
Abstract Treatment of Parkinson’s disease with L-dopa
is plagued in a majority of patients by dyskinesias. Nor-
adrenaline/dopamine interactions are proposed on behav-
ioral, biochemical, physiological and anatomical grounds.
The aim of the study was to test the potential antidyskinetic
effect of the α2-adrenoceptor antagonist, idazoxan, in a pri-
mate model of Parkinson’s disease. Six female cynomol-
gus monkeys previously rendered parkinsonian by the toxin
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and
presenting an unchanged syndrome for several months were
used. All responded readily to L-dopa but had developed
dyskinesias which were manifested with each dose. In the
first part of the study, seven doses of idazoxan (ranging
from 0.25 mg/kg to 10 mg/kg, p.o.) were administered to-
gether with the vehicle or in combination with a fixed dose
of L-dopa/benserazide (100/25 mg, p.o.). In the second part
of the study, a fixed dose of idazoxan (7.5 mg/kg) was ad-
ministered daily for 10 days and L-dopa was added to ida-
zoxan on days 1, 4, 7 and 10. Vehicle (empty capsule) was
used as control. Idazoxan, by itself (ranging from 5 mg/kg
to 10 mg/kg), increased locomotor activity and improved
the disability score with virtually no dyskinesias in three
animals. In combination with L-dopa, idazoxan did not
impair the antiparkinsonian response but significantly re-
duced dyskinesias in all six animals up to 65% at doses of
7.5 mg/kg and 10 mg/kg and delayed their onset, so that
the “ON” state without dyskinesias was prolonged. The
antidyskinetic effect of idazoxan was maintained when re-
peatedly administered for 10 days. On day 10, the locomo-
tor response to L-dopa was significantly potentiated by

chronic administration of idazoxan. Our results indicate that
idazoxan has some antiparkinsonian effect of its own and
may constitute a useful adjunct to L-dopa as it can reduce
dyskinesias without impairing the relief of symptoms, this
effect being maintained over time in this model.
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Introduction

The most common treatment for Parkinson’s disease (PD)
aims at pharmacologically augmenting striatal dopamine
(DA) levels using the DA precursor L-3,4-dihydroxyphenyl-
alanine (L-dopa). Although L-dopa is a valuable agent in
the treatment of PD, motor complications such as dyski-
nesias can arise with prolonged use and often become as
debilitating as the parkinsonian symptoms themselves. As
alternative for L-dopa treatment, synthetic DA receptor ag-
onists were developed. However, both DA D1- and D2-like
receptor agonists can also induce dyskinesias in 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mon-
keys otherwise untreated (i.e. drug-naive). For instance, pul-
satile administration of molecules with reported selectivity
for the DA D2 receptor (+)-PHNO ((+)-4-propyl-9-hydroxy-
naphthoxazine hydrochloride), quinpirole and U-91356A
((R)-5,6-dihydro-5-(propylamino)-4H-imidazo[4,5,1-ij]
quinolin-2-(1H)-one, monohydrochloride) rapidly induced
dyskinesias in all drug-naive animals tested while demon-
strating a significant antiparkinsonian efficacy (Blanchet
et al. 1995; Gomez-Mancilla and Bédard 1992; Luquin et
al. 1992). Of the DA D1 receptor agonists tested in drug-
naive animals, CY-208243 ((-)-4,6,6a,7,8,12b-hexahydro-
7-methyl-indolo-(4,3-ab)phenanthoridine) displayed strong
antiparkinsonian activity, but induced dyskinesias after 
a few weeks in three out of five animals (Bédard et al.
1997) while SKF-82958 (6-chloro-7,8-dihydroxy-3-allyl-
1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobro-
mide) also rapidly induced prominent dyskinesias in two
out of three animals (Blanchet et al. 1996).
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In recent years, considerable effort has been devoted to
the search for nondopaminergic therapies that are as effica-
cious as DA replacement therapy but might not elicit dys-
kinesias. Other than its neurotoxicity to the nigrostriatal
DA system, MPTP is also toxic to the noradrenergic neu-
rons originating in the locus coeruleus (LC), leading to a
reduction of cerebral noradrenaline (NA) levels in nonhu-
man primates (Elsworth et al. 1990; Mitchell et al. 1985;
Pifl et al. 1991). Similarly, LC lesions and reduced con-
centrations in NA can be observed in several motor areas
of the cortex of parkinsonian patients, which may con-
tribute to the symptomology of PD (Gaspard et al. 1991;
Hornykiewicz and Kish 1986; Scatton et al. 1983). In fact,
disruption of the noradrenergic system reduces the basal
release and turnover of DA in the rat striatum (Geyer and
Lee 1984; Lategan et al. 1990). Thus, the increase in NA
cerebral content may be of therapeutic value in the treat-
ment of PD. Previous studies in rats showed that idazoxan,
a potent and selective α2-adrenoceptor antagonist, enhances
the turnover and release of cerebral NA (L’Heureux et al.
1986), modulates DA release in some brain regions, and
potentiates the amphetamine-induced ipsilateral circling
(Marvidis et al. 1991) as well as the apomorphine-induced
contralateral circling (Dickinson et al. 1988; Marvidis et
al. 1990) in the unilateral nigral-lesioned rat. Idazoxan in-
creases noradrenergic transmission by blocking inhibitory
presynaptic α2-adrenoceptors (Dennis et al. 1987). More-
over, our group has shown that yohimbine, another α2-
adrenoceptor antagonist, reduces L-dopa-induced dyski-
nesias in MPTP-treated monkeys without affecting signif-
icantly the antiparkinsonian response (Gomez-Mancilla and
Bédard 1993). However, other than its noradrenergic prop-
erties, yohimbine acts at other receptors including DA re-
ceptors (Scatton et al. 1980) so that the role of α2-adreno-
ceptors in mediating the antidyskinetic effects of yohim-
bine is unclear. Conversely, idazoxan (Ki = 3 nM) is over
ten times more potent than yohimbine (Ki = 40 nM) at in-
hibiting [3H]clonidine binding at the α2 sites in brain tis-
sue (P. Ladure, personal communication; Walter et al.
1984). The affinity of idazoxan for the α2 binding site is
approximately 50 times higher than its affinity for the α1
sites (Ki = 142 nM), with negligible affinity for DA recep-
tors (Ki>100 µM; P. Ladure, personal communication; Wal-
ter et al. 1984). Thus, in order to extend our previous find-
ings on the potential antidyskinetic effect of α2-adreno-
ceptor antagonists, we tested if idazoxan would have a sim-
ilar profile of action in reducing dyskinesias to yohimbine,
and if so, whether this antidyskinetic effect would be main-
tained over time with repeated administrations in MPTP-
treated cynomolgus monkeys presenting L-dopa-induced
dyskinesias.

