
Digital Object Identifier (DOI) 10.1007/s00211-002-0431-z
Numer. Math. (2003) 95: 101–121 Numerische

Mathematik

A QR-type reduction for computing the SVD
of a general matrix product/quotient

Delin Chu1, Lieven De Lathauwer2, Bart De Moor3

1 Department of Mathematics, National University of Singapore, 2 Science Drive 2,
Singapore 117543; e-mail: matchudl@math.nus.edu.sg

2 ETIS, UPRES-A 8051, ENSEA / UCP, 6, avenue du Ponceau, BP 44, F 95014 Cergy-
Pontoise Cedex, France; e-mail: Lieven.DeLathauwer@ensea.fr

3 SCD-SISTA, Department of Electrical Engineering (ESAT), Katholieke Universiteit
Leuven, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium;e-mail: Bart.De-
Moor@esat.kuleuven.ac.be

Received July 23, 2001 / Revised version received May 23, 2002 /
Published online December 13, 2002 – c©Springer-Verlag 2002

Summary. In this paper, a QR-type reduction technique is developed for
the computation of the SVD of a general matrix product/quotient A =
A

s1
1 A

s2
2 · · · Asm

m with Ai ∈ Rn×n and si = 1 or si = −1. First the matrix A

is reduced by at most m QR-factorizations to the form Q
(1)
11 (Q

(1)
21)−1, where

Q
(1)
11 , Q

(1)
21 ∈ Rn×n and (Q

(1)
11)T Q

(1)
11 + (Q

(1)
21)T Q

(1)
21 = I . Then the SVD of

A is obtained by computing the CSD (Cosine-Sine Decomposition) of Q
(1)
11

and Q
(1)
21 using the Matlab command gsvd. The performance of the proposed

method is verified by some numerical examples.

Mathematics Subject Classification (1991): 65F15, 65H15

This work is supported by grants from several funding agencies:

1. Research Council KUL: Concerted ResearchAction GOA-Mefisto 666 (Mathematical
Engineering)

2. Flemish Government: FWO (Fund for Scientific Research - Flanders) projects G292.95
and G256.97, FWO Research Communities ICCoS and ANMMM,

3. Belgian Federal Government: DWTC (IUAP IV-02 and IUAP V-10-29).

Part of this research was carried out while D. Chu was a visiting researcher at the K.U.Leu-
ven. L. De Lathauwer holds a permanent research position with the French CNRS; he also
holds a honorary post-doctoral research mandate with the FWO. B. De Moor is a full
professor at the K.U.Leuven. The scientific responsibility is assumed by the authors

102 D. Chu et al.

1 Introduction

This paper deals with a new method for the computation of the Singular
Value Decomposition (SVD) of a sequence of matrices in product/quotient
form. The simplest forms of these Generalized SVD’s (GSVD), for two ma-
trices, are the well-known Quotient SVD (QSVD) (introduced in [17] and
refined in [14]) and Product SVD (PSVD) (proposed in [9], refining ideas
introduced in [13]). One of the three possible forms involving three matrices,
is the so-called Restricted SVD (RSVD) (introduced in its explicit form in
[20] and further developed and discussed in [5]). General schemes have been
discussed in e.g. [6,7].

The GSVD is one of the essential numerical linear algebraic tools in signal
processing and identification. Possible applications include source separa-
tion, stochastic realization, generalized Gauss-Markov estimation problems,
generalized total linear least squares, open and closed loop balancing, etc.

Like the QSVD, PSVD and RSVD, the SVD of a general matrix prod-
uct/quotient has many applications. For example, it is important for the esti-
mation of Lyapunov exponents for dynamic systems [12]. Consider difference
equations

�k+1 = �
sk
k �k, �0 = I, �k ∈ Rn×n, sk = 1 or sk = −1.(1)

The ith Lyapunov exponent is then defined by

λi = limk→∞log(σi(�k))/k,

where σi(�k) is the ith biggest singular value of �k. Discretizations of or-
dinary differential equations may also lead to sequences of matrix prod-
ucts/quotients [11].

Up to now, the calculation of the QSVD has been extensively studied.
The fact that the Cosine-Sine Decomposition (CSD) of a partitioned column-

orthogonal matrix

[
A

C

]
corresponds to the QSVD of the couple (A, C),

forms the basis for two backward stable algorithms, proposed in [16] and
[18]. Recently, the computation of the QSVD via the CSD and the Lanczos
bidiagonalization process has been studied in [21]. The Kogbetliantz algo-
rithm has been generalized in [15] for the computation of the QSVD. In [15],
the elegant implementation initially transforms A and C into a pair of tri-
angular matrices and preserves the triangular form in the iterative phase by
using suitable plane rotations. A variation of the algorithm in [15], also back-
ward stable, is given in [2]. This technique is implemented as the LAPACK
procedure STGSJA() [2].

The Kogbetliantz algorithm has also been generalized for the computation
of the RSVD [19]. However, Jacobi-type algorithms typically have a (mod-
erately) higher complexity than QR-type algorithms. Moreover, the Jacobi

A QR-type reduction for computing the SVD of a general matrix product/quotient 103

approach has so far only been followed for problems involving at most three
matrices; generalizing the scheme for long matrix sequences proves to be
hard. Recently an implicit bidiagonalization QR-type algorithm for the com-
putation of the SVD of a general matrix product/quotient has been proposed
in [11]. For quotient factors this scheme requires solving a series of upper
triangular systems of linear equations during the bidiagonalization.

In this paper, we generalize the idea in [4] for computing the RSVD to
propose a QR-type reduction technique for computing the SVD of a general
matrix product/quotient

A = A
s1
1 A

s2
2 · · · Asm

m

with Ai ∈ Rn×n, si = 1 or si = −1. We will show that, if not all si are the
same, the matrix A can be reduced by m − 1 QR-factorizations to the form
Q

(1)
11 (Q

(1)
21)−1 with Q

(1)
11 , Q

(1)
21 ∈ Rn×n, (Q

(1)
11)T Q

(1)
11 + (Q

(1)
21)T Q

(1)
21 = I ; if all

si are equal, then we need m QR-factorizations. The main advantage of this
QR-type reduction is the way in which quotients are dealt with. Finally the
SVD of A can be found by resorting, e.g., to Van Loan’s CSD method [18].

The next section describes how the QR-type reduction can be realized.
Section 3 contains a number of numerical experiments. Section 4 presents
the conclusions.

