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Abstract
Arsenic is a ubiquitous metalloid and heavy metal that contributes to the global decline in human fertility. Humans are con-
stantly exposed to arsenic through biotic and abiotic sources, especially ingestion of arsenic-contaminated food and water. Its 
exposure is associated with several adverse health challenges, including reproductive toxicity. In spite of its reported adverse 
effects, arsenic exposure remains a global challenge. Hence, this study provides a comprehensive review of the literature 
on the impact and mechanism of arsenic on male and female reproductive function. Additionally, a review of the potential 
therapeutic strategies is presented. Evidence from the literature reveals that arsenic upregulates reactive oxygen species 
(ROS) generation which mediates arsenic-induced suppression of the hypothalamic-pituitary–gonadal axis and inactivation 
of 3β-HSD and 17β-HSD activities, leading to reduced gonadal steroidogenesis. Through several oxidative stress-dependent 
signaling, arsenic induces the apoptosis of the germ cells, thus contributing to the development of infertility. At the moment, 
there is no specific treatment for arsenic-induced reproductive toxicity. However, increasing data form the scientific literature 
reveals the benefits of antioxidants in ameliorating arsenic-induced reproductive toxicity. These molecules suppress ROS 
generation and maintain optimal activities of the hypothalamic-pituitary–gonadal axis, leading to optimal steroidogenesis and 
gametogenesis as well as improved germ cells. Overall, this study revealed the impact and associated mechanism of arsenic-
induced reproductive toxicity. It also provides evidence from the literature demonstrating potential therapeutic measures in 
managing arsenic-induced reproductive toxicity.
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Introduction

Humans are constantly exposed to metalloids and heavy met-
als such as mercury, chromium, cadmium, lead, and arsenic, 
which are major contaminants of air, water, food, and soil, 
thus posing a risk to the ecosystem (Balali-Mood et al. 2021; 
Besong et al. 2023a, b). Out of these heavy metals, arsenic 

remains the most potent environmental toxicant, exerting its 
toxicity to animals and plants (Rahman and Singh 2019). It 
is a natural earth crust element that is ubiquitously distrib-
uted in the environment due to natural sources and human 
activities (Yin et al. 2022). It exists in numerous organic and 
inorganic states with different toxicity profiles. Commonly, it 
exists in three valence states: As(0) (metalloid arsenic, 0 oxi-
dation state), As(III) (trivalent state, such as arsenites), and 
As(V) (pentavalent state, such as arsenates) (ATSDR 2007).

Recent evidence suggests that arsenic exposure causes 
potent toxicity to the reproductive system (Wirth and Mijal 
2010; De Palma et al. 2022). Studies have also affirmed that 
the male reproductive system is more susceptible to arsenic 
toxicity because of the direct binding to sulfhydryl groups of 
proteins such as sperm chromatin and flagellum (De Palma 
et al., 2022). Conversely, in the female reproductive sys-
tem, arsenic exposure alters reproductive hormones and bio-
genic amines that regulate spermatogenesis and oogenesis 
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(Jana et al., 2006). It has been thought that arsenic produces 
ROS by the oxidation of arsenite to arsenate through arse-
nic methylation leading to oxidative stress (OS) which can 
cause damage to physiological functions of the cell lead-
ing to various diseases such as cancers, diabetes, athero-
sclerosis, cardiovascular disease, and infertility which can 
be concluded that arsenic triggers potential mechanisms to 
induce OS. Arsenic exposure reduces the number of sperm 
due to reduced GSH and increased malondialdehyde (MDA) 
as well as increasing inflammatory factors such as tumor 
necrosis factor-alpha (TNF-α), cyclo-oxygenase (COX), 
nuclear factor-kappa B (NF-kB), and caspase 3 (Shao et al. 
2018; Im Chang et al. 2007). Moreover, arsenic has been 
documented to also increase urinary concentration of total 
arsenic and lowers semen volume, sperm concentration and 
motility, and serum testosterone levels (Akhigbe et al. 2024).

It also increases ROS levels in the testes and alters hor-
monal secretion and spermatogenesis via the inhibition of 
androgen receptor activity (Jana et al. 2006; Rosenblatt and 
Burnstein 2009; Saberi Sis and Zargari 2017). Arsenic also 
inhibits the activities of DNA-binding domain (DBD) of 
steroid receptors and causes alterations in enzymes such 
as lactate dehydrogenase (LDH), acid phosphatase (ACP), 
γ-glutamyl transpeptidase (GGT) (Renu et al. 2018; Minatel 
et al. 2018; Wai et al. 2019; Palma-Lara et al. 2020). It is 
also noteworthy to know that arsenic also affects the female 
reproductive system through the alteration of some regulator 
enzymes in steroidogenesis such as 3β-hydroxysteroid dehy-
drogenase (3-βHSD) and 17β-hydroxysteroid dehydrogenase 
(17βHSD) due to low levels of gonadotropin (Ilieva et al. 
2021; Shao et al. 2018), alteration in the levels of some neu-
rotransmitters (reduction LH, FSH and estradiol), and reduc-
tion in gonadotropin secretion (Ilieva et al. 2021; Bhardwaj 
et al 2021).