Materials and methods

Animals and pretreatments. This study was performed in six fe-
male cynomolgus (Macaca fascicularis) monkeys weighing 3.25–
4.50 kg and rendered parkinsonian by weekly subcutaneous (s.c.)
injections of MPTP (1–3 mg per injection). The animals received a
total of 11 mg MPTP on average. All animals had disability scores

of 5 or more (maximum 10) that had been unchanged for several
months before the present study. All animals also had dyskinetic
movements which had been induced over several weeks by re-
peated, once daily, oral administration of a single capsule contain-
ing L-dopa (100 mg) and benserazide (25 mg; Prolopa; Hoffmann-
La Roche, Mississauga, Ontario, Canada). Once established, the
dyskinetic response was thereafter reproducible to each subsequent
dose of L-dopa or DA receptor agonists. The animals received no
other treatment than L-dopa in the month preceding the present
study.

Experimental treatments. In the first part of the study (dose-re-
sponse), we administered seven oral doses of idazoxan together with
the vehicle (empty capsule) or in combination with L-dopa/benser-
azide (100/25 mg) given orally. Idazoxan (2-[2-(1,4-benzodiox-
anyl)]-2-imidazoline hydrochloride; Pierre Fabre Research Insti-
tute, Plantaurel, Labège Innopole Cedex, France) was administered
as a single capsule at 0.25, 0.50, 1.0, 2.0, 5.0, 7.5 and 10 mg/kg.
The dose of idazoxan was increased each week. For each dose, cap-
sules containing idazoxan administered with the vehicle and in
combination with L-dopa were separated by a drug-free period of
24 h. Weekly administration of empty capsules (vehicle) given
orally served as control. L-dopa/benserazide (100/25 mg), together
with the vehicle, was also administered each week.

In the second part of the study (chronic), a fixed dose of idazoxan
was administered daily for 10 days. After a rest of 2 weeks, the same
animals received an oral dose of idazoxan (7.5 mg/kg) selected as
the most advantageous (see Results). L-dopa/benserazide (100/
25 mg) was administered with the vehicle the day preceding the
onset of the protocol (day 0) and added to idazoxan on days 1, 4, 7
and 10. The animals were also administered with empty capsules
(vehicle) as control treatment (day –1).