2 QR-Type reduction

Consider a matrix A of the following form:
{

A = A
s1
1 A

s2
2 · · · Asm

m , m ≥ 2, Ai ∈ Rn×n, si = 1 or si = −1,

Ai is nonsingular if si = −1.
(2)

Like in [11], we assume for simplicity that the matrices Ai in (2) are square;
as was pointed out in [7], this does not affect the generality of what follows.
The purpose of this section is to show how the matrix A can be reduced to the
form Q

(1)
11 (Q

(1)
21)−1 with Q

(1)
11 , Q

(1)
21 ∈ Rn×n, (Q

(1)
11)T Q

(1)
11 + (Q

(1)
21)T Q

(1)
21 = I ,

by performing at most m QR-factorizations. Section 2.1 explains how the
problem can be solved for a sequence of 2 or 3 matrices. Section 2.2 sub-
sequently describes how the sequence can be expanded, once the result for
a subsequence of three matrices is known. Section 2.3 presents the overall
algorithm. Section 2.4 proves backward stability for the procedure.

2.1 Basic lemmas

First, the following three lemmas describe the cases m = 2 and m = 3:

104 D. Chu et al.

Lemma 1 [14,15] Assume that A1, A2 ∈ Rn×n and A2 is nonsingular. Let

the QR factorization of

[
A1

A2

]
be

[
A1

A2

]
=

[
Q

(1)
11 Q

(1)
12

Q
(1)
21 Q

(1)
22

] [
R(1)

0

]
, R(1), Q

(1)
11 , Q

(1)
12 , Q

(1)
21 , Q

(1)
22 ∈ Rn×n.

Then Q
(1)
21 is nonsingular and

A1A
−1
2 = Q

(1)
11 (Q

(1)
21)−1.

Lemma 2 Given matrices Ai ∈ Rn×n, i = 1, 2, 3.

(a) Assume A3 is nonsingular. Let the QR factorization of

[
A2

A3

]
be

[
A2

A3

]
=

[
Q

(2)
11 Q

(2)
12

Q
(2)
21 Q

(2)
22

] [
R(2)

0

]
, R(2), Q

(2)
11 , Q

(2)
12 , Q

(2)
21 , Q

(2)
22 ∈ Rn×n.(3)

Then Q
(2)
21 is nonsingular. Furthermore, let the QR factorization of

[
A1Q

(2)
11

Q
(2)
21

]

be[
A1Q

(2)
11

Q
(2)
21

]
=

[
Q

(1)
11 Q

(1)
12

Q
(1)
21 Q

(1)
22

] [
R(1)

0

]
, R(1), Q

(1)
11 , Q

(1)
12 , Q

(1)
21 , Q

(1)
22 ∈ Rn×n.

(4)
We have that Q

(1)
21 is nonsingular and

A1A2A
−1
3 = Q

(1)
11 (Q

(1)
21)−1.

(b) Assume A1 and A3 nonsingular. Let the QR factorization of

[
A2

A3

]
be

[
A2

A3

]
=

[
Q

(2)
11 Q

(2)
12

Q
(2)
21 Q

(2)
22

] [
0

R(2)

]
, R(2), Q

(2)
11 , Q

(2)
12 , Q

(2)
21 , Q

(2)
22 ∈ Rn×n,(5)

and the QR factorization of

[
AT

1 Q
(2)
11

Q
(2)
21

]
be

[
AT

1 Q
(2)
11

Q
(2)
21

]
=

[
Q

(1)
11 Q

(1)
12

Q
(1)
21 Q

(1)
22

] [
0

R(1)

]
, R(1), Q

(1)
11 , Q

(1)
12 , Q

(1)
21 , Q

(1)
22 ∈ Rn×n.

(6)
Then Q

(2)
11 and Q

(1)
21 are nonsingular, and

A−1
1 A2A

−1
3 = Q

(1)
11 (Q

(1)
21)−1.

A QR-type reduction for computing the SVD of a general matrix product/quotient 105

Proof. (a) This part follows directly from Lemma 1:

A2A
−1
3 = Q

(2)
11 (Q

(2)
21)−1, (A1Q

(2)
11)(Q

(2)
21)−1 = Q

(1)
11 (Q

(1)
21)−1.

(b) As A1 and A3 are nonsingular, Q
(2)
11 , Q

(2)
22 , R(2) and Q

(1)
12 , Q

(1)
21 , R(1)

are nonsingular as well. Since

[
(Q

(2)
11)T (Q

(2)
21)T

] [
A1Q

(1)
11

Q
(1)
21

]
= 0,

we have that[
A1Q

(1)
11

Q
(1)
21

]
=

[
Q

(2)
11 Q

(2)
12

Q
(2)
21 Q

(2)
22

] [
0

R̃(1)

]
, for some R̃(1) ∈ Rn×n;

R̃(1) is nonsingular because Q
(1)
21 is nonsingular. Hence,

[
A1Q

(1)
11

Q
(1)
21

]
=

[
A2

A3

]
(R(2))−1R̃(1),

i.e., [
Q

(1)
11

Q
(1)
21

]
=

[
A−1

1 A2

A3

]
(R(2))−1R̃(1).

Therefore, we have that

A−1
1 A2A

−1
3 = Q

(1)
11 (Q

(1)
21)−1. ��

Lemma 2 describes how a matrix A1 or A−1
1 can be added to the left of

A2A
−1
3 . The next lemma is the equivalent for working from left to right.

Lemma 3 Given matrices Ai ∈ Rn×n, i = 1, 2, 3.

(a) Assume A2 and A3 are nonsingular. Let the QR factorization of

[
A1

A2

]

be given by

[
A1

A2

]
=

[
Q

(2)
11 Q

(2)
12

Q
(2)
21 Q

(2)
22

] [
R(2)

0

]
, R(2), Q

(2)
11 , Q

(2)
12 , Q

(2)
21 , Q

(2)
22 ∈ Rn×n(7)

and let the QR factorization of

[
Q

(2)
11

A3Q
(2)
21

]
be given by

[
Q

(2)
11

A3Q
(2)
21

]
=

[
Q

(1)
11 Q

(1)
12

Q
(1)
21 Q

(1)
22

] [
R(1)

0

]
, R(1), Q

(1)
11 , Q

(1)
12 , Q

(1)
21 , Q

(1)
22 ∈ Rn×n.

(8)

106 D. Chu et al.

Then we have that

A1A
−1
2 A−1

3 = Q
(1)
11 (Q

(1)
21)−1,

in which Q
(1)
21 is nonsingular.

