
Abstract The quantitatively most important source of
adenosine under well-oxygenated conditions is 5′-AMP
hydrolyzed by cytosolic 5′-nucleotidase N-I. Hydrolysis
of S-adenosylhomocysteine and extracellular dephospho-
rylation of 5′-AMP further contribute to total production.
More than 90% of the total production occur intracellu-
larly under well-oxygenated conditions. Besides cardio-
myocytes, endothelial cells and smooth muscle contribute
significantly to total cardiac adenosine production. Rapid
enzymatic conversion of adenosine is provided by adeno-
sine kinase and adenosine deaminase, keeping the cytoso-
lic adenosine concentration in the nanomolar range. Due
to the high intracellular rates of adenosine rephosphoryla-
tion and deamination the cytosolic is normally below the
extracellular adenosine concentration, making the cytosol
to a sink rather than a source of adenosine. It is for this
reason that blockers of membrane transport enhance the
plasma adenosine concentration. With increasing catabo-
lism of adenine nucleotides the rate of intracellular adeno-
sine production exceeds the rate of adenosine deamination
and rephosphorylation. Thus, this condition will result 
in a concentration gradient from intra- to extracellular.
Thence, membrane transport blockers would be expected
to increase the intracellular adenosine concentration. A
considerable insecurity on the importance of experimental
data results from species differences of purine metabo-
lism. Cardiac adenosine metabolism has recently been de-
scribed in quantitative terms using mathematical model
analysis. This analysis tool may prove useful in future
when (1) clarifying the importance of various regulatory
actions described for the different pathways of adenosine
metabolism, (2) making quantitative comparisons of dif-

ferent experimental models possible and (3) deepening
the insight from experimental data.

Introduction

Adenosine metabolism is highly complex and rapid in
mammalian tissues. The truth of this simple statement
was not foreseen when studies of adenosine metabolism
were started more than 35 years ago (Conway and Cooke
1939; Kerr and Seraidarian 1945; Kutscher and Sarreither
1948; Lee 1957; Gerlach et al. 1961; Berne 1963; Imai 
et al. 1964; Richman and Wyborny 1964; Brady and
O’Donovan 1965; Baer et al. 1966; Deuticke et al. 1966).
Originally, the adenosine concentrations were assumed to
be static and furthermore the complexity of compartmen-
talization of adenosine metabolism was unknown. There-
fore, several studies reported in the literature may need a
considerable re-interpretation today due to important con-
ceptional changes. By continuous research a clearer and
more detailed quantitative picture of adenosine metabo-
lism has emerged recently. This progress was largely due
to the evolution of new experimental approaches. Earlier
insight into adenosine metabolism was largely based on
measurement of total purine content in cells or tissues, to-
tal tissue release, and assessment of in vitro Km- and Vmax-
values. More recently enzyme inhibitor-based experi-
ments on intact cells, isolated organs and in vivo hearts
have proven very useful to improve our concepts. Such
studies have revealed important semiquantitative insights
into the metabolic flux rates of adenosine under (near)
physiological conditions. Lately, application of compre-
hensive mathematical models of adenosine metabolism
and transport to experimental data (Kroll et al. 1992;
Kroll and Stepp 1996; Stepp et al. 1996; Decking et al.
1997b; Deussen et al. 1999; Schwartz et al. 1999) have
provided true quantitative estimates of the various flux
rates. It is the purpose of this overview to summarize this
recent progress and to allude to in vitro measurements of
Km- and Vmax-values where this is important for the gen-
eral understanding. The most comprehensive data set is
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available now for heart tissue on which this communica-
tion is focussed. Extensive previous reviews of adenosine
metabolism are found in Schrader (1981), Sparks and
Bardenheuer (1986), Belardinelli et al. (1989), Olsson and
Pearson (1990), Deussen (1995), Thorn and Jarvis (1996)
and Moriwaki et al. (1999).

Overview of adenosine metabolism

Enzymes catalysing the production of adenosine exist in
the cytosol and in extracellular regions (Fig.1). Cytosolic
sources of adenosine are 5′-AMP (Schutz et al. 1981;
Newby et al. 1985; Darvish et al. 1993) and S-adenosyl-
homocysteine (De la Haba and Cantoni 1959; Schutz et
al. 1981). Cytosolic 5′-nucleotidase has been localized 
using immunolocalization (Darvish et al. 1993; Sala-
Newby et al. 1999) or cell fractionation experiments. The
latter approach has indicated that cytosol, lysosomes and
plasma membrane were particularly rich of 5′-nucleo-
tidase activity, while mitochondria and sarcoplasmic re-
ticulum were devoid of activity (Kiviluoma et al. 1990).
Under well-oxygenated conditions metabolism of AMP
may proceed mainly through IMP to inosine rather than
via adenosine. This is indicated by measurement of en-
zyme activities of cardiomyocytes isolated from the rat
heart (Zoref-Shani et al. 1988) and the effects of inhi-
bition of adenosine deaminase on cardiac release of
adenosine and inosine (Deussen et al. 1989, 1999; Kroll 
et al. 1993). With increasing ATP degradation dephos-
phorylation of AMP to adenosine may gain relatively
more importance (Achterberg et al. 1985b; Zoref-Shani 
et al. 1988; Deussen et al. 1989; Chen and Gueron 
1996). However, the preference of both routes of metabo-
lism is dependent on the metabolic state during which de-
energization is induced (Altschuld et al. 1987; Chen and
Gueron 1996; Hohl 1999). Recently, factors like intracel-
lular adenosine, PKC activation and cAMP have been
shown to exert modulatory effects on AMP deaminase ac-

tivity (Hu et al. 1993; Chen and Gueron 1996; Hohl
1999).