Moreover, mounting evidences have revealed potential 
therapeutic strategies in the management of arsenic-induced 
reproductive toxicity with a swift approach of a chelation 
therapy such as dimercaprol (BAL), meso-2,3-dimercap-
tosuccinic acid (DMSA), and 2,3-dimercapto-1-propane-
sulfonic acid (DMPS) to bind and remove arsenic from the 
body (Kalia & Flora 2005); antioxidant supplementation to 
combat arsenic-induced reproductive toxicity (Flora et al. 
2007); Phytochemicals for arsenic removal and detoxifica-
tion (Sinha et al. 2007); and gene therapy approaches to 
enhance arsenic metabolism and excretion (Drobná et al. 
2010).

Human anthropogenic and agricultural activities such as 
mining, smelting metal, burning fossil fuels, and using pes-
ticides for home and agricultural usage can contaminate the 
environment with arsenic (Chung et al., 2014). Environmental, 

medicinal, and occupational sources are the main sources of 
human exposure to arsenic (Wang et al. 2012). However, 
ingestion of arsenic-contaminated food and water remains the 
main source of exposure (Chung et al., 2014). In high-endemic 
areas of arsenic, the exposure level can range from tens to 
hundreds, and occasionally even thousands, of micrograms 
per liter (μg/L), which is much higher than the WHO limit 
of ≤ 10 μg/L (WHO 2018; Shaji et al. 2021). According to 
estimates, approximately 500 million people worldwide could 
be exposed to unacceptably high doses of arsenic (Shaji et al. 
2021).

Arsenic exposure is associated with deleterious adverse 
effects such as neurological manifestations, gastroenteritis, 
metabolic disease, vascular changes, and cancers like lung, 
bladder, kidney, prostate, and hepatocellular carcinoma 
(Abernathy et al. 2003; Adegunlola et al. 2012; Bibha et al. 
2023). Human and experimental studies have also revealed 
that arsenic induces reproductive toxicity via its endocrine-
disrupting activity (Wang et al. 2016; Gunduzoz et al. 2019; 
Besong et al. 2023b). Evidences on epidemiological studies 
show the deleterious impact of arsenic exposure on reproduc-
tive functions. In Bangladesh, it was documented that men 
with high arsenic exposure showed significantly lower sperm 
count, motility, and morphology compared to men with lower 
arsenic exposure (Hossain et al. 2021). Several of the highly 
exposed men were diagnosed with azoospermia (complete 
absence of sperm in semen). However, the study highlighted 
the detrimental effects of chronic arsenic toxicity on male fer-
tility in this region (Hossain et al. 2021). More so, some data 
document the link between arsenic and spontaneous abortion 
and stillbirths in pregnant women with relative risks ranging 
from 1.8 to 3.1 cases and a significant correlation between 
higher arsenic levels in drinking water and an increased inci-
dence of spontaneous abortion (Huynh et al. 2020; Biswas 
et al. 2021). Sharma et al. (2022) demonstrated that arsenic 
contamination correlates positively with preterm birth (3.1, 
95% CI: 1.8–5.3), low birth weight (2.9, 95% CI: 1.6–4.9), and 
gestational diabetes (2.4, 95% CI: 1.3–4.2). Recently, Nguyen 
et al. (2023) reported the negative impact of arsenic exposure 
on reproductive health.

Despite its reported deleterious effects, arsenic exposure 
remains a global challenge. The understanding of arsenic 
exposure, the mechanisms of its reproductive toxicities, and 
the potential benefits of drug candidates from experimental 
studies will open novel therapeutic windows in the manage-
ment of arsenic-induced reproductive toxicity. Therefore, the 
present study provides a comprehensive review of the literature 
on the impact and mechanism of arsenic on male and female 
reproductive function. Additionally, a review of the potential 
therapeutic strategies is presented.
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Methods

This study was based on the data from the scientific lit-
erature that were retrieved from a search conducted using 
these databases: PubMed, EMBASE, Scopus, and Google 
Scholar. The following keywords were used alone and in 
combination: “arsenic,” “reproductive function,” “male 
reproduction,” “female reproduction,” “sperm,” “sperm 
cells,” “testis,” “germ cell,” “ovary,” “ova,” and “ovum.” 
Searches were performed without restrictions to the year 
of publication and country of origin.