(b) Assume A2 is nonsingular. Let the QR factorization of

[
A1

A2

]
be given

by

[
A1

A2

]
=

[
Q

(2)
11 Q

(2)
12

Q
(2)
21 Q

(2)
22

] [
0

R(2)

]
, R(2), Q

(2)
11 , Q

(2)
12 , Q

(2)
21 , Q

(2)
22 ∈ Rn×n,(9)

and let the QR factorization of

[
Q

(2)
11

AT
3 Q

(2)
21

]
be given by

[
Q

(2)
11

AT
3 Q

(2)
21

]
=

[
Q

(1)
11 Q

(1)
12

Q
(1)
21 Q

(1)
22

] [
0

R(1)

]
, R(1), Q

(1)
11 , Q

(1)
12 , Q

(1)
21 , Q

(1)
22 ∈ Rn×n.

(10)
Then we have that

A1A
−1
2 A3 = Q

(1)
11 (Q

(1)
21)−1,

in which Q
(1)
21 is nonsingular.

Proof. The proof is similar to that of Lemma 2 and hence is omitted
here. ��

2.2 Taking more matrices into account

Assume a matrix A = A
s1
1 A

s2
2 A

s3
3 , reduced to the form Q

(1)
11 (Q

(1)
21)−1 with

Q
(1)
11 , Q

(1)
21 ∈ Rn×n, (Q

(1)
11)T Q

(1)
11 + (Q

(1)
21)T Q

(1)
21 = I , as shown in Lemma 2/

Lemma 3. Now we explain how the matrix ÂŝA or AÂŝ , in which Â ∈ Rn×n,
ŝ ∈ {±1}, and Â is nonsingular if ŝ = −1, can be reduced to the form
Q̂

(1)
11 (Q̂

(1)
21)−1 with Q̂

(1)
11 , Q̂

(1)
21 ∈ Rn×n, (Q̂

(1)
11)T Q̂

(1)
11 + (Q̂

(1)
21)T Q̂

(1)
21 = I , by

performing at most one extra QR-decomposition.
We consider the reduction of ÂŝA first. The case ŝ = 1 is trivial: compute

the QR factorization of

[
ÂQ

(1)
11

Q
(1)
21

]
to get

[
ÂQ

(1)
11

Q
(1)
21

]
=

[
Q̂

(1)
11 Q̂

(1)
12

Q̂
(1)
21 Q̂

(1)
22

] [
R̂(1)

0

]
, R̂(1), Q̂

(1)
11 , Q̂

(1)
12 , Q̂

(1)
21 , Q̂

(1)
22 ∈ Rn×n.

A QR-type reduction for computing the SVD of a general matrix product/quotient 107

In the case ŝ = −1, application of Lemma 2 to the matrix product
Â−1Q

(1)
11 (Q

(1)
21)−1 would lead to the following definition of orthogonal matrix[

Q̂
(1)
11 Q̂

(1)
12

Q̂
(1)
21 Q̂

(1)
22

]
:

(11)[
Q

(1)
11

Q
(1)
21

]
=

[
Q̂

(2)
11 Q̂

(2)
12

Q̂
(2)
21 Q̂

(2)
22

] [
0

R̂(2)

]
, R̂(2), Q̂

(2)
11 , Q̂

(2)
12 , Q̂

(2)
21 , Q̂

(2)
22 ∈ Rn×n,

(12)[
ÂT Q̂

(2)
11

Q̂
(2)
21

]
=

[
Q̂

(1)
11 Q̂

(1)
12

Q̂
(1)
21 Q̂

(1)
22

] [
0

R̂(1)

]
, R̂(1), Q̂

(1)
11 , Q̂

(1)
12 , Q̂

(1)
21 , Q̂

(1)
22 ∈ Rn×n.

However, this would impose the calculation of two kernels. On the other
hand, one QR-factorization can always be avoided by combining Eq. (11)
with the computation in the preceding step. If s1 = 1, then Eqs. (4) and (11)
can be combined to[

A1Q
(2)
11

Q
(2)
21

]
=

[
Q̂

(2)
11 Q̂

(2)
12

Q̂
(2)
21 Q̂

(2)
22

] [
0

R̂(2)

]
, R̂(2), Q̂

(2)
11 , Q̂

(2)
12 , Q̂

(2)
21 , Q̂

(2)
22 ∈ Rn×n.

If s1 = −1, then Eqs. (6) and (11) can be combined to[
AT

1 Q
(2)
11

Q
(2)
21

]
=

[
Q̂

(2)
11 Q̂

(2)
12

Q̂
(2)
21 Q̂

(2)
22

] [R̂(1)

0

]
, R̂(1), Q̂

(2)
11 , Q̂

(2)
12 , Q̂

(2)
21 , Q̂

(2)
22 ∈ Rn×n.

Now, we consider the reduction of AÂŝ . The case ŝ = −1 is trivial:

compute the QR factorization of

[
Q

(1)
11

ÂQ
(1)
21

]
to get

[
Q

(1)
11

ÂQ
(1)
21

]
=

[
Q̂

(1)
11 Q̂

(1)
12

Q̂
(1)
21 Q̂

(1)
22

] [
R̂(1)

0

]
, R̂(1), Q̂

(1)
11 , Q̂

(1)
12 , Q̂

(1)
21 , Q̂

(1)
22 ∈ Rn×n.

In the case ŝ = 1, application of Lemma 3 to the matrix product Q
(1)
11

(Q
(1)
21)−1Â would lead to the following definition of orthogonal matrix[

Q̂
(1)
11 Q̂

(1)
12

Q̂
(1)
21 Q̂

(1)
22

]
:

(13)[
Q

(1)
11

Q
(1)
21

]
=

[
Q̂

(2)
11 Q̂

(2)
12

Q̂
(2)
21 Q̂

(2)
22

] [
0

R̂(2)

]
, R̂(2), Q̂

(2)
11 , Q̂

(2)
12 , Q̂

(2)
21 , Q̂

(2)
22 ∈ Rn×n,

108 D. Chu et al.

(14)[
Q̂

(2)
11

ÂT Q̂
(2)
21

]
=

[
Q̂

(1)
11 Q̂

(1)
12

Q̂
(1)
21 Q̂

(1)
22

] [
0

R̂(1)

]
, R̂(1), Q̂

(1)
11 , Q̂

(1)
12 , Q̂

(1)
21 , Q̂

(1)
22 ∈ Rn×n.