An extracellular source of adenosine is provided by 
5′-AMP degraded by action of ecto-5′-nucleotidase (Frick
and Lowenstein 1978; Schutz et al. 1981; Bowditch et al.
1985; Dieckhoff et al. 1986; Darvish et al. 1996). This en-
zyme is bound to the cell membrane via a GPI-anchor
(Panagia et al. 1981), the catalytic site facing the extracel-
lular region (Fleetwood et al. 1989; Meghji et al. 1992,
1995). In heart tissue ecto-5′-nucleotidase activity ex-
hibits striking species differences (Meghji et al. 1988b).
In addition to the activities of 5′-nucleotidases, alkaline
phosphatases have been associated with cytosolic and
membrane fractions from cardiac muscle (Schutz et al.
1981; Bowditch et al. 1985). However, although the en-
zyme activities of alkaline phosphatases may be in the
range of those of 5′-nucleotidase activities, their contribu-
tion to adenosine production may usually be small as the
Km-values of alkaline phosphatases are high. Recently
ATP diphosphohydrolase activity was associated with sar-
colemmal membrane from rat heart (Menezes de Oliviera
et al. 1997). The quantitative importance of this pathway
is unclear. Besides nucleotidase and phosphatase activities
ecto-ADP kinase activity was reported for pig endothelial
and smooth muscle cells (Pearson et al. 1980) as well as a
human fibroblast cell line (Boyle et al. 1989). This en-
zyme activity may significantly interact with the extracel-
lular nucleotide dephosphorylation cascade.

Metabolism of adenosine is brought about by adeno-
sine deaminase and adenosine kinase. While adenosine
kinase activity has been described to be confined to the
cytosolic region (Schutz et al. 1981), different localiza-
tions of adenosine deaminase activity were reported. Be-
sides a cytosolic fraction a membrane-bound ecto-enzyme
(Schrader et al. 1987, 1994; Meghji et al. 1988a; Schrader
and West 1990; Aran et al. 1991; Martin et al. 1995a) as
well as a plasma adenosine deaminase (Storch et al. 1981;
Donald et al. 1986; Ungerer et al. 1992; Kopff et al. 1997)
were described.
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Fig.1 Pathways and enzymes
of adenosine metabolism. The
question mark for membrane
nucleotide transport indicates
that the identity of the trans-
port mechanism is still unset-
tled



Total production rate

The adenosine production rate has been estimated in ex-
periments in which specific and potent blockers of adeno-
sine kinase (e.g. iodotubericidine, 5′-amino-5′-deoxyadeno-
sine) and adenosine deaminase (e.g. erythro-9-hydroxy-
nonyl-adenine) have been applied. These inhibitors have
no effect on the activity of cytosolic 5′-nucleotidase
(Kroll et al. 1993). As adenosine kinase and adenosine
deaminase provide the only routes of adenosine removal,
adenosine release from isolated cells or organs under this
condition provides a minimum estimate of the total
adenosine production rate. This approach rests on the as-
sumption that a steady-state adenosine concentration is
reached during enzyme inhibition and that membrane
transport is not rate-limiting for adenosine release.

The approach was used in isolated cells (polymor-
phonuclear leukocytes; Newby and Holmquist 1981;
Newby et al. 1983; cardiomyocytes; Smolenski et al.
1998; endothelial cells; Deussen et al. 1993; Smolenski
1994; Smolenski et al. 1998; smooth muscle cells; Mattig
1997) and isolated perfused hearts from guinea pig (Ely et
al. 1992; Kroll et al. 1993; Deussen et al. 1999) and rat
(Meghji et al. 1988b; Lorbar et al. 1999). The general re-
sult was that during simultaneous inhibition of adenosine
kinase and adenosine deaminase, adenosine release in-
creased several-fold above that obtained under control
conditions, indicating that cellular or tissue adenosine
turnover must be several-fold higher than control release
rate. Minimal adenosine production rates deduced from
these experiments were 2.3–3.5 nmol min–1 g–1 (wwt) in
guinea pig heart (Ely et al. 1992; Kroll et al. 1993;
Deussen et al. 1999) and 6.4–7.7 nmol min–1 g–1 (wwt) in
rat heart (Lorbar et al. 1999). These production rates ex-
ceed the respective adenosine release rates 9- to 43-fold,
indicating that tissue turnover of this nucleoside must be
very high and close to the production rate under well-oxy-
genated conditions. The conclusions drawn from experi-
ments using adenosine release data are in agreement with
data of tissue SAH accumulation during homocysteine in-
fusion (Deussen et al. 1988a) and membrane transport
block of adenosine (Deussen et al. 1999). Total adenosine
production is largely increased during energy deprivation.
During normothermic (37°C) ischemia total adenosine
production rate was estimated 470 nmol min–1 g–1 and 
410 nmol min–1 g–1 in rat and pigeon myocardium, re-
spectively (Meghji et al. 1988b). In rat myocardium this
corresponds to a 61- to 73-fold increase of the total pro-
duction rate as compared with well-oxygenated condi-
tions.

