality

∫

K

(f − uh − gradph) · (u − uh) dx

≤ (‖fh − uh − gradph‖L2(K)d + ‖f − fh‖L2(K)d

)‖u − uh‖L2(K)d .
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Since the quantity fh − uh − gradph vanishes on each K , this gives
∫

K

(f − uh − gradph) · (u − uh) dx ≤ ‖f − fh‖L2(K)d‖u − uh‖L2(K)d .

To estimate the second term in (50), we introduce a conforming approxima-
tion p∗

h of ph, i.e. in M̃h ∩H 1(�), and we use Cauchy–Schwarz inequality

bh(u − uh, ph) = bh(u − uh, ph − p∗
h)

≤ ( ∑

K∈Th

|ph − p∗
h|2H 1(K)

) 1
2 ‖u − uh‖L2(�)d .

The idea is now to choose the function p∗
h such that

∀a ∈ Vh, p∗
h(a) = 1

Na

∑

K∈Ta

ph |K(a),

where Na denotes the number of elements in Ta . Since Na is bounded by
a constant that only depends on the regularity parameter σ , we obtain, for
some constants ce bounded as a function of Na , hence of σ ,

(ph − p∗
h)(a) =

∑

e∈E0
a

ce [ph]e(a),

where [ph]e denotes the jump of ph through e and E0
a denotes the set Ea ∩ E0

h

(so that none of these edges or faces e is contained in ∂�). By an inverse
inequality, this leads to

|(ph − p∗
h)(a)| ≤

∑

e∈E0
a

|ce| ‖ [ph]e‖L∞(e) ≤ c
∑

e∈Ea

h
− d−1

2
e ‖ [ph]e‖L2(e).

On the other hand, we have

ph − p∗
h =

∑

a∈Vh

(ph − p∗
h)(a) λa,

which implies, for any K in Th,

|ph − p∗
h|H 1(K) ≤ c

∑

a∈VK

|(ph − p∗
h)(a)|h

d
2 −1
K .

By combining the two previous estimates, we obtain

|ph − p∗
h|H 1(K) ≤ c

∑

a∈VK

∑

e∈Ea

h
− 1

2
e ‖ [ph]e‖L2(e).

Summing up the square of this inequality on the K and noting that each
‖ [ph]e‖L2(e) only appears a finite number of times in the sum (where “finite”
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means bounded as a function of σ ), we derive a bound for the second term
in (50):

bh(u − uh, ph) ≤ c




∑

a∈Vh

∑

e∈Ea

h−1
e ‖ [ph]e‖2

L2(e)





1
2

‖u − uh‖L2(�)d ,

which gives the estimate on the velocity.
2) Thanks to Lemma 1 and since p − ph belongs to M̃(Th), we have

‖p − ph‖2
H 1
h (�)

≤ c
∑

K∈Th

∫

K

grad (p − ph) · grad (p − ph) dx.

We introduce the function v such that, for any K in Th, its restriction to any
K in Th is equal to v|K = (

grad (p − ph)
)

|K . Since the forms b(·, ·) and

bh(·, ·) coincide on L2(�)d ×H 1(�), we obtain

‖p − ph‖2
H 1
h (�)

≤ c bh(v, p − ph) = c
(
∫

�

f (x) · v(x) dx − a(u, v)

−
∑

K∈Th

(gradph)|K ·
∫

K

v(x) dx
)
.

Let now vh denote the image of v by the orthogonal projection operator from
L2(�) onto Xh. Clearly, on each element K of Th, vh is equal to the mean
value of v on K . This yields

‖p − ph‖2
H 1
h (�)

≤ c
(∫

�
f (x) · v(x) dx − a(u, v)− ∑

K∈Th
∫

K
vh(x) · gradph dx

)
,

whence

‖p − ph‖2
H 1
h (�)

≤ c

(∫

�

f (x) · (v − vh)(x) dx − a(u, v)+ a(uh, vh)

)

.

It follows from the definitions of vh and fh, see (17), that

‖p − ph‖2
H 1
h (�)

≤ c
(∫

�
(f − fh)(x) · (v − vh)(x) dx − a(u − uh, v)

)

= c
(∫

�
(f − fh)(x) · v(x) dx − a(u − uh, v)

)
,

which gives

‖p − ph‖2
H 1
h (�)

≤ c
(‖f − fh‖L2(�)d + ‖u − uh‖L2(�)d

)‖v‖L2(�)d .

Owing to the definition of v, we derive

‖p − ph‖H 1
h (�)

≤ c
(‖f − fh‖L2(�)d + ‖u − uh‖L2(�)d

)
,
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which, when combined with the first part of the proof, leads to the desired
estimate.

The arguments for checking the converse inequality are very similar to
those used in Section 3.

Theorem 10 There exists a constant c independent of h such that the
following estimate holds for all e in E0

h and for the indicator ηe introduced
in (46)

ηe ≤ c
∑

K∈Te |p − ph|H 1(K).(51)

Proof. For a fixed e in E0
h , let K and K ′ denote the two elements of Th that

contain e. We solve the Neumann problems






−�ϕ = 0 in K,

∂nϕ = [ph]e on e,

∂nϕ = 0 on ∂K \ e,
∫

K
ϕ(x) dx = 0.






−�ϕ′ = 0 in K ′,

∂nϕ
′ = [ph]e on e,

∂nϕ
′ = 0 on ∂K ′ \ e,

∫

K ′ ϕ
′(x) dx = 0.

and we take the function v equal to gradϕ on K , to gradϕ′ on K ′ and to
zero elsewhere. By integration by parts, we have

b(v, p − ph) = 1

2

∑

K∈Th

∑

e∈EK

∫

e

v · nK [ph]e dτ = ‖ [ph]e‖2
L2(e)

,

which leads to

‖ [ph]e‖2
L2(e)

≤
∑

κ∈{K,K ′}
‖v‖L2(κ)d |p − ph|H 1(κ).

To estimate the norm of v, we note that, on the element K for instance,

‖v‖2
L2(K)d

= |ϕ|2
H 1(K)

=
∫

e

[ph]e(τ )ϕ(τ) dτ ≤ ‖ [ph]e‖L2(e)‖ϕ‖L2(e).

Since the mean value of the solution ϕ onK is zero, by going to the reference
element, we obtain

‖ϕ‖L2(e) ≤ ĉmeas(e)
1
2 ‖ϕ̂‖L2(ê)

≤ ĉmeas(e)
1
2 ‖ϕ̂‖H 1(K̂)

≤ ĉ′ meas(e)
1
2 |ϕ̂|H 1(K̂).

So, when going back to K , we derive

‖v‖L2(K)d ≤ c h
1
2
K ‖ [ph]‖L2(e).
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Using a similar estimate on K ′ gives

h
− 1

2
e ‖ [ph]‖L2(e) ≤ c

∑

κ∈{K,K ′}
|p − ph|H 1(κ).

This is the desired estimate.

4.6 Some conclusions

Even if the proofs are more technical, the discretization proposed in this sec-
tion leads to the same optimal a priori and a posteriori error estimates as in
Section 3. Also, as in Section 3, the mass matrix corresponding to the bilinear
form a(·, ·) is fully diagonal.

Furthermore and in contrast to Section 3, the discrete velocity uh in-
troduced in (30) has the further property to be exactly divergence–free, so
that the scheme proposed in (28) is fully conservative, in the sense of [14]
(Chap. I). For this last reason and even if the size of the global linear system
in (28) is a little larger than in (9), we prefer (and even preconize) the use of
the scheme described in (28).
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