Fortunately, one QR-factorization can be avoided by combining Eq. (13)
with the computation in the preceding step: If s2 = −1, we compute the QR

factorization of

[
Q

(2)
11

A2Q
(2)
21

]
to get

[
Q

(2)
11

A2Q
(2)
21

]
=

[
Q̂

(2)
11 Q̂

(2)
12

Q̂
(2)
21 Q̂

(2)
22

] [
0

R̂(2)

]
, R̂(2), Q̂

(2)
11 , Q̂

(2)
12 , Q̂

(2)
21 , Q̂

(2)
22 ∈ Rn×n.

If s2 = 1, then we compute the QR factorization of

[
Q

(2)
11

AT
2 Q

(2)
21

]
to get

[
Q

(2)
11

AT
2 Q

(2)
21

]
=

[
Q̂

(2)
11 Q̂

(2)
12

Q̂
(2)
21 Q̂

(2)
22

] [R̂(1)

0

]
, R̂(1), Q̂

(2)
11 , Q̂

(2)
12 , Q̂

(2)
21 , Q̂

(2)
22 ∈ Rn×n.

For m > 3, the global reduction of A to the form Q
(1)
11 (Q

(1)
21)−1 can then

be realized by first applying Lemma 2 to a subsequence A
sj−2
j−2A

sj−1
j−1A

sj
j , of

the form required in that lemma, and subsequently taking into account the
matrices Aj−3, Aj−4, . . . , A1 and Aj+1, Aj+2, . . . , Am.

2.3 Overall algorithm

The overall algorithm is presented as Alg. 1. First we give two examples.

Example 1 Let A = A−1
1 A−1

2 A−1
3 A4A

−1
5 in which Ai ∈ Rn×n, i = 1, · · · , 5

and A1, A2, A3 and A5 are nonsingular. For i = 1, · · · , 4, let orthogonal

matrices

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

]
with Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n satisfy

[
A4

A5

]
=

[
Q

(4)
11 Q

(4)
12

Q
(4)
21 Q

(4)
22

] [
0

R(4)

]
, R(4) ∈ Rn×n,

[
AT

3 Q
(4)
11

Q
(4)
21

]
=

[
Q

(3)
11 Q

(3)
12

Q
(3)
21 Q

(3)
22

] [
R(3)

0

]
, R(3) ∈ Rn×n,

[
AT

2 Q
(3)
11

Q
(3)
21

]
=

[
Q

(2)
11 Q

(2)
12

Q
(2)
21 Q

(2)
22

] [
R(2)

0

]
, R(2) ∈ Rn×n,

[
AT

1 Q
(2)
11

Q
(2)
21

]
=

[
Q

(1)
11 Q

(1)
12

Q
(1)
21 Q

(1)
22

] [
0

R(1)

]
, R(1) ∈ Rn×n.

A QR-type reduction for computing the SVD of a general matrix product/quotient 109

Then we have that
A = Q

(1)
11 (Q

(1)
21)−1.

Example 2 Let A = A−1
1 A2A

−1
3 A−1

4 A5A
−1
6 in which Ai ∈ Rn×n, i =

1, · · · , 6 and A1, A3, A4 and A6 are nonsingular. For i = 1, · · · , 5, let or-

thogonal matrices

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

]
with Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n

[
A5

A6

]
=

[
Q

(5)
11 Q

(5)
12

Q
(5)
21 Q̃

(5)
22

] [
0

R(5)

]
, R(5) ∈ Rn×n,

[
AT

4 Q
(5)
11

Q
(5)
21

]
=

[
Q

(4)
11 Q

(4)
12

Q
(4)
21 Q

(4)
22

] [
R(4)

0

]
, R(4) ∈ Rn×n,

[
AT

3 Q
(4)
11

Q
(4)
21

]
=

[
Q

(3)
11 Q

(3)
12

Q
(3)
21 Q

(3)
22

] [
0

R(3)

]
, R(3) ∈ Rn×n,

[
A2Q

(3)
11

Q
(3)
21

]
=

[
Q

(2)
11 Q

(2)
12

Q
(2)
21 Q

(2)
22

] [
0

R(2)

]
, R(2) ∈ Rn×n,

[
AT

1 Q
(2)
11

Q
(2)
21

]
=

[
Q

(1)
11 Q

(1)
12

Q
(1)
21 Q

(1)
22

] [
0

R(1)

]
, R(1) ∈ Rn×n.

Then we have that
A = Q

(1)
11 (Q

(1)
21)−1.

Algorithm 1
Input: Matrix A of the form (2).
Output: Matrices Q

(1)
11 , Q

(1)
21 ∈ Rn×n such that (Q(1)

11)T Q
(1)
11 +(Q

(1)
21)T Q

(1)
21 =

I and A = Q
(1)
11 (Q

(1)
21)−1.

Init:


If all si = 1, set Am+1 := I, sm+1 := −1; m := m + 1,

If all si =−1, set Am+1 :=Am, Am :=I, sm =1, sm+1 :=−1; m :=m + 1,

If − s1 = . . . = −sj = sj+1 = . . . = sm = 1, apply procedure to AT .

Determine maximal j such that sj = 1 and sj+1 = −1. Set sm+1 := −1,

s0 = −sj+2, Q
(j+1)

11 = I , Q
(j+1)

21 = Aj+1.
Loop: for i = j, j − 1, . . . , 1, do:

• Case si = 1 and si−1 = 1. Compute the QR factorization of

[
AiQ

(i+1)
11

Q
(i+1)
21

]
:

[
AiQ

(i+1)
11

Q
(i+1)
21

]
=

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

] [
R(i)

0

]
, R(i), Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n.

110 D. Chu et al.

• Case si = 1 and si−1 = −1. Compute the QR factorization of

[
AiQ

(i+1)
11

Q
(i+1)
21

]
:

[
AiQ

(i+1)
11

Q
(i+1)
21

]
=

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

] [
0

R(i)

]
, R(i), Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n.

• Case si =−1 and si−1 =1. Compute the QR factorization of

[
AT

i Q
(i+1)
11

Q
(i+1)
21

]
:

[
AT

i Q
(i+1)
11

Q
(i+1)
21

]
=

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

] [
0

R(i)

]
, R(i), Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n.

• Case si =−1 and si−1 =−1. Compute the QR factorization of

[
AT

i Q
(i+1)
11

Q
(i+1)
21

]
:

[
AT

i Q
(i+1)
11

Q
(i+1)
21

]
=

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

] [
R(i)

0

]
, R(i), Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n.