Estimates of the different sources of adenosine

On the basis of phosphocellulose chromatography two
forms of cytosolic 5′-nucleotidase have been documented
(Truong et al. 1988). Both enzymes also exist in human
heart (Tavenier et al. 1995; Skladanowski et al. 1996).

The two forms termed N-I and N-II differ with respect to
substrate specificity. N-I prefers AMP over IMP (Naito
and Lowenstein 1981; Truong et al. 1988), while N-II
(Itoh et al. 1986) prefers IMP. N-I isolated from rat and
rabbit heart has a pH optimum around 7.5, is activated by
Mg2+ (Naito and Lowenstein 1981; Yamazaki et al. 1991)
and by ADP, but not ATP (Yamazaki et al. 1989, 1991).
These characteristics are shared with the enzyme isolated
to apparent homogeneity from dog heart (Darvish and
Metting 1993). The molecular mass of this enzyme was
estimated to be 166 kDa. The enzyme may exist in a
tetrameric structure and exhibits sigmoidal saturation ki-
netics with respect to the AMP concentration in the ab-
sence of ADP. An AMP-selective 5′-nucleotidase has also
been isolated from pigeon heart (Newby 1988). This en-
zyme was reported to be stimulated by ADP plus ATP,
while inhibited by nucleoside monophosphates and inor-
ganic phosphate. The enzyme termed N-II isolated from
rat heart is activated by ATP as well as ADP, and inhibited
by inorganic phosphate (Itoh et al. 1986). Like N-I it is ac-
tivated by Mg2+ (Yamazaki et al. 1991). Recently in-
hibitors of N-I with convincing selectivity have been de-
veloped (Garvey et al. 1998). In isolated rat myocytes the
selective inhibitor 5-ethynyl-2′,3′-dideoxyuridine reduced
AMP hydrolysis to adenosine by 76% (Garvey and Prus
1999). Besides the differing substrate preference of N-I
vs. N-II this result indicates that N-I may be the enzyme
largely responsible for the production of adenosine from
AMP. In accordance with this interpretation are the effects
of 5′-deoxy-5′-isobutythioadenosine, an inhibitor of N-II.
Presence of this inhibitor did not largely decrease adeno-
sine accumulation in rat cardiomyocytes (Meghji et al.
1993). However, some quantitative differences may exist
between species. While rat cardiomyocytes contain simi-
lar activities of N-I and N-II, human myocardium exhibits
an approximately 60% higher activity of N-II as com-
pared with N-I (Skladanowski et al. 1996).

In contrast to cytosolic N-I, ecto-5′-nucleotidase is in-
hibited by ADP and ATP (Naito and Lowenstein 1985;
Darvish et al. 1996). Mg2+ is an allosteric effector of the
enzyme (Mallet et al. 1996) which is powerfully inhibited
by the ADP analogue α,β-methylene-adenosinediphos-
phate (Naito and Lowenstein 1985; Yamazaki et al. 1991;
Deussen et al. 1993; Darvish et al. 1996; Mallet et al.
1996). By use of immunohistochemistry the enzyme dis-
tribution has been studied in the cardiovascular system. It
was found that significant animal species differences exist
with respect to the cellular localization of the enzyme
(Borgers and Thone 1992). Pericytes as well as fibroblasts
have been reported to stain particularly positive for ecto-
5′-nucleotidase (Borgers and Thone 1992; Mlodzik et al.
1995). Results on endothelial cells show a high degree of
variability. Ecto-5′-nucleotidase was localized on endo-
thelial cells from resistance arterioles, while for capillary
endothelial cells only a weak immunoreaction was re-
ported (Werner and Schunke 1989; Borgers and Thone
1992; Mlodzik et al. 1995). On endothelial cells from
lymph vessels, however, rich enzymatic activity has been
documented (Werner and Schunke 1989; Kato 1990). De-
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spite only a weak association of membrane 5′-nucleoti-
dase associated with capillary endothelial cells, the en-
zyme has been reported to be localized primarily on the
abluminal membrane and associated vesicles (Roberts and
Sandra 1993). This polarized distribution is changed upon
introduction of cells to tissue culture. On the other hand,
total ecto-5′-nucleotidase activity of endothelial cells has
been documented to persist during cell cultivation (Nees
et al. 1981). Furthermore, ecto-5′-nucleotidase has been
reported on smooth muscle cells (Dieckhoff et al. 1986;
Nitahara et al. 1995) where it may be localized with 
caveolae (Kittel and Bacsy 1994). On cardiomyocytes the
enzyme has been documented only in rat heart (Bowditch
et al. 1985; Borgers and Thone 1992; Aleksiuk et al.
1993) and most recently in mouse heart (Fretes et al.
1999). 

In agreement with the immunolocalization studies a
highly inhomogeneous activity of ecto-5′-nucleotidase is
reported from biochemical enzyme activity measure-
ments. The relation of cytosolic vs. ecto-5′-nucleotidase
activity differs largely in cardiac tissue with respect to the
animal species studied (Newby et al. 1987; Meghji et al.
1988b). While interspecies differences of the cytosolic en-
zyme activity are found to be smaller, huge differences
exist with respect to the activity of ecto-5′-nucleotidase.
Rat and guinea pig myocardium exhibit ecto-5′-nucleo-
tidase activities of 4900 nmol min–1 g–1 and 3600 nmol
min–1 g–1 (Newby 1987). In both species ecto-5′-nucleoti-
dase exceeds activity of cytosolic 5′-nucleotidases ap-
proximately tenfold. Although total 5′-nucleotidase activ-
ity of human myocardium was determined to be roughly
half that of rat myocardium, the overall distribution of en-
zymatic activity is similar with the membrane fraction ex-
ceeding the soluble fraction 5.5-fold (Kochan et al. 1994;
Tavenier et al. 1995).