Arsenic exposure, metabolism, 
and mechanism

Sources of arsenic exposure are basically classified as 
abiotic and biotic (Bibha et al. 2023). Abiotic sources 
comprise geological elements like minerals, underground 
water, and geothermal processes, as well as manmade ele-
ments like farming, manufacturing, and mining operations. 
Arsenic used industrially, like in antifungal wood preserv-
atives, has the potential to contaminate soil (Yanitch et al. 
2020). Arsenic is also used in pharmaceuticals, optical, 
and glass industries, in the manufacture of sheep dips, 
alloy, antifouling paints, arsenic-containing pigments, 
microelectronics, pesticides, and insecticides (Yang et al. 
2018). Through leaching, arsenic-contaminated soil con-
taminates surface and ground water (Bibha et al. 2023). 
Erosion and leaching from geological formations or 
anthropogenic sources, the use of pesticides and fertiliz-
ers, and metal processing, industrial, and mining activi-
ties contribute to soil contamination (Yang et al. 2018). 
Cigarette smoking contributes significantly to arsenic bio-
availability by inhibiting arsenic methylation (Yang et al. 
2018). Inhalation of arsenite and arsenate and the use of 
arsenic-containing cosmetics also add up to human expo-
sure (Yang et al. 2018).

Another main source of arsenic exposure is arsenic 
contamination of water bodies through improper disposal 
of untreated sewage and the use of arsenic-based agro-
chemicals, thus leading to increased arsenic consumption 
by aquatic animals (Kumari et al. 2017; Liu et al. 2019), 
as well as contamination of crops through irrigation (Kaur 
et al. 2017). Consumption of these arsenic-contaminated 
aquatic animals and plants contributes to human expo-
sure (Bibha et al. 2023). Following exposure to inorganic 
arsenic, there is a reduction of As V to As III, which in 
turn undergoes oxidative biomethylation under the action 
of methyltransferase to generate monomethylarsonic 
acid, pentavalent organic arsenicals, and dimethylarsinic 

acid that are in turn voided through the urine (Afolabi 
et al. 2016). Photooxidation may also be important in the 
metabolism of arsenic (Amyot et al. 2021). Arsenic is 
rapidly distributed to body tissues and accumulates over 
time. Accumulation of arsenic and its metabolites distorts 
numerous physiological processes, including reproductive 
functions. Arsenic crosses the blood-gonadal barrier and 
accumulates in the testis and ovarian where it alters tes-
ticular and ovarian structure and functions (Huang et al. 
2016; Akhigbe et al. 2024).

Arsenic-induced reproductive toxicity is mediated by 
the induction of OS which causes loss of mitochondrial 
organization, leading to an alteration in the mitochondrial 
integrity and membrane potential. Moreover, the release 
of apoptotic proteins (cyt-c and activation of Bax) and 
decreased expression of Bcl-2 promotes apoptosis. Mito-
chondria produce ROS through complex I and III (Muller 
et al. 2004; Mishra et al. 2008). The methylation of arsenic 
is a detoxification of arsenic that is associated with its 
methylation in the liver by As3MT, and the production 
of its methylated metabolites includes  MMAV,  MMAIII, 
 DMAV, and  DMAIII. In this pathway, arsenic needs glu-
tathione (GSH) and other thiols. Depleting GSH and other 
thiols alters the redox status, producing arsenic methyl-
ated metabolites which in turn increase oxidative stress 
(Thomas et al. 2007; Dopp et al. 2010).

Additionally, changes in certain signaling pathways, 
including the tyrosine phosphorylation and mitogen-acti-
vated protein kinase (MAPK) pathways as well as tran-
scription factors, including NF-kB, AP-1, apoptosis, p53 
activation, and Bax expression, all contribute to the produc-
tion of ROS, which raises OS (Nagesh et al. 2019). Arsenic 
causes damage to proteins, carbohydrates, lipids, and DNA 
by producing OH or O2 radicals that leads to the produc-
tion of carbonyl, aldehydes, and keto compounds. This 
metalloid also damages some amino acid residues such as 
cysteine and methionine, which can in turn lead to protein 
structure alteration, degradation, unfolding, and fragmenta-
tion and the inactivation of enzymes (such as antioxidant 
enzymes, pyruvate dehydrogenase) and also the production 
of advanced glycation end products (AGEs) (Zargari 2021). 
Arsenic causes damage to carbohydrates and lipids leading 
to the production of ketoamines, ketoaldehydes, and fatty 
acid radicals (ROO) as well as changes in the carbohydrate 
metabolism (i.e., the inhibition of pyruvate dehydrogenase 
complex, hyperglycemia, and glucose intolerance) and 
MDA, HNE, the oxidation of cellular membranes, and the 
inactivation of membrane-bound receptors (Wirtitsch et al. 
2009; Sabir et al. 2019). Arsenic also damages DNA lead-
ing to alterations in DNA bases (such as the production of 
8-OHdG, in turn, the altered bases can modify the site of 
binding of transcription factors and change the expression 
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of related genes), alterations in DNA repair enzymes, DNA 
strand break, and the cross-linkage of DNA–protein (De 
Vizcaya-Ruiz et al. 2009).