End loop.
Set Q

(j+1)

11 := Q
(1)
11 , Q

(j+1)

21 := Q
(1)
21 . Loop: for i = j + 2, j + 3, . . . , m do:

• Case si = 1 and si+1 = 1. Compute the QR factorization of

[
Q

(i−1)
11

AT
i Q

(i−1)
21

]
:

[
Q

(i−1)
11

AT
i Q

(i−1)
21

]
=

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

] [
R(i)

0

]
, R(i), Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n.

• Case si = 1 and si+1 = −1. Compute the QR factorization of

[
Q

(i−1)
11

AT
i Q

(i−1)
21

]
:

[
Q

(i−1)
11

AT
i Q

(i−1)
21

]
=

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

] [
0

R(i)

]
, R(i), Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n.

• Case si = −1 and si+1 = 1. Compute the QR factorization of

[
Q

(i−1)
11

AiQ
(i−1)
21

]
:

[
Q

(i−1)
11

AiQ
(i−1)
21

]
=

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

] [
0

R(i)

]
, R(i), Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n.

• Case si =−1 and si+1 =−1. Compute the QR factorization of

[
Q

(i−1)
11

AiQ
(i−1)
21

]
:

[
Q

(i−1)
11

AiQ
(i−1)
21

]
=

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

] [
R(i)

0

]
, R(i), Q

(i)
11 , Q

(i)
12 , Q

(i)
21 , Q

(i)
22 ∈ Rn×n.

End loop.

A QR-type reduction for computing the SVD of a general matrix product/quotient 111

In this algorithm, we first determine a value j such that sj−1 = 1 and
sj = −1. From there, we work further to the left and subsequently to the
right, as explained above (note that in our implementation s0 allows to take
into account the type of operation required for i = j +2). If sj−1 = 1 = −sj

does not apply, but instead we have sj = 1 and sj−1 = −1, then we can work
with AT instead of A. In these cases, we need only m − 1 QR-factorizations.
Only if s1 = s2 = · · · = sm, we have to plug in an artificial I and the method
requires m QR-factorizations.

In Algorithm 1, the explicit computation of A−1
i and explicit solution

of the corresponding triangular linear system are avoided if si = −1. An
example illustrating the importance of this point is given in the Appendix.

After reducing A to Q
(1)
11 (Q

(1)
21)−1 by Algorithm 1, we can compute the

SVD of A by computing the CSD of Q
(1)
11 and Q

(1)
21 by the Matlab command

gsvd.
It is natural to ask in Algorithm 1 which j would be the best choice to

start with, if there is more than one value for which sj = −sj+1. We just
made an arbitary choice here because it seems that there is no easy way to
fix the order of the operations in an optimal way in advance.

So far, we have assumed that all matrices are square and that the matrices
that are inverted, are nonsingular.Actually, for our method one can verify that
there is no restriction on the size nor the rank of matrices of which si = 1.
How to extend our theory to show what happens when some Aj of sj = −1
is singular is an interesting topic for the futher study.

2.4 Backward stability

In the following we explain that the computations involved in Algorithm 1
can be posed as left and right orthogonal transformations of a large matrix
whose sub-blocks are the Ai or their transposes, several unit matrices, and
the rest being zero matrices.

To have a good understanding of this reformulation, we first reconsider
Examples 1 and 2.

• In Example 1, define

Qi :=
[

Q
(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

]
, i = 1, . . . , 4,

M4 :=
[

A4

A5

]T

, M3 :=
[

A3 0
0 In

]
, M2 :=

[
A2 0
0 In

]
, M1 :=

[
A1 0
0 In

]
,

U :=
[QT

4 0
0 QT

2

]
, V :=


 In 0 0

0 Q3 0
0 0 Q1


 , M :=

[MT
4 M3 0

0 MT
2 M1

]
.

112 D. Chu et al.

Then U, V are orthogonal and

UMV = R =:

[R4 R3 0
0 R2 R1

]
,

where

R4 =
[

0
R(4)

]
, R3 =

[
(R(3))T 0

� �

]
, R2 =

[
R(2) �

0 �

]
, R1 =

[
0 (R(1))T

� �

]
.

• In Example 2, define

Qi :=
[

Q
(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

]
, i = 1, · · · , 5,

M5 :=
[

A5

A6

]T

, M4 :=
[

A4 0
0 In

]
,

M3 :=
[

A3 0
0 In

]
, M2 :=

[
AT

2 0
0 In

]
, M1 :=

[
A1 0
0 In

]
,

U :=

QT

5 0 0
0 QT

3 0
0 0 QT

1


 , V =


 In 0 0

0 Q4 0
0 0 Q2


 , M :=


MT

5 M4 0
0 MT

3 M2

0 0 MT
1


 .

Then U, V are orthogonal and

UMV = R =:


R5 R4 0

0 R3 R2

0 0 R1


 ,

where

R5 =
[

0
R(5)

]
, R4 =

[
(R(4))T 0

� �

]
, R3 =

[
0 �

R(3) �

]
,

R2 =
[

0 (R(2))T

� �

]
, R1 =

[
0 �

R(1) �

]
.

Now, we go back to Algorithm 1. For simplicity, we assume without loss
of generality that j = m − 1 in Algorithm 1, i.e., sm = −1 and sm−1 = 1.

Define

Mm−1 :=
[

Am−1

Am

]T

, Qi :=
[

Q
(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

]
, i = 1, · · · , m − 1.

A QR-type reduction for computing the SVD of a general matrix product/quotient 113

For i = 1, · · · , m − 2,

Mi :=
[

AT
i 0

0 In

]
, if si = 1 and si−1 = 1, or si = 1 and si−1 = −1,

Mi :=
[

Ai 0
0 In

]
, if si = −1 and si−1 = 1, or si = −1 and si−1 = −1.

Set

U :=




QT
m−1 0 0

0
. . . 0

0 0 QT
2


 if m is odd, U :=




QT
m−1 0 0

0
. . . 0

0 0 QT
1


 if m is even,

V :=



In 0 0 0
0 Qm−2 0 0

0 0
. . . 0

0 0 0 Q1


 if m is odd, V :=



In 0 0 0
0 Qm−2 0 0

0 0
. . . 0

0 0 0 Q2


 if m is even,

M =




MT
m−1 Mm−2 0 0 0
0 MT

m−3 Mm−4 0 0

0 0
. . .