A large body of evidence supporting the existence of
functional ecto-5′-nucleotidase activity is provided by iso-
lated heart and cell experiments in which adenine nu-
cleotides were applied and the formation of adenosine
was measured. When 5′-AMP is infused into isolated
hearts (Fleetwood et al. 1989; Borst and Schrader 1991;
Mallet et al. 1996; Sato et al. 1997; Obata and Yamanaka
1999), endothelial cells (Pearson et al. 1978, 1980; Gor-
don et al. 1986; Bonitati et al. 1993; Deussen et al. 1993;
Meghji et al. 1995) or vascular smooth muscle cells (Pear-
son et al. 1978, 1980; Gordon et al. 1989), the nucleotide
is rapidly hydrolyzed to adenosine. Ecto-5′-nucleotidase
represents the final and irreversible catalytic step in the
extracellular dephosphorylation cascade of adenine nu-
cleotides. There is evidence for complex interaction of the
substrates and products of this dephosphorylation cascade
(Gordon et al. 1986, 1989; Meghji et al. 1992, 1995).

Despite earlier pioneering work on the release of ade-
nine nucleotides from endothelial and smooth muscle
cells (Pearson and Gordon 1979), blood cells (Coade and
Pearson 1989; Morabito et al. 1998) or isolated perfused
heart (Imai et al. 1989; Borst and Schrader 1991), the
quantitative importance of ecto-5′-nucleotidase in con-
tributing to native cardiac adenosine production has been

successfully addressed only recently (Deussen et al. 1999).
From a total adenosine production of approximately 
2.3 nmol min–1 g–1 only 8% could be attributed to ex-
tracellular production most likely via ecto-5′-nucleotidase
in guinea pig heart during well-oxygenated conditions.
Experiments carried out on cultured aortic endothelial
cells (Deussen et al. 1993; Mattig and Deussen 2000) and
coronary smooth muscle cells (Mattig and Deussen 2000)
have also provided evidence for continuous extracellular
adenosine production via ecto-5′-nucleotidase. The con-
tribution of this pathway to total cell adenosine produc-
tion was estimated to be 30% and 24% in endothelial and
smooth muscle cells, respectively.

Besides hydrolysis of 5′-AMP, adenosine may be pro-
duced from S-adenosylhomocysteine (SAH) by action of
S-adenosylhomocysteine hydrolase (De la Haba and 
Cantoni 1959; Ueland 1982). Under physiological con-
ditions this enzyme exclusively present in the cytosolic
cell fraction (Schutz et al. 1981) favors the production 
of adenosine and homocysteine (Schrader et al. 1981; 
Ueland 1982) because both reaction products are rapidly
metabolized and therefore cytosolic concentrations are
low (Deussen et al. 1988b). The contribution of this path-
way has been estimated in experiments in which the SAH
pool has been prelabeled (Lloyd et al. 1988) or accumula-
tion of SAH was measured during blockage of SAH-
hydrolase (Helland and Ueland 1983; Deussen et al. 1989;
Kroll et al. 1993; Wagner et al. 1994; Loncar et al. 1997).
Results obtained with both approaches agree that there is
continuous production of adenosine from SAH under
physiological conditions. There is, however, some dis-
agreement on the quantity of this flux rate. The labeling
experiment suggested a flux rate around 1200 pmol min–1

g–1 for guinea pig heart, while the blocker experiments in-
dicate a flux rate in the range of 160 pmol min–1 g–1 for
the same species (Deussen et al. 1989; Kroll et al. 1993).
The latter estimate is probably more realistic given the 
total tissue adenosine production rate of 2.3–3.5 nmol
min–1 g–1 in the guinea pig heart (Ely et al. 1992; Kroll et
al. 1993; Deussen et al. 1999) and the pronounced effects
of blockers of cytosolic 5′-nucleotidase on AMP degrada-
tion determined in rat cardiomyocytes (Garvey and Prus
1999). For dog heart net SAH-hydrolysis is only 33% of
that found for guinea pig heart (Loncar et al. 1997) in
agreement with a lower in vitro enzyme activity of SAH-
hydrolase in canine as compared with guinea pig myo-
cardium (Deussen and Schrader 1991). Another study
conducted on rabbit cardiomyocytes suggested that SAH
hydrolysis is not an important pathway of total adenosine
production (Wagner et al. 1994). Thus, in conclusion the
hydrolysis of SAH may provide a rather small fraction of
steady-state adenosine production in the heart. This flux
rate may differ significantly between animal species,
which corresponds to large interspecies differences of my-
ocardial enzyme activity (Schrader et al. 1981). Due to the
lack of alternative metabolic pathways flux rate through
the SAH pathway is a measure of the actual transmethy-
lation rate. Cardiac transmethylation rate and subsequent
hydrolysis of SAH are independent of tissue oxygenation
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(Deussen et al. 1989). This is in contrast to total adenosine
production in the heart which largely increases as the
oxygen supply-to-demand ratio decreases (Bardenheuer
and Schrader 1986; Deussen et al. 1991). A quantitatively
negligible contribution of SAH to adenosine under isch-
emic or hypoxic conditions has been concluded from 
several independent studies (Achterberg et al. 1985a;
Deussen et al. 1989; Wagner et al. 1994).