Arsenic and male reproductive function

According to Chakraborti et al. (2002), exposure to arsenic 
can have both acute and long-term harmful effects, putting 
people at risk for serious health issues like skin cancer, dia-
betes, liver, kidney, and CNS illnesses. Also, arsenic expo-
sure results in reproductive toxicity, including testicular 
damage (Sarkar et al. 2008). Moreover, studies suggest that 
arsenic exposure causes testicular toxicity by directly affect-
ing the hypothalamic-pituitary–testicular axis by affecting 
the secretion and function of gonadotropins, primarily gon-
adotropin-releasing hormone (GnRH), luteinizing hormone 
(LH), and follicle-stimulating hormone (FSH) (Besong et al. 
2023b). Research suggests that arsenic exposure can reduce 
the sensitivity of gonadotroph cells to GnRH, leading to 
decreased secretion of LH and FSH (Jana et al. 2006). This 
reduction in gonadotropins impairs the stimulation of Ley-
dig cells which are responsible for testosterone production, 
thus lowering testosterone levels via both direct inhibition 
of steroidogenesis in Leydig cells and reduced sensitivity of 
these cells to LH (Jana et al. 2006).

It has also been revealed that a high arsenic level may 
suppress the sensitivity of gonadotroph cells to GnRH as 
well as gonadotropin secretion by elevating plasma levels of 
glucocorticoids. This has led ultimately to the development 
of gonadal toxicity (Sarkar et al. 2008; Pant et al., 2004). 
Nevertheless, exposure to arsenic poisoning has led to the 
inhibition of testicular androgenesis and reduction of the tes-
ticular weight and accessory sex organs (Sarkar et al., 2003; 
Pant et al., 2004). Moreover, following exposure to arsenic 
exhibited severe cellular damage in spermatogenic cells indi-
cating a cellular degeneration in the eosinophilic multinu-
cleated giant cell of the seminiferous tubule (Omura et al. 
2000). These results demonstrate that after arsenic exposure, 
spermatogonia’s meiotic maturation has been significantly 
disturbed (Omura et al. 2000). The testis of arsenic-exposed 
rats showed a degeneration of interstitial Leydig cells, which 
could put a chemical strain on cellular function (Omura 
et al. 2000). Leydig cell atrophy may develop from cellular 
exhaustion owing to a persistent stress effect while the ini-
tial increase in cell width may be a better indicator to adapt 
the metal-produced stress (Omura et al. 2000). Sarkar et al. 
(2008) found that testicular shrinkage and a gradual, dose-
dependent decrease in the number of Leydig cells in the 
interstitium were the outcomes of exposure to sodium meta 
arsenite (30 or 40 mg L1 for 30, 45, or 60 days).

Furthermore, the drop in serum testosterone may result 
from direct inhibition of testosterone steroidogenesis or from 

Leydig cells’ decreased sensitivity to luteinizing hormone 
(Hinshelwood et al. 1994). Significantly lower levels of ster-
oidogenic enzyme activity in the testes of experimental mice 
suggest a decrease in steroidogenesis, which may in turn 
inhibit the male mice’s ability to reproduce (Sarkar et al. 
2008). Since both FSH and LH are the regulators of high 
steroidogenic activities, variations in their levels in plasma 
may be the cause of this alteration in steroidogenic enzyme 
activity in experimental mice (Sarkar et al., 2003). Subse-
quent research has demonstrated that arsenic in drinking 
water is linked to genotoxicity and oxidative stress in mouse 
testicular tissue (Biswas et al. 2006; Chang et al. 2007a, b). 
According to Sarkar et al. (2008), these results were shown 
to cause steroidogenic dysfunction, which impaired spermat-
ogenesis. Also, low gonadotropin levels in rats treated with 
arsenic may be the cause of the increase in the luminal parts 
of the seminiferous tubules linked to decreased spermatozoa 
mass, as these low levels also result in decreased synthesis of 
steroidogenic enzymes (Sarkar et al. 2008). It is known that 
exposure to arsenic results in a reduction in the synthesis of 
testicular steroidogenic enzymes (Sarkar et al. 2008).

Interestingly, the oxidative stress induced by arsenic is 
strongly linked with decreased sperm quality, including 
motility and DNA. The damage to sperm DNA and proteins 
compromises the integrity and functionality of sperm, reduc-
ing their ability to fertilize an egg. Moreover, the oxidative 
damage to mitochondrial DNA in sperm affects ATP pro-
duction further impairing sperm motility. This reduction in 
sperm quality and motility is one of the primary factors con-
tributing to arsenic-induced male infertility (Li et al. 2023).

Additionally, exposure to arsenic alters spermatogenesis, 
resulting in a decline in sperm quality, which is associated 
with low sperm count and motility and increases abnormal 
sperm, as seen in mice exposed to arsenic (Li et al. 2023). 
Rats exposed to arsenic also had a much increased per-
centage of defective sperm and dead sperm. Arsenic has a 
number of detrimental effects on spermatogenesis, many of 
which have been thoroughly investigated in experimental 
animals and via epidemiological studies (Renu et al. 2018). 
In addition to degenerating stage VII germ cells in mice and 
impairing spermatogenesis, exposure to arsenic also lowers 
testosterone, luteinizing hormone (LH), and follicle-stimu-
lating hormone (FSH) levels (Renu et al. 2018). Likewise, 
exposure to arsenic causes an accumulation of the metal in 
soft tissues, such as rodent testes and epididymis (Dua et al. 
2015).