Evaluation of the response. During the study, the animals were
housed individually in the same room in six observation cages
equipped with glass doors and submitted to a 12-h light/12-h dark
cycle. On experimental days, the animals were assessed through a
one-way screen and scored every 30 min up to 4 h after treatment.
The antiparkinsonian response was evaluated in a non-blinded fash-
ion, according to a disability scale which we have used in several
published studies. It includes assessment of: (a) posture: normal = 0,
flexed = 1, crouched = 2; (b) mobility: normal = 0, reduced = 1, pas-
sive = 2; (c) climbing: present = 0, absent = 1; (d) gait: normal = 0,
abnormal = 1; (e) tremor: present = 1, absent = 0; (f) social inter-
actions: present = 0, absent = 1; (g) vocalization: present = 0, ab-
sent = 1; and (h) grooming: present = 0, absent = 1. A score of 10 rep-
resents maximal disability. The dyskinetic response was also rated
for the face, neck, trunk, arms and legs in the following way: 
none = 0, mild (occasional) = 1; moderate (intermittent) = 2; se-
vere (continuous) = 3. The dyskinetic score obtained was the sum
of the scores for all body segments for a maximal score of 21 points.
The score reflects the intensity and frequency of dyskinesias in the
preceding 30 min. The timing of administration of the various
treatments as well as the appearance and end of the antiparkinson-
ian and dyskinetic responses were carefully noted to appreciate the
duration of dyskinesias in relation to the duration of the antiparkin-
sonian activity. Particular attention was paid to the occurrence of
sleepiness. Locomotor activity was quantified every 5 min with an
electronic motility monitoring system (Dataquest IV; Data Sci-
ences, St. Paul, Minn., USA). Using radiowaves frequency, a probe
implanted s.c. in the back of each animal transmits the signal to a
receiver attached to the cage which is connected to a computer.
Counts of locomotor activity per 5 min for each animal were accu-
mulated over a period of 4 h after treatment. This period covers the
duration of the effects observed during this study.

Statistical analysis. The total mobility counts recorded over 4 h for
each animal were compared using an analysis of variance (ANOVA)
for repeated measures, followed by a Fisher’s probability of least
significance difference (PLSD) a posteriori test. The disability scores
obtained every 30 min up to 4 h (maximum of eight scores) for each
animal were cumulated and averaged, giving us an average individ-
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ual disability score per treatment. The mean disability scores were
compared using the nonparametric Friedman’s test. Following ve-
hicle treatments, we considered a time interval corresponding to the
duration of the effect of L-dopa. We used a similar procedure for the
dyskinetic scores.

Results

Dose-response study

If one considers the whole group (n = 6), oral administra-
tion of idazoxan together with the vehicle had no signifi-
cant effect vs. vehicle. However, a significant increase of
locomotion was observed in three animals with severe
parkinsonism (8< parkinsonian score <10) at doses rang-
ing from 5 mg/kg to 10 mg/kg of idazoxan (not shown,
ANOVA + Fisher PLSD; P<0.05 vs. vehicle). This in-
crease in locomotor activity (two- to threefold on average
vs. vehicle) was less intense than that produced by L-dopa
(sixfold on average vs. vehicle in these three animals) and
somewhat irregular with alternating periods of high and low
mobility. The disability score was also significantly im-
proved by idazoxan in these three monkeys only (not
shown; Friedman; P<0.05 vs. vehicle). There were mild
dyskinesias in one animal. The three other animals with
moderate parkinsonism (5< parkinsonian score <8) showed
signs of somnolence including eye closure and yawning.
No other side-effect was observed.

Oral administration of L-dopa/benserazide alone (100/
25 mg) caused a significant 4.5-fold increase of locomotion
in all six animals vs. vehicle (Fig.1A, black bar). The dis-
ability score was also improved by L-dopa in all six ani-
mals by 3.5 points on average (~50% vs. vehicle; Fig.1B,
top panel). However, this improvement in disability was
accompanied by dyskinesias in all six animals (Fig.1B,

bottom panel). Idazoxan combined to L-dopa did not sig-
nificantly modify the locomotor response (Fig.1A, gray
bars) or the improvement in disability caused by L-dopa in
all animals, except at the highest dose of idazoxan tested
(10 mg/kg) which slightly increased the disability score
(Fig.1B, top panel). However, we observed in all six ani-
mals a clear reduction in L-dopa-induced dyskinesias up to
65% at doses of 7.5 mg/kg and 10 mg/kg idazoxan (Fig. 1B,
bottom panel). The dose of 7.5 mg/kg appeared optimal
since at the higher dose, a certain reduction of the an-
tiparkinsonian effect of L-dopa was observed. The im-
provement of the dyskinetic score obtained during the
“ON” state is the result of a reduction in intensity and a
delay in the appearance of dyskinesias with respect to the
antiparkinsonian effect. For instance, a significant increase
(paired t-test; P<0.003) of about 30 min of the “ON” state
without dyskinesia was observed mostly at the beginning
of the “ON” state (not shown).