Metabolism of adenosine

Cytosolic adenosine kinase effectively phosphorylates cy-
tosolic adenosine to 5′-AMP. As the Km-value of adeno-
sine kinase is approximately 1 µM (Schutz et al. 1981)
and the free cytosolic adenosine concentration was esti-
mated in a range of 0.01–0.1 µM under physiological con-
ditions (Deussen et al. 1988b; Kroll et al. 1992; Deussen
et al. 1999), the enzyme operates usually below its Km-
value. Only with hypoxia or ischemia a cytosolic adeno-
sine concentration may result that saturates the enzyme.
Adenosine deaminase exhibits a Km-value considerably
higher than that of adenosine kinase (Schutz et al. 1981).
This makes the deamination reaction especially suited to
effectively meet the large rate of adenosine production
during conditions of impaired oxygenation.

While adenosine kinase activity is confined to the cy-
tosolic region, differences may exist with respect to local-
ization of adenosine deaminase activity. In guinea pig
heart adenosine deaminase activity has been demonstrated
exclusively in the cytosolic fraction (Schutz et al. 1981),
whereas in rat heart and pig lung the enzyme activity is in
part extracellular (Hellewell and Pearson 1983; Meghji et
al. 1988a). For rabbit heart an association of membrane
adenosine deaminase with an adenosine deaminase bind-
ing protein has been suggested (Schrader et al. 1979;
Schrader and West 1990). Adenosine deaminase activity
is also found on the surface of blood cells (Aran et al.
1991) and in blood plasma (Morisaki et al. 1985; Nied-
zwicki and Abernethy 1991). The two isoforms of plasma
adenosine deaminase termed ADA1 and ADA2 exhibit
distinct susceptibility to different enzyme inhibitors
(Niedzwicki and Abernethy 1991). Our own, as yet un-
published experiments indicate that the plasma activity of
adenosine deaminase is below 1% of that measured in
packed red cells from healthy volunteers. Thus, the phys-
iological significance of plasma adenosine deaminase needs
to be clarified. Furthermore, the origin of plasma adeno-
sine deaminase under physiological conditions needs fur-
ther investigation (Jackson et al. 1996).

Compartmentalization: cell species

A considerable extent of species-related differences
(Jarvis et al. 1982; Moser et al. 1989; Parkinson and
Clanachan 1991; Borgers and Thone 1992; Moriwaki et
al. 1999) partly obscures general rules of compartmental-
ization of adenosine metabolism and transport. Hence, the

following rules should be applied with great caution.
Ecto-5′-nucleotidase was found species-independently on
pericytes and endothelial cells from resistance arterioles
(Dendorfer et al. 1987; Borgers and Thone 1992). Only in
rat heart ecto-5′-nucleotidase activity was also found to be
associated with cardiomyocytes (Nees and Dendorfer
1991; Borgers and Thone 1992). Besides cardiomyocytes,
smooth muscle and endothelial cells, sympathetic nerve
terminals were suggested as an additional source of ade-
nine nucleotide release in guinea pig heart (Imai et al.
1989). SAH-hydrolase activity may be higher in endothe-
lial cells as compared with cardiomyocytes (Mistry and
Drummond 1986; Kochan et al. 1994) although species
differences may exist (Borst et al. 1992). Adenosine
deaminase activity was reported to be largely localized in
the endothelial cell region (Nees and Dendorfer 1991;
Kochan et al. 1994) as was purine nucleoside phosphory-
lase (Nees et al. 1981; Nees and Dendorfer 1991; Borgers
and Thone 1992; Kochan et al. 1994). The heterogeneous
distribution of the various enzyme activities may signifi-
cantly affect the concentration gradients of adenosine
within the tissue.

Highly active adenosine production pathways are pre-
sent in cardiomyocytes, endothelial cells as well as
smooth muscle cells. When expressed per microliter of
cytosolic volume, aortic endothelial cells and coronary
smooth muscle cells from pig have total adenosine pro-
duction rates of 7.5 pmol min–1 µl–1 and 12.3 pmol min–1

µl–1 (Mattig 1997), respectively. As each of both cell
species contributes approximately 2.5% to the water space
of cardiac tissue (Mall et al. 1982; Anversa et al. 1983),
contributions to adenosine production of approximately
150 pmol min–1 and 250 pmol min–1 per gram heart mass,
respectively, may be estimated. Thus, both cell species
may roughly contribute 10% of total tissue adenosine pro-
duction rate under well-oxygenated conditions (see
above). This calculation does not take possible animal
species differences into account. In another study adeno-
sine content of rat cardiomyocytes and endothelial cells
was determined to be similar after 3-h block of adenosine
kinase and adenosine deaminase (Smolenski et al. 1998).
This may suggest similar adenosine production rates in
both cell species. However, as membrane transport was
not inhibited in these experiments, true production rates
cannot be derived from these measurements.