According to studies in rodents, arsenic has been shown 
to have deleterious effects on testicular tissue, includ-
ing marked testicular spermatogenic degeneration with 
decreased epithelial height and tubular diameter and 
increased luminal diameter by the induction of oxidative 
stress (Jahan et al. 2015; Uygur et al. 2016). Addition-
ally, testicular structures gradually deteriorate as a result 
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of arsenic exposure. Consequently, there is a gradual but 
noticeable decline in testosterone levels, which affects the 
functional characteristics of spermatozoa and suggests that 
arsenic affects Leydig cells, which in turn impairs spermato-
genesis. Similarly, arsenic altered the histomorphometry of 
the testicular architecture through oxidative stress (Souza 
et al. 2015). Arsenic causes oxidative stress in the testes and 
modifies hormone levels that are crucial for spermatogen-
esis, like luteinizing hormone, follicle-stimulating hormone, 
and testosterone (Jahan et al. 2015). According to research 
on exposure to arsenic, sperm motility is reduced because 
arsenic binds to sulfhydryl or thiol groups on sperm proteins 
or inhibits sperm motility-related enzymes (Li et al. 2023). 
Additionally, a significant number of thiol-rich protamines 
found in sperm nuclear chromatins and flagellum make them 
more vulnerable to arsenic (Behairy et al. 2024). Nonethe-
less, it has been speculated that one of the ROS products, 
H2O2, may permeate the membrane and impact the sperms’ 
essential enzymes, reducing sperm motility (Yánez-Ortiz 
et al. 2021).

Arsenic exposure markedly reduced the activities of GST 
and CAT, although SOD levels progressively increased 
along with a corresponding rise in lipid peroxidation in the 
testes, suggesting oxidative stress. Comparable outcomes 
were noted when exposure to arsenic caused decreased 
CAT activity and increased SOD activity (Kharroubi et al., 
2014). Furthermore, in Swiss albino mice, exposure to arse-
nic also reduces GST activity (Biswas et al. 2010). It is clear 
that accumulated arsenic may cause testicular architecture 
damage. This may occur directly when arsenic crosses the 
blood-testis barrier and reaches germinal cells, or indirectly 
through interference with spermatogenesis, which results in 
oxidative stress in the testicular compartment and reduced 
male fertility.

Arsenic and female reproductive function

Arsenic as a toxic drug can adversely affect female reproduc-
tive capacity via the induction of oxidative stress (Barsøe 
et al. 2021). Ovarian functions can be affected by increased 
production and interaction of free radicals since cyclic meta-
bolic events take place in the ovary during the reproductive 
period of mammals (Erkan et al. 2021). Experimentally, the 
ovary of a mouse model has been previously reported to 
show oxidative damage following arsenic exposure (Wang 
et al. 2012). In that study, arsenic triggered follicular-mito-
chondrial dysfunction via the stimulation of p66Shc which 
catalyzes the formation of free radicals from mitochondrial 
proteins (cytochrome C) (Ommati et al. 2020a, b). Mito-
chondrial function is very crucial in the development and 
maturation of follicles, fertilization, and succeeding embryo 
growth, being the site for energy production (Santulli et al. 

2015). An increased level of free radicals forced open tran-
sition pores on the follicular-mitochondrial membrane, 
breaking into the follicle cytosol to induce follicular oxida-
tive damage (Betts et al. 2014). Arsenic caused apoptosis 
of oocytes via ROS-antioxidant imbalance (Agarwal et al. 
2012). During oocyte maturation, surrounding granulosa 
cells nurse the developing oocyte via the supply of antioxi-
dants to create ROS-antioxidant balance, and secretion of 
hyaluronic acid needed for fertilization (Huang and Wells 
2010). Many studies on animal models and humans have 
reported anovulation, which weakened the body’s enzymatic 
antioxidant defense (Budhwar et al. 2017). Arsenic downreg-
ulates ovarian glutathione levels to induce oxidative damage 
on the pre-antral follicle via the increased ROS interaction 
(Niringiyumukiza et al. 2019). Arsenic has been reported 
to inhibit the surrounding granulosa cell growth via the 
alteration of granulosa cell-related genes (PTGS, TNFAIP6, 
and HAS2). Hyaluronic Acid deficiency and meiosis abrup-
tion decrease the chances of fertilization and embryonic 
growth in natural conception and IVF. The inflow of gener-
ated free radicals into the oocyte’s nucleus and interaction 
with DNA can result in the breakage of the paired strand of 
DNA, resulting in ovarian toxicity and consequent infertility 
(Kitchin 2001; Akram et al. 2018).