Chronic study

Repeated administration of idazoxan (7.5 mg/kg) combined
with L-dopa did not decrease the locomotor response to L-
dopa which was maintained at days 1, 4 and 7, and was even
significantly potentiated at day 10 (Fig.2A, hatched bars).
Idazoxan did not modify the improvement in disability
caused by L-dopa (Fig.2B, top panel). However, we ob-
served again a clear reduction in L-dopa-induced dyskine-
sias which was maintained for the 10-day period (Fig. 2B,
bottom panel). As for the dose-response study, the im-
provement of the dyskinetic score obtained during the
“ON” state results from a significant decrease in intensity
and a significant 30-min delay in the appearance of dys-
kinesias compared to the antiparkinsonian effect, so that
the “ON” state without dyskinesias was prolonged.
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Fig.1A,B Dose-response study.
A Effects of vehicle, L-dopa and
idazoxan + L-dopa on locomotor
activity. The mobility counts cu-
mulated over 4 h for each ani-
mal were compared using an
analysis of variance (ANOVA)
for repeated measures followed
by a Fisher’s probability of least
significance difference (PLSD)
test. Counts ± SEM (*P<0.05
and **P<0.01 vs. vehicle). 
B Antiparkinsonian (top panel)
and dyskinetic (bottom panel)
effects of vehicle, L-dopa and
idazoxan + L-dopa. The disabil-
ity scores obtained every 30 min
(up to 4 h) for each animal were
cumulated and averaged, giving
us an average individual disabil-
ity score per treatment. The val-
ues were compared using the
nonparametric Friedman’s test.
The same procedure was used
for the dyskinetic scores. Scores
± SEM (*P<0.05 and **P<0.01
vs. vehicle; ††P<0.01 vs. L-dopa)



Discussion

The present study suggests that pharmacological manipu-
lations of the noradrenergic neurotransmission may bene-
fit parkinsonian patients. For one, α2-adrenoceptors may
influence the mechanisms underlying PD signs in our
model as idazoxan administered with the vehicle was ca-
pable of reversing the parkinsonian features in half of the
animals. This finding supports other studies in MPTP mon-
keys which have similarly reported a beneficial sympto-
matic effect in a limited number of animals (n = 1–2) us-
ing idazoxan (Bezard et al. 1997) and the α2-adrenoceptor
antagonist R47243 (Clopaert et al. 1991). The present re-
sults also indicate that idazoxan has a facilitatory influ-
ence on DA-mediated locomotor activity in MPTP-exposed
cynomolgus monkeys as it can potentiate L-dopa-induced
increase in locomotor activity after repeated administra-
tions. Accordingly, the antagonism of α2-adrenoceptors
with efaroxan significantly improved motor performance
of PD patients under L-dopa (Ruzicka et al. 1997). The pre-
sent results are also coherent with evidence in other animal
models that idazoxan can potentiate nigrostriatal dopamin-
ergic neurotransmission in vivo, e.g. its ability to potenti-
ate DA-dependent circling in the unilateral nigral-lesioned
rat (Dickinson et al. 1988; Marvidis et al. 1990, 1991).

The reduction of dyskinesias obtained in the present
study is consistent with our previous report in nonhuman
primates using yohimbine (Gomez-Mancilla and Bédard
1993) as well as with the report by Rascol et al. (1997) on
the ability of idazoxan to reduce L-dopa-induced dyskine-
sias without any deterioration of the antiparkinsonian re-
sponse in human patients. The α2-adrenoceptor antagonists
yohimbine and rauwolscine were also reported to reduce
peak-dose L-dopa-induced dyskinesias in the MPTP-treated
common marmoset with no effect on the peak antiparkin-

sonian action of L-dopa (Henry et al. 1999). In the present
study, the improvement of the dyskinetic score obtained
during the “ON” state is the result of a decrease in inten-
sity and a delay in the appearance of dyskinesias with re-
spect to the antiparkinsonian effect, so that the “ON” state
without dyskinesia is prolonged.