Using prelabelling of the endothelial adenine nu-
cleotide pool with [3H]adenosine (Nees et al. 1985; Nees
and Dendorfer 1991), several studies have aimed to esti-
mate the contribution of the endothelial cells to total car-
diac adenosine release with the effluent perfusate
(Deussen et al. 1986; Becker and Gerlach 1987; Kroll et
al. 1987; Raatikainen et al. 1994). These studies indicate
that the largest fraction of adenosine release was derived
from an unlabeled pool, most likely the cardiomyocyte. 
A quantitative assessment of the contribution of endothe-
lial cells (Becker and Gerlach 1987; Kroll et al. 1987)
suggested that 14% and 25% of total venous adenosine re-
lease, respectively, originated from endothelial cells.
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Compartmentalization: intracellular vs. extracellular

The available literature provides ample evidence for intra-
and extracellular adenosine production and metabolism.
Hence, it is important to understand the quantitative con-
tributions of intra- and extracellular regions to total
adenosine production to assess the prevailing net concen-
tration gradients across cell membranes. Measurement of
adenosine release from cells and tissues provides an index
of the extracellular or intravascular adenosine concentra-
tion. The SAH-technique (Deussen et al. 1988b) on the
other hand has been used as an index of the free cytosolic
adenosine concentration (Deussen et al. 1988a, 1991,
1999; Kroll and Martin 1994; Decking et al. 1997b). In
combination with detailed mathematical model analysis
(Kroll et al. 1992; Deussen et al. 1999) experimental data
from isolated guinea pig heart experiments indicate that
the major site of adenosine production is intracellular
(92%) under well-oxygenated conditions. Simultaneously,
intracellular metabolism occurs at a rate higher than that
of intracellular production mainly because of effective
adenosine rephosphorylation to 5′-AMP (Arch and News-
holme 1978; Fisher and Newsholme 1984; Kroll et al.
1993). In conjunction with continuous extracellular
adenosine production via ecto-5′-nucleotidase this results
in a cytosolic adenosine concentration below the extracel-
lular concentration and a transmembranous concentration
gradient that is directed to the cytosol (Deussen et al.
1999). This result is in contrast to our intuition that a sub-
strate concentration is greatest at the site of highest pro-
duction.

The transmembranous concentration gradient from ex-
tra- to intracellular is in good agreement with the result of
blockade of the transporter under physiological condi-
tions. Dipyridamole which acts specifically on the nu-
cleoside carrier at a concentration of 1 µM (Klabunde 1983;
Jarvis 1986) was frequently demonstrated to increase the
plasma adenosine concentration (Sollevi and Fredholm
1981; Sollevi et al. 1984; German et al. 1989; Moser et al.
1989; Yoneyama and Power 1992; Hegedus et al. 1997;
Saito et al. 1999). This effect is most likely brought about
by preventing access of adenosine to its site of metabo-
lism which is largely intracellular (Deussen et al. 1999;
Mattig and Deussen 2000). Accumulation of adenosine in
blood plasma can be prevented by EDTA (Gewirtz et al.
1987) which reduces ecto-nucleotidase activities (Hark-
ness et al. 1984; Yegutkin and Burnstock 1999). This con-
cept requires adenine nucleotide release from cells which
may potentially occur via the p-glycoprotein (Hauser et
al. 1998), CFTR (Reisin et al. 1994; Schwiebert et al.
1995) or via cAMP release (Dubey et al. 1996).

In heart tissues the transmembranous adenosine trans-
port is facilitated by an equilibrative, sodium-independent
nucleoside carrier (Conant and Jarvis 1994; Thorn and
Jarvis 1996). Experimental evidence in agreement with
the assumption of a symmetric transport has been pro-
vided (Meghji et al. 1985, 1988c), although a nonsymmet-
ric membrane transport was postulated by others (Buch-
wald et al. 1987). A recent quantitative mathematical

model analysis has indicated that experimental results can
be explained without assumption of nonsymmetric trans-
port (Deussen et al. 1999). Autoradiographic studies show
that the carrier is heterogeneously distributed in guinea
pig heart, reflecting the vascular branching pattern (Parkin-
son and Clanachan 1989a), while myocardial distribution
is rather homogenous in rat (Parkinson and Clanachan
1989b). Furthermore, in guinea pig heart different carrier
subtypes on endothelial cells vs. cardiomyocytes have
been suspected (Parkinson and Clanachan 1991). The im-
portance of these differences for myocardial concentra-
tion gradients of adenosine are not well understood to
date.

Regulation of adenosine metabolism

Numerous investigations indicate that enzyme activities
and flux rates of adenosine metabolism may not be han-
dled as constants, but that there is short- and long-term
regulation. Stimuli including physical exercise (Pierce et
al. 1989; Langfort et al. 1996; Delgado et al. 1999), pres-
sure loading (Panagia et al. 1986; Czarnowski et al.
1996), estradiol (Dubey et al. 2000), thyroxine (Daly et al.
1986; Smolenski et al. 1995), dietary lipid composition
(Baracca et al. 1994), alpha-adrenergic stimulation (Ki-
takaze et al. 1995; Sato et al. 1997) as well as hypoxia and
ischemia (Bak and Ingwall 1994; Minamino et al. 1995;
Kitakaze et al. 1996; Gustafson and Kroll 1998) were stud-
ied. Also, age-related changes were investigated (Awad
and Chattopadhyay 1983; Wang et al. 1987; De Jong et al.
1990; Torii and Ito 1990; Grosso et al. 1992; Lorbar et al.
1999). Presently available evidence of acute effects on
specific pathways is summarized here.