Arsenic has been reported to abrupt ovarian steroidogene-
sis via the interruption of the hypothalamo-pituitary-ovarian 
axis (Chen et al. 2022a, b). Arsenic increases serotonergic 
neurotransmission in the pre-optic area of the hypothala-
mus (POA). However, serotonin elevation inhibits the pro-
liferation of GnRH neurons in the hypothalamus causing a 
negative feedback on the release of gonadotropins (follicle-
stimulating hormone and luteinizing hormone). FSH and LH 
suppressions in turn inhibit ovarian steroidogenic enzymes, 
3β-HSD and 17β-HSD (Rosenfield et al. 2021). In addition, 
arsenic-induced gonadotropin suppression may also be due 
to excessive secretion of glucocorticoids and catecholamines 
from the adrenal cortex having established their effects in 
gonadotropic cell resistance to GnRH (Ghosh et al. 2013). 
Arsenic has been reported to interrupt the estrogenic signal-
ing pathway via alteration of estrogen-related gene expres-
sion resulting in infertility since the expression of estrogen-
regulated genes in an ovary/uterus depends on the sensitivity 
of estrogen receptors to estrogen (Amir et al. 2021). Estro-
gen receptor resistance in the uterus interrupts the estro-
gen signaling pathway via inactivation of cell growth pro-
teins responsible for endometrial cell proliferation (Amir 
et al. 2021). The expression of estradiol-regulated vascular 
endothelial growth factor (VEGF) genes which initiate cycli-
cal angiogenesis in the uterus can also be downregulated by 
arsenic, which may be a cause for unconstrained miscar-
riages (Dickson and Stancel, 2000). Additionally, expression 
of steroidogenic factor-1 (SF-1) needed for ovarian steroid 
hormone synthesis could be altered by arsenic methylation 
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instead of DNA, affecting ovarian steroidogenesis and fol-
licular development (Huang et al. 2020; Chen et al. 2022a, 
2022b). Furthermore, arsenic exposure has been reported 
to induce estrogen-dependent diseases like breast and uter-
ine cancer, and spontaneous miscarriages in humans (Amir 
et al. 2021). Although mechanisms of arsenic-induced hypo-
thalamo-pituitary-ovarian axis interruption remain unclear, 
it was presumed to exert an opposing action on the ovary 
which may alter LH and FSH levels and resulting oocyte 
impairment (Mukherjee and Gopalakrishnan 2023). Female 
infertility could result from hypothalamo-pituitary-ovarian 
axis interruption and consequent hormonal imbalance which 
can be created by arsenic toxicity (Rattan et al. 2017).

In addition, arsenic exposure can significantly disrupt 
the hypothalamo-pituitary-ovarian (HPO) axis by interfer-
ing with the controls and release of gonadotropins (FSH and 
LH), which are essential for ovarian follicular development, 
ovulation, and the production of sex hormones like estrogen 
and progesterone. Arsenic also impacts estrogen signaling 
by altering the expression of genes involved in this pathway 
such as the estrogen signaling that is important for vari-
ous reproductive processes (Mukherjee and Gopalakrishnan 
2023). Arsenic has been shown to cause estrogen receptor 
(ER) resistance, particularly in the uterus by modifying 
the expression of estrogen-regulated genes. This resist-
ance disrupts the normal estrogen signaling pathway lead-
ing to the inactivation of cell growth proteins essential for 
endometrial cell proliferation and vascularization. Specific 
genes affected by arsenic include the vascular endothelial 
growth factor (VEGF) genes which are critical for angiogen-
esis during the menstrual cycle and pregnancy (Mukherjee 
and Gopalakrishnan 2023). Additionally, arsenic alters the 
expression of other estrogen-related genes, such as PTGS2, 
TNFAIP6, and HAS2, which are involved in granulosa cell 
function, cumulus expansion, and hyaluronic acid produc-
tion. These alterations may impair follicular development, 
ovulation embryo implantation, suppression of gonado-
tropins and ovarian steroidogenesis, and poor endometrial 
receptivity further contributing to infertility (Amir et al. 
2021). Overall, the impact of arsenic on the HPO axis and 
estrogen signaling pathways underscores the importance of 
addressing environmental exposures in reproductive health 
to improve fertility outcomes and reduce the risk of repro-
ductive disorders.