. . . 0
0 0 0 MT

2 M1


 if m is odd,

M =




MT
m−1 Mm−2 0 0 0
0 MT

m−3 Mm−4 0 0

0 0
. . .

. . .
...

...
... · · · MT

3 MT
2

0 0 0 0 MT
1




if m is even.

Then U and V are orthogonal matrices, and

UMV = R,(15)

where

R =




Rm−1 Rm−2 0 0 0
0 Rm−3 Rm−4 0 0

0 0
. . .

. . . 0
0 0 0 R2 R1


 if m is odd,

R =




Rm−1 Rm−2 0 0 0
0 Rm−3 Rm−4 0 0

0 0
. . .

. . .
...

...
... · · · R3 R2

0 0 0 0 R1




if m is even,

114 D. Chu et al.

Rm−1 =
[

R(m−1)

0

]
or Rm−1 =

[
0

R(m−1)

]
,

Ri ∈ Rn×n, i = 1, · · · , m − 2, are of one of the following forms

[
R(i) �

0 �

]
,

[
R(i) 0
� �

]
,

[
� �

0 R(i)

]
,

[
� 0
� R(i)

]
,

R(i) ∈ Rn×n (i = 1, · · · , m − 1) are nonsingular.
Let X̄ denote the estimate of X computed with finite precision arithmetic,

as opposed to exact arithmetic, and let ε denote the machine precision. From
(15), we have [10]

‖ŪT Ū − I2n‖ ≈ ε, ‖V̄ T V̄ − I2n‖ ≈ ε, ‖ŪMV̄ − R̄‖ ≈ ε‖M‖.(16)

Hence, algorithm 1 is backward stable in the sense that (16) holds.

3 Numerical experiments

In this section we illustrate the performance of our method by means of some
numerical examples. After reducing the matrix A ∈ Rn×n in Eq.(2) to the
form Q

(1)
11 (Q

(1)
21)−1 by Algorithm 1, the SVD of A is obtained by computing

the CSD of Q
(1)
11 and Q

(1)
21 using Van Loan’s CSD algorithm [18] (i.e. Mat-

lab command gsvd); here we set the parameter τ = 1√
2
, which minimizes

a backward error bound [3]. All our calculations were carried out in MAT-
LAB 5 on a Sun Ultra 5 workstation with IEEE standard (machine accuracy
ε ∼= 10−16).

To quantify the accuracy of the results, we define the residual

resSV D = ‖�̂ − �‖2

n‖�̂‖2

,(17)

in which

�̂ = diag{σ̂1, σ̂2, · · · , σ̂n}, σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂n > 0,

� = diag{σ1, σ2, · · · , σn}, σ1 ≥ σ2 ≥ · · · ≥ σn > 0,

where σ̂i and σi , i = 1, 2, · · · , n, are the computed and the exact singular
values of A respectively.

We use the symbols η and κ(X) to denote a value drawn from a uniform
distribution over [0, 1) and the 2-norm condition number of X, respectively.

A QR-type reduction for computing the SVD of a general matrix product/quotient 115

Example 3 In this example, we test our method using some common-used
matrix families including Lauchli matrices, Frank matrices, Cauchy matri-
ces, Vandermonde matrices, Wilkinson matrices, Pascal matrices, Toeplitz
matrices and Hankel matrices. Take

m = 6, s1 = s3 = s4 = s6 = −1, s2 = s5 = 1.

1) Matrices Ai (i = 1, · · · , 6) are generalized using the following Matlab
commands:

X = gallery(′lauchli′, n, 0.1); A1 = X(1 : n, 1 : n);
A3 = gallery(′frank′, n, 1); A6 = vander(randn(n, 1));
A4 = gallery(′cauchy′, randn(n, 1), randn(n, 1));
A2 = A1 ∗ A3; A5 = A4.

It is easy to see that A = A−1
6 and hence we can get the singular values of A

by Matlab command svd(inv(A6)). The computed results are listed in Table 1.

Table 1.


n resSV D κ(A1) κ(A2) κ(A3) κ(A4) κ(A6)

6 5.5 × 10−15 60.1 9.7 × 104 4.2 × 103 1.7 × 103 1.4 × 103

7 8.2 × 10−14 70.1 7.9 × 105 3.2 × 104 1.9 × 105 2.4 × 105

8 4.2 × 10−13 80.1 7.3 × 106 2.8 × 105 3.2 × 105 1.9 × 103

9 8.6 × 10−11 90.1 7.5 × 107 2.7 × 106 2.8 × 107 3.8 × 104

10 7.4 × 10−11 1.0 × 102 8.4 × 108 2.9 × 107 1.3 × 104 3.6 × 105




.

2) Matrices Ai (i = 1, · · · , 6) are generalized using the following Matlab
commands:

A1 = wilkinson(n); A4 = pascal(n);
c = randn(n, 1); r = randn(1, n); r(1, 1) = c(1, 1); A3 = toeplitz(c, r);
d = rand(n, 1); A6 = hankel(d);
A2 = A3; A5 = A4 ∗ A6.

116 D. Chu et al.

Obviously, A = A−1
1 and we can get the singular values of A by Matlab

command svd(inv(A1)). The computed results are listed in the Table 2.

Table 2.


n resSV D κ(A1) κ(A3) κ(A4) κ(A5) κ(A6)

6 1.7 × 10−14 13.1 29.7 1.1 × 105 1.3 × 105 7.2

7 3.1 × 10−13 14.1 29.3 1.5 × 106 2.3 × 106 1.8 × 103

8 9.4 × 10−11 19.7 7.8 2.1 × 107 1.8 × 1011 1.5 × 106

9 7.7 × 10−12 18.6 81.8 2.9 × 108 1.4 × 1010 5.3 × 102

10 6.3 × 10−11 24.7 34.4 4.2 × 109 5.2 × 1011 1.0 × 105




.

Example 4 We compare our Algorithm 1 with the method in [11] in this
example. Let

A1 = pascal(n), A2 = A1, s1 = −1, s2 = 1.

Obviously, A = In. The computed resSV D are listed in Table 3.

Table 3.


n 13 14 15 16 17 18

resSV D1 2.6 × 10−7 2.9 × 10−6 3.1 × 10−5 3.4 × 10−4 0.002 0.02

resSV D2 1.7 × 10−6 4.5 × 10−5 3.5 × 10−4 8.4 × 10−4 0.02 1.7

resSV D3 2.0 × 10−6 4.2 × 10−5 2.6 × 10−4 8.7 × 10−3 0.07 1.14

κ(A1) 1.3 × 1013 1.9 × 1014 2.8 × 1015 4.2 × 1016 6.4 × 1017 9.4 × 1018




.