Cytosolic 5′-nucleotidase

Increases of Mg2+ and ADP may enhance the activity of
cytosolic 5′-nucleotidase (N-I; Naito and Lowenstein 1981;
Yamazaki et al. 1989, 1991; Darvish and Metting 1993),
conditions which may result during impaired tissue oxy-
genation from degradation of ATP. However, adenosine
production at a maximal rate occurs only for a short pe-
riod after onset of ischemia (Meghji et al. 1988b). Recent
in vivo studies suggest that 5′-nucleotidase may become
inhibited during conditions of ischemia or hypoxia (Bak
and Ingwall 1998; Gustafson and Kroll 1998). It has been
proposed that an inhibitory action of cellular acidosis may
overcome the activating effects of Mg2+ and ADP during
cardiac ischemia (Bak and Ingwall 1994, 1998). While 
5′-nucleotidase activity may be high during short periods
of ischemia, it was suggested to be depressed with sus-
tained or repetitive ischemia (Gustafson and Kroll 1998).
However, it needs to be said that the evidence for 5′-nu-
cleotidase inhibition during ischemia is still incomplete as
Bak and Ingwall (1998) did not assess net adenosine pro-
duction, and Gustafson and Kroll (1998) did not take
AMP deaminase activity into account.
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Ecto-5′-nucleotidase

The contribution of this pathway to total adenosine pro-
duction of endothelial and smooth muscle cells, and
global heart has been demonstrated recently (Deussen et
al. 1993, 1999; Mattig and Deussen 2000). Two previous
studies suggest that extracellular cardiac adenosine pro-
duction may be enhanced under conditions of beta-adren-
ergic stimulation and hypoxic perfusion (Headrick et al.
1992, 1996). The mechanism by which activity of ecto-5′-
nucleotidase may be regulated during ischemia has re-
cently been addressed. Alpha1-adrenoceptor stimulation
may result in activation of PKC which may activate ecto-
5′-nucleotidase activity (Kitakaze et al. 1995; Node et al.
1997a; Sato et al. 1997; Obata and Yamanaka 1999).
Other effective stimuli of PKC which also resulted in ac-
tivation of ecto-5′-nucleotidase were PMA (Node et al.
1997b), monophosphoryllipid A (Przyklenk et al. 1996),
ischemia/hypoxia (Minamino et al. 1995; Kitakaze et al.
1996), and adenosine A1-receptor stimulation (Downey
and Cohen 1997; Iliodromitis et al. 1998). Of particular
importance may be that adenosine is generated in high
concentrations during ischemia/hypoxia and may there-
fore represent a molecular link by which this condition
stimulates PKC. Activation of ecto-5′-nucleotidase from
PKC does not require protein synthesis (Kitakaze et al.
1995). Thus, externalization of some compartmentalized
enzyme is a possible mechanism. Conflicting results have
been reported on the interaction of NO with ecto-5′-nu-
cleotidase activity. While NO-donors and 8-bromo-cGMP
enhanced ecto-5′-nucleotidase activity in the rat heart in
vivo (Obata et al. 1998), inhibitors of NO-synthesis en-
hanced the enzyme activity via PKC in a cGMP-indepen-
dent manner in cultured human coronary endothelial cells
(Minamino et al. 1997).

SAH-hydrolase

Beta-adrenergic stimulation was recently reported to in-
hibit SAH-hydrolase by a calcium-dependent mechanism
(Suarez and Chagoya de Sanchez 1997). The thermody-
namic equilibrium of the kidney enzyme was shifted to-
ward SAH synthesis during elevated phosphate concen-
trations (Kloor et al. 1998). It is expected that mecha-
nisms that augment cellular transmethylation reactions
will also enhance the production of adenosine by this
pathway.

Adenosine kinase

This enzyme interacts closely with cytosolic and ecto-5′-
nucleotidase to control the free cytosolic adenosine con-
centration (Kroll et al. 1993). Recent experiments con-
ducted on the isolated perfused guinea pig heart indicate
that during reduced tissue oxygenation the free cytosolic
adenosine concentration increased more than the free cy-
tosolic AMP concentration (Decking et al. 1997a). It has

been suspected that this may have been brought about by
a decrease of adenosine kinase activity (Decking et al.
1997b). The mechanism by which this effect is mediated
is unclear. One possible explanation may be inhibition of
adenosine kinase by a rise in inorganic cellular phosphate
(Gorman et al. 1997) which is increased during ATP de-
pletion. H2O2 which may be of importance during isch-
emia-reperfusion (Richter et al. 1995; Kristian and Siesjo
1998) was also shown to reduce adenosine kinase activity
(Griesmacher et al. 1993).

Adenosine deaminase

Cardiac adenosine deaminase activity was reported to
change in response to endurance exercise (Langfort et al.
1996), during enhanced left ventricular afterload (Czar-
nowski et al. 1996), and during development (Wang et al.
1987). The mechanism(s) by which these changes are
caused remain to be determined. Adenosine deaminase
activity associated with the membrane of blood cells may
change during occurrence of lymphoma (Martin et al.
1995b; Mesarosova et al. 1995) and several inflammatory
reactions (Maeda et al. 1992; Kroegel and Antony 1997).
Under these circumstances also changes of the plasma
adenosine deaminase isoenzyme pattern have been re-
ported (Tsuboi et al. 1995; Ungerer et al. 1996). The
mechanism of induction as well as the pathophysiological
role of these changes are not well understood to date.