The hypothalamus is the master controller of gonadal 
steroid synthesis, which rhythmically releases gonadotro-
pin-releasing hormone (GnRH) into circulation. Arsernic-
induced ROS hyper-production can interrupt connections 
between GnRH-secreting neurons at the arcuate nucleus 
of the hypothalamus and gonadotropin-secreting cells 
inhibit pulsatile excitatory impulses for FSH and LH 
release (Agarwal et al. 2005). Unavailability of excitatory 
impulses to the gonadotropic cells of the anterior pituitary 

inhibits the synthesis and secretion of follicle-stimulating 
hormone (FSH) and luteinizing hormone (LH) which regu-
late ovarian function. Naturally, ovarian steroids (estrogen 
and progesterone) diminish during folliculogenesis and are 
constantly replenished via negative feedback on both the 
hypothalamus and the anterior pituitary to maintain the 
normal cyclical reproductive event (Spaziani et al. 2021). 
Also, estrogen acts as a self-stimulating steroid by exerting 
a positive feedback effect on granulose cells to maintain a 
reproductive level of estrogen. Interrupted GnRH release, 
diminished serum LH and FH levels, and consequential 
estrogen decline are accountable for arsenic-induced alter-
ations in follicular development and maturation (Smith 
et al. 2003; Sarkar et al. 1991). Decreased ovarian estrogen 
could be attributed to arsenic-induced low LH concentra-
tions (Kitchin 2001). Furthermore, arsenic exposure exces-
sively triggers the pituitary-adrenocortical axis, which 
in turn exaggerates ACTH secretion (Liu et al. 2005). 
Increased level of glucocorticoids in circulation renders 
gonadotropic cells resistant to GnRH, and in turn, inhib-
its LH and FSH synthesis and release (Colognato et al. 
2007). Downregulation of LH release reduces the oocytes’ 
quantity and functions and inhibits ovulation and estrus 
cycle (Biswas et al. 2019). A study reported an extended 
menstrual cycle and infrequent menstrual flow in women 
following arsenic exposure (Nurminen 1995).

Oogenesis, as the process of gamete (ovum) formation 
in females, can be compromised during arsenic exposure. 
Naturally, oogonia (germ cells) undergo several changes 
of development before becoming mature oocytes (Gosden 
2002). Oogenesis can be inhibited via the interruption of 
the H-P-O axis, disruption of estrogen signaling pathways 
by polychlorinated biphenyls, and alteration of estrogen-
related genes, which have been previously reported fol-
lowing arsenic exposure (Rattan et al. 2017; Kang et al. 
2022). Decreased primordial germ cells following arsenic 
exposure suggests that exposure during pregnancy can 
inhibit the formation of primordial germ cells from primi-
tive steak and further interrupt their migration into the 
developing gonads (Legoff et al. 2019). Arsenic toxicity 
can impair the development, maturation, and ovulatory 
function of oocytes which can adversely affect female 
fertility (Foster and Hughes 2011). Arsenic-induced ROS 
influx into the follicular cytoplasm results in hypertrophy 
of the follicular cells and ROS interaction with the cyto-
plasmic components, which will in turn induce follicular 
oxidative damage and prevention of ovulation (Chattopad-
hyay et al. 2001). Arsenic toxicity also induces abnormal 
methylation of histone  H3 lysine 4, a marker for DNA tran-
scription, suggesting that arsenic obstructs meiosis during 
oocyte maturation after puberty (Ommati et al. 2020a, b). 
Additionally, a study on arsenic-exposed mice reported 
impaired meiosis and embryo development, blastocysts’ 
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apoptosis, and compromised blastocyst implantation 
which result from fertilization of arsenic-induced oxida-
tive stressed oocytes (Navarro et al. 2004).

Potential therapies in the management 
of arsenic‑induced reproductive toxicity

Although there is a dearth of human studies exploring pos-
sible therapeutic strategies in the management of arsenic-
induced reproductive toxicity, there are compelling data 
from animal models (Table 1). These experimental studies 
provide insights into the possible mechanism of actions of 
various pharmacological agents and nutraceuticals in pre-
venting and/or attenuating arsenic-induced reproductive 
dysfunction.

Male reproduction

Evidence of pharmacological interventions effective in 
arsenic-induced male reproductive dysfunction abounds in 
academic literature. These pharmacological interventions 
include phytochemicals such as Chlorophytum borivilianum, 
Pulsatilla nigricans, Withania somnifera, Alchornea cordifo-
lia, and Pistia stratiotes and drugs like N-acetlycysteine, tel-
misartan, diphenyl diselenide, and melatonin. Chlorophytum 
borivilianum showed a reduction in Arsenic-induced lipid 
peroxidation, acid and alkaline phosphatase, and choles-
terol in mouse Leydig and Sertoli cells (Sharma and Kumar 
2012). It has been demonstrated that arsenic suppresses 
reproductive function by impairing testicular steroidogenesis 
and spermatogenesis via oxidative stress, lipid peroxidation, 
inflammation, autophagal, apoptosis, and ferroptotic mecha-
nisms (Meng et al., 2020; Rachamalla et al., 2022). However, 
30 days of co-exposure to borivilianum at a dose of 800 mg/
kg in Swiss albino mice led to a decrease in oxidative stress 
evidenced by a decrease in lipid peroxidation and an increase 
in glutathione-mediated antioxidant defense. Co-exposure to 
Chlorophytum borivilianum improved testicular metabolic 
function with an associated decrease in cholesterol, alkaline 
phosphatase, and reproductive function with an associated 
increase in testosterone, sperm count, and motility (Sharma 
and Kumar 2012). It also hindered the degeneration of sper-
matogenic germ cells in the seminiferous tubules and associ-
ated cell loss (Sharma and Kumar 2012).