In Table 3, resSV D1, resSV D2 and resSV D3 denote the resSV D com-
puted by ourAlgorithm 1, the method in [11], and the command svd(inv(A1)∗
A2), respectively.

In the next 6 examples, m = 6, s1 = s3 = s4 = s6 = −1 and s2 = s5 = 1.
We have

A1 = U1�1V1, A2 = U1�2V2, A3 = �3V2,

A4 = U4�4, A5 = U4�5V5, A6 = U6�6V5,

in which U1, U4, U6, V1, V2 and V5 are randomly chosen orthogonal matrices;
the entries of �i = diag{σi1, · · · , σin}, i = 1, · · · , 6, are specified below. For
values of n = 35, 36, · · · , 80, the obtained residuals resSV D are plotted in
Figure 2.

A QR-type reduction for computing the SVD of a general matrix product/quotient 117

Example 5 For j = 1, · · · , n,

σij = (j + ηij) ∗ i, i = 1, · · · , 4, 6,

and
σ5j = (j + η5j) ∗ 5 ∗ 10− 7

n
∗j .

Example 6 For j = 1, · · · , n,

σij = (j + ηij) ∗ i, i = 1, · · · , 4,

and

σ5j = (j + η5j) ∗ 5 ∗ 10− 7
n
∗j , σ6j = (j + η6j) ∗ 6 ∗ 10− 6

n
∗j .

Example 7 For j = 1, · · · , n,

σij = (j + ηij) ∗ i, i = 1, · · · , 3,

and

σij = (j + ηij) ∗ i, i = 1, · · · , 3, σ4j = (j + η4j) ∗ 4 ∗ 10− 3
n
∗j ,

σ5j = (j + η5j) ∗ 5 ∗ 10− 8
n
∗j , σ6j = (j + η6j) ∗ 6 ∗ 10− 5

n
∗j .

Example 8 For j = 1, · · · , n,

σij = (j + ηij) ∗ i, i = 1, 2,

and

σ3j = (j + η3j) ∗ 3 ∗ 10
3
n
∗j , σ4j = (j + η4j) ∗ 4 ∗ 10− 3

n
∗j ,

σ5j = (j + η5j) ∗ 5 ∗ 10− 8
n
∗j , σ6j = (j + η6j) ∗ 6 ∗ 10− 5

n
∗j .

Example 9 For j = 1, · · · , n,

σ1j = (j + η1j), σ2j = (j + η2j) ∗ 2 ∗ 10− 4
n
∗j ,

σ3j = (j + η3j) ∗ 3 ∗ 10
3
n
∗j , σ4j = (j + η4j) ∗ 4 ∗ 10− 3

n
∗j ,

σ5j = (j + η5j) ∗ 5 ∗ 10− 7
n
∗j , σ6j = (j + η6j) ∗ 6 ∗ 10− 4

n
∗j .

Example 10

σ1j = (j + η1j) ∗ 10− 3
n
∗j , σ2j = (j + η2j) ∗ 2 ∗ 10− 4

n
∗j ,

σ3j = (j + η3j) ∗ 3 ∗ 10
3
n
∗j , σ4j = (j + η4j) ∗ 4 ∗ 10− 3

n
∗j ,

σ5j = (j + η5j) ∗ 5 ∗ 10− 7
n
∗j , σ6j = (j + η6j) ∗ 6 ∗ 10− 4

n
∗j .

118 D. Chu et al.

40 50 60 70 80
0

1

2

3
x 10

−16

40 50 60 70 80
0

1

2

3
x 10

−16

40 50 60 70 80
0

2

4

6

8

x 10
−15

40 50 60 70 80
0

1

2

3

4
x 10

−14

40 50 60 70 80
0

2

4

6
x 10

−14

40 50 60 70 80
0

2

4

6

8
x 10

−14

Example 5 Example 6

Example 7 Example 8

Example 9 Example 10

nn

r
e
s
S
V

D

r
e
s
S
V

D

r
e
s
S
V

D

r
e
s
S
V

D

r
e
s
S
V

D

r
e
s
S
V

D

Fig. 1. Residuals resSV D (see Eq. (17)) as a function of matrix size n, computed in
Examples 5, . . . , 10.

A QR-type reduction for computing the SVD of a general matrix product/quotient 119

Obviously, the exact of SVDs of A in Examples 5–10 are

A = V1�UT
6 with � = �−1

1 �2�
−1
3 �−1

4 �5�
−1
6 .

In examples 5–10, we choose the diagonal elements of �i in such a way that
different situations in terms of the condition number of Ai and A are to be
dealt with. In detail,

• In Example 5, A1, A2, A3, A4 and A6 are well-conditioned, A5 and A are
ill-conditioned with κ(A5) = (107) and κ(A) = O(107).

• In Example 6, A1, A2, A3, A4 and A are well-conditioned, A5 and A6 are
ill-conditioned with κ(A5) = O(107) and κ(A6) = O(106).

• In Example 7, A1, A2, A3 and A are well-conditioned, A4 has a moderate
condition number, A5 and A6 are ill-conditioned with κ(A5) = O(108)

and κ(A6) = (105).
• In Example 8, A1 and A2 are well-conditioned, A3, A4 and A have a

moderate condition number, A5 and A6 are ill-conditioned with κ(A5) =
O(108) and κ(A6) = O(105).

• In Example 9, A1 is well-conditioned, A2, A3, A4 and A6 have a moderate
condition number, A5 and A are ill-conditioned with κ(A5) = O(107)

and κ(A) = O(107).
• In Example 10, A1, A2, A3, A4, A6 and A have a moderate condition

number, A5 is ill-conditioned.

From Tables 1, 2 and 3, and Figure 1, we see that our results are satisfac-
tory.

4 Conclusions

In this paper, we have studied the computation of the SVD of a general ma-
trix product/quotient sequence. First we reduced the sequence by at most
m QR-factorizations to the form Q

(1)
11 (Q

(1)
21)−1, with Q

(1)
11 , Q

(1)
21 ∈ Rn×n and

(Q
(1)
11)T Q

(1)
11 +(Q

(1)
21)T Q

(1)
21 = I . Then we obtain the SVD of A by computing

the CSD of Q
(1)
11 and Q

(1)
21 using the Matlab command gsvd. An advantage of

our QR-type reduction is its flexibility for adding one more matrix from left
or right to the matrix A of a matrix product/quotient, this feature is very useful
for the applications like the estimation of Lyapunov exponents of dynamic
systems. Some numerical examples were given to show the performance of
the presented method.