Regulation of the interstitial adenosine concentration

As described above the major site of adenosine produc-
tion under well-oxygenated conditions is intracellular and
provided by the activity of cytosolic 5′-nucleotidase NI.
However, because there is continuous extracellular adeno-
sine production at a lower rate and highly active intracel-
lular rephosphorylation of adenosine, there is net cellular
uptake of adenosine under physiological conditions (Fig.
2). This scenario may be profoundly altered during cellu-
lar hypoxia which due to net catabolism of adenine nu-
cleotides results in an increased intracellular adenosine
concentration (Deussen et al. 1988a, 1988b; Decking et
al. 1997b). As a consequence the flux rates through the
adenosine kinase and the adenosine deaminase pathways
increase. As the Km- and Vmax-values of both enzymes dif-
fer largely, the relative increases of these flux rates de-
pend on the extent of change of the cytosolic adenosine
concentration. In general, the more the cytosolic adeno-
sine concentration increases, the more adenosine will un-
dergo deamination relative to phosphorylation. This redis-
tribution of metabolic fluxes is even augmented by the
fact that adenosine kinase may become inhibited under
this condition (Decking et al. 1997a, 1997b). During tis-
sue hypoxia the transmembranous adenosine concentra-
tion gradient reverses and net cellular adenosine release
results. Thus, adenosine membrane transport inhibition
results in a decrease of cardiac adenosine release during
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reduced tissue oxygenation (Schutz et al. 1981). Extracel-
lular adenosine production may also increase during hy-
poxia (Headrick et al. 1992). However, a quantitative fig-
ure for extracellular AMP and adenosine under this condi-
tion has not been obtained to date.

Increased concentrations of adenosine may also occur
under conditions of adrenergic stimulation. However, it is
unlikely that in the intact heart a decrease of myocardial
oxygenation and consecutively increased net ATP catabo-
lism result under this condition (Balaban and Heineman
1989; Tune et al. 2000), providing an increased adenosine
production. Rather, ATP is released as a co-transmitter 
of noradrenaline (Sneddon et al. 1999) or an increased
cAMP level provides the substrate for extracellular adeno-
sine production via 5′-AMP. However, these possibilities
need further consideration and experimental testing.

Adenosine acts by binding to cell surface receptors. Of
particular importance for predicting possible biological
effects is the finding that the concentration-effect relation-
ship of adenosine may be rather steep (Fig.3). Almost full
effectiveness with regard to coronary flow enhancement
may be obtained by blocking cellular uptake of adenosine
produced in the extracellular region (Deussen et al. 1999).
Thus, it is not required to utilize the full potential of total
tissue adenosine production, but modulation of the frac-
tional production at the site of receptor localization seems
to be an attractive alternative option. Besides inhibition of
cellular adenosine uptake, further options include activa-
tion of ecto-5′-nucleotidase, enhancement of precursor re-
lease (cAMP, ATP) or inhibition of ecto- or plasma adeno-
sine deaminase. The quantitative assessment of the differ-
ent pathways of adenosine metabolism in conjunction
with mathematical model analysis may help in predicting
the possible outcome of such interventions.

Future directions

The thorough investigation of cardiac adenosine metabo-
lism and transport over more than three decades has pro-
vided a quantitative picture of the rapid turnover of this
nucleoside under steady-state conditions. Based on de-
tailed experimental results and application of mathemati-
cal model analysis physiologically realistic estimates of
metabolic flux rates, regional adenosine concentrations,
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Fig.2 Flux rate schemes of adenosine metabolism in cardiac tis-
sue for normal and reduced oxygenation (equivalent to 95% and
40% oxygen equilibration of coronary perfusate in the isolated
guinea pig heart). The arrow sizes are scaled to each other repre-
senting the different net flux rates (after Kroll et al. 1992; Decking
et al. 1997b; Deussen et al. 1999)

Fig.3 Adenosine concentration-coronary flow relationship in the
guinea pig heart. The steep concentration-effect relationships
shown for the capillary (cap) and the interstitial fluid (isf) regions
were obtained by mathematical model analysis using experimental
measurements of coronary venous adenosine release and coronary
flow. Symbols represent measurements (after Deussen et al. 1999).
The concentration-flow relationship with the more gradual slope
represents the relationship for a direct comparison of measured ve-
nous effluent adenosine and coronary flow (after Bardenheuer and
Schrader 1986). The figure emphasizes the potential of mathemat-
ical model analysis to obtain realistic concentration-effect relation-
ships



and transmembranous and tissue concentration gradients
are beginning to emerge (Kroll et al. 1992; Kroll and Stepp
1996; Stepp et al. 1996; Decking et al. 1997b; Deussen et
al. 1999; Schwartz et al. 1999). A sigificant problem in
adenosine metabolism research arises from large species
differences (van Belle et al. 1985). In medicine the ulti-
mate importance of experimental results is measured
against the applicability to human physiology. Thus, more
detailed measurements in cardiovascular tissues from man
should be encouraged. Recently, there is accumulating ev-
idence for regulation of enzyme activities involved in
adenosine metabolism. However, the underlying signal
transduction pathways need a more detailed and quantita-
tive investigation to establish true causal relationships.
Also, the impact of enzyme activity changes on the regu-
lation of adenosine flux rates and the local adenosine con-
centration need to be clarified. It seems feasible that re-
cently developed mathematical models can be extended to
link individual molecular steps of the signal transduction
pathway and relate them on the enzyme level to metabolic
activities which determine substrate concentrations on cel-
lular and tissue levels. In a further step this approach
might permit to determine local substrate concentration –
receptor interactions in a true quantitative manner.
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