Oral co-exposure to extract of Pulsatilla nigricans for 
90 days at 35 mg/kg led to an increase in levels of sorbi-
tol dehydrogenase for sperm maturation with an associated 
increase in glutathione, catalase, and superoxide dismutase 
and a decrease in y-GT levels and lactate dehydrogenase in 
the testis of Charles Foster rats (Samadder et al. 2012). Simi-
larly, Withania somnifera exposure at 100 mg/kg improved 

blood testosterone, luteinizing hormone levels, testicular 
histoarchitecture, spermatogenesis, sperm morphology, 
and libido (Kumar et al. 2015). According to Ajibade and 
Olayemi (2020), there was an increase in testosterone and 
FSH levels, sperm count, sperm motility, and the expression 
of anti-apoptotic B-cell-lymphoma 2 and androgen recep-
tor binding protein following 30-day oral administration 
of Alchornea cordifolia at 100 ug/kg also known as water 
cabbage. Pistia stratiotes exerts protective effects on the 
testicular function of rats by restoring sperm count, semen 
volume, sperm viability, and motility following oral admin-
istration for 14 days at a dose of 100 mg/kg (Ola-Davies and 
Oloye 2019). Laboratory investigation in mice showed that 
N-acetylcysteine administered intraperitoneally at 75 mg/kg 
supports testicular function by decreasing oxidative stress 
and lipid peroxidation while increasing the activity of tes-
ticular enzymes 3β- and 17β-dehydrogenase and levels of 
testicular testosterone (Reddy and Roth 2013). The increased 
testosterone led to an increase in sperm quality, motility, and 
the weight of reproductive organs. Further, telmisartan was 
demonstrated to have ameliorative effects on testicular dys-
function following exposure to arsenic (Fouad et al. 2015). 
Administration of telmisartan markedly decreased testicular 
concentrations of malondialdehyde, and nitric oxide while 
decreasing the activity of myeloperoxidase and expression 
of the TNF-α, NFKB, COX-2, VEGF, and caspase 3 (Fouad 
et al. 2015). Therefore, telmisartan improves testicular func-
tion in arsenic-exposed rats by decreasing lipid peroxidation, 
inflammation, and caspase 3–dependent apoptosis.

In mice, exposure to diphenyl diselenide (DPDS) at 
2.5 mg kg for 45 days improved deficits in reproductive 
function by abrogating testicular oxidative stress, inflam-
mation, and caspase 3–dependent apoptosis (Adedara 
et al. 2019). This is evidenced by improved oxidative sta-
tus and testosterone and decreased activity of myeloper-
oxidase, caspase 3, and levels of TnF-α, nitric oxide, and 
interleukin 1B levels (Adedara et al. 2019). Exposure to 
DPDS increased sperm parameters and ameliorated arse-
nic-induced histological lesions (Adedara et al. 2019). 
Melatonin counteracted arsenic-medicated testicular lipid 
peroxidation, redox imbalance, germ cell apoptosis, and 
histological degeneration when administered intraperi-
toneally and intragastrically in rats (Uygur et al. 2016). 
Ethanol extract of Chromolaena odorata at 200 mg/kg 
increased reproductive organ weights, endocrine proper-
ties, and sperm parameters in Wistar rats (Ola-Davies and 
Oloye 2019).

Ascorbic acid has been demonstrated to exert antioxidant 
effects ameliorating the impairment of testicular functions 
following arsenic exposure for 5 weeks in mice (Im chang 
et al. 2007). There was an increase in testicular weights on 
oral co-administration of ascorbic acid. It also reversed the 
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activities of steroidogenic enzymes 3β-HSD and 17B-HSD, 
epididymal sperm counts, and testicular oxidative imbalance 
(Im chang et al. 2007).

Beyond that, this acetate has been shown to modulate 
metabolic processes to support reproductive function in 
Wistar rats (Besong et al. 2023b). Acetate inhibits histone 
deacetylation and oxidative and inflammatory changes to 
cause an increase in the activities of 3B-HSD and 17B-
HSD and levels of GnRH, LH, FSH, and T. The increase in 
testicular steroidogenesis led to improved sexual behavior 
(Besong et al. 2023b). Guvvala et al. (2017) investigated 
the effects of green tea extract on arsenic intoxicated in 
Swiss albino mice. Acute exposure to epigallocatechin-
3-gallate restored deficits in testosterone levels and the fol-
lowing sperm parameters: sperm concentration, motility, 
structural membrane integrity, and mitochondrial mem-
brane potential. It also restored lipid peroxidation changes 
and oxidative imbalance by scavenging free radicals with