Acknowledgements. We are very grateful to referees for their kind invaluable comments
and suggestions which have improved the present paper significantly.

120 D. Chu et al.

Appendix

Take

A1 =




0.99999999987468 0.50000000236877 0.33333332305860 0.25000001557339 0.19999999236251
0.50000000236877 0.33333328856096 0.25000019420358 0.19999970564605 0.16666681102359
0.33333332305860 0.25000019420358 0.19999915762723 0.16666794344931 0.14285651669800
0.25000001557339 0.19999970564605 0.16666794344931 0.14285520764038 0.12500094906810
0.19999999236251 0.16666681102359 0.14285651669800 0.12500094906810 0.11111064566958


 ,

A2 = [√
5

√
5

√
5

√
5

√
5

]
A1.

The exact value of the SVD of A2A
−1
1 is 5.

In the following we illustrate that the explicit computation of A−1
1 should be avoided.

We first compute the QR factorization of A1: A1 = QR, and then compute the solution
x of xR = A2. Finally, the singular value of A2A

−1
1 , estimated by means of the method

in [11], is 5.00120891819209.
Now we use ourAlgorithm 1 to get a singular value estimate equal to 5.00000781367755.
The above performances are easy to understand. The exact value of x should satisfy

xQT = [√
5

√
5

√
5

√
5

√
5
]
.

However, the computed x only gives

xQT = [
2.23668506012794 2.22440444340721 2.28665944307996 2.15938659945574 2.27367402298989

]
.

Since

‖QT Q − I5‖2 = 6.1061099 × 10−16,

‖A1 − QR‖2 = 1.4262426 × 10−16,

‖A1‖2 = 1.5670507.

So, the computed Q and R are very accurate. But the computed x is not acceptable. Note
that A1 is ill-conditioned but well-balanced. However,

R =




1.20979796293064 −0.68882024839475 −0.49201446313907 −0.38541132945901 −0.31775934077732
0 −0.13005981043404 −0.14019190378167 −0.13270023604854 −0.12232288892133
0 0 −0.00806537832143 −0.01263254593415 −0.01490828704240
0 0 0 −0.00033807875859 −0.00068936642389
0 0 0 0 0.00000000000001


 .

Thus, the computed R is not only ill-conditioned but also highly non-balanced, which leads

to a catastrophic cancellation in the solution of the triangular linear system xR = A2. Such

a catastrophic cancellation seriously affects the computational accuracy. The situation is

the same even when the QR factorization of A1 is computed with pivoting. This example

indicates that the explicit computation of the inverses of triangular matrices from the QR

factorizations and the explicit solutions of corresponding triangular linear systems should

be avoided in the computation of the SVD of matrix product/quotient, if this is possible.

References

1. E. Anderson, Z. Bai, C. Bischof, J. W. Demmel, J. Dongarra, J. D. Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen: LAPACK Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphia, (1992)

2. Z. Bai, J. W. Demmel: Computing the generalized singular value decomposition,
SIAM J. Sci. Comput., 14, 1464–1486 (1993)

A QR-type reduction for computing the SVD of a general matrix product/quotient 121

3. Z. Bai: The CSD, GSVD, their applications and computations, IMA Preprint 958,
University of Minnesota, April 1992, Submitted to SIAM Rev

4. D. Chu, L. De Lathauwer, B. De Moor: On the computation of Restricted Singular
Value Decomposition via Cosine-Sine Decomposition. SIAM J. Matrix Anal. Appl.,
22, 580–601 (2001)

5. B. De Moor, G. H. Golub: The restricted singular value decomposition: properties
and applications. SIAM J. Matrix Anal. Appl., 12, 401–425 (1991)

6. B. De Moor: On the structure of generalized singular value and QR decompositions,
SIAM J. Matrix Anal. Appl., 15, 347–358 (1994)

7. B. De Moor, P. Van Dooren: Generalizations of the QR and singular value decompo-
sition, SIAM J. Matrix Anal. Appl., 13, 993–1014 (1992)

8. B. De Moor, G. H. Golub: Generalized singular value decompositions: a proposal
for a standardized nomenclature, Internal Report 89-10, ESAT-SISTA, K.U.Leuven,
Leuven, Belgium, (1989)

9. K. Fernando, S. Hammarling: A product induced singular value decomposition for
two matrices and balanced realisation, NAG Technical Report TR8/87.

10. G. H. Golub, C. F. Van Loan: Matrix Computations, 3rd ed., The John Hopkins
University Press, Baltimore, MD, (1996)

11. G. Golub, K. Solna, P. Van Dooren: Computing the SVD of a general matrix
product/quotient, SIAM J. Matrix Anal. Appl., to appear.

12. L. Arnold, H. Crauel, J. Eckmann: Lyapunov Exponents, Spring-Verlag, Berlin, New
York, (1991)

13. M. T. Heath,A. J. Laub, C. C. Paige, R. C. Ward: Computing the singular value decom-
position of a product of two matrices, SIAM J. Sci. Statist. Comput., 7, 1147–1159
(1986)

14. C. C. Paige, M. A. Saunders: Towards a generalized singular value decomposition,
SIAM J. Numer. Anal., 18, 398–405 (1981)

15. C. C. Paige: Computing the generalized singular value decomposition, SIAM J. Sci.
Stat. Comput., 7, 1126–1146 (1986)

16. G. W. Stewart: Computing the CS-decomposition of a partitioned orthogonal matrix,
Numer. Math., 40, 297–306 (1982)

17. C. F.Van Loan: Generalizing the singular value decomposition, SIAM J. Numer.Anal.,
13, 76–83 (1976)

18. C. F. Van Loan: Computing the CS and the generalized singular value decomposition,
Numer. Math., 46, 479–491 (1985)

19. H. Zha: A numerical algorithm for computing the restricted singular value decompo-
sition of matrix triplets, Linear Algebra Appl., 168, 1–25 (1992)

20. H. Zha: The restricted singular value decomposition of matrix triplets. SIAM J. Matrix
Anal. Appl., 12, 172–194 (1991)

21. H. Zha: Computing the generalized singular values/vectors of large sparse or
structured matrix pairs, Numerische Mathematik, 72, 391–417 (1996)