The precise mechanisms by which the noradrenergic
system can influence the dopaminergic system and/or other
systems to reduce L-dopa-induced dyskinesias remain un-
clear. Neurons in the LC project widely to the cerebral
hemispheres and are the major sources of NA released in
the brain (Raisman-Vozari 1994). Although disputed (Ma-
son and Fibiger 1979) there is no clear anatomical evidence
for a direct monosynaptic link between the LC and the ni-
grostriatal pathway (Jones and Moore 1977; Room et al.
1981). However, axonal projections from the LC to the dor-
sal raphe, thalamus and cortex are well described (Bara-
ban and Aghajanian 1981; Jones and Moore 1977; Room
et al. 1981; Westlund et al. 1990). In one of these circuits,
NA fibers projecting from the LC to the neocortex may
influence DA function indirectly by modulating the corti-
costriatal pathway. In a second circuit, NA fibers may af-
fect the activity of the nigrostriatal DA system by modu-
lating the influence of the serotonin-containing system pro-
jecting from the dorsal raphe to the substantia nigra (An-
telman and Caggiula 1977). Thus, there are a number of
circuits through which NA can indirectly (directly?) influ-
ence DA activity. Moreover, α2-adrenoceptors are present
in the basal ganglia. In fact, in situ hybridization studies in
rats show high levels of α2-adrenoceptor mRNAs in the
cortex, the thalamus and the basal ganglia, namely, the nu-
cleus accumbens and the caudate-putamen (Nicholas et al.
1993; Scheinin et al. 1994). Similarly, binding studies in
human postmortem brains show high to intermediate lev-
els of α2-adrenoceptors in the cortex, thalamus, caudate-
putamen, nucleus accumbens, globus pallidus and substan-
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Fig.2A,B Chronic administra-
tions. A Effects of vehicle, 
L-dopa and chronic administra-
tions of idazoxan (7.5 mg/kg)
+ L-dopa on locomotor activ-
ity. Counts ± SEM (**P<0.01
vs. vehicle; ††P<0.01 vs. 
L-dopa). B Antiparkinsonian
(top panel) and dyskinetic
(bottom panel) effects of vehi-
cle, L-dopa and chronic admin-
istrations of idazoxan 
(7.5 mg/kg) + L-dopa. Scores ±
SEM (**P<0.01 vs. vehicle;
††P<0.01 vs. L-dopa). See 
Fig.1 for additional details



tia nigra (De Vos et al. 1991, 1992). The presence of α2-
adrenoceptors in these regions involved in motor func-
tions represent potential sites at which idazoxan or similar
drugs might interfere with DA or other neurotransmitters
involved in the genesis of L-dopa-induced dyskinesias. In-
deed, an abnormal decrease in GABAergic transmission
along the striato-external globus pallidus (GPe) pathway
was proposed as a mechanism underlying L-dopa-induced
dyskinesias (Crossman 1990). α2-adrenoceptors seem to be
located presynaptically on GABAergic inputs to the GPe
(Henry et al. 1998). Thus, it was proposed that blockade of
presynaptic α2-adrenoceptors in the GPe may increase
GABA transmission and underlie the antidyskinetic effects
of α2-adrenoceptor antagonists such as idazoxan (Henry
et al. 1998). In addition to acting as an α2-adrenoceptor an-
tagonist, idazoxan has high affinity for nonadrenergic im-
idazoline (I), binding I1 and I2 sites (Regunathan and Reis
1996). However, given the similarity of behavioral effects
of idazoxan with other α2-adrenoceptor antagonists such
as yohimbine (Gomez-Mancilla and Bédard 1993) lacking
affinity for I1 or I2 sites (Regunathan and Reis 1996), it is
likely that the effects of idazoxan reported here result from
its antagonist action at α2-adrenoceptors.

In summary, our results indicate that idazoxan has some
antiparkinsonian effect of its own and that it can reduce
dyskinesias caused by L-dopa without impairing its an-
tiparkinsonian activity. This benefit of idazoxan is main-
tained during repeated administrations. Thus, idazoxan ap-
pears to be a useful drug to be used as an adjunct to L-
dopa in parkinsonian patients in whom the current therapy
is complicated by dyskinesias. It may be worth considering
further development and testing of selective α2-adreno-
ceptor antagonists in the search for additional antiparkin-
sonian agents with potential low risk of inducing unwanted
and often troublesome side-effects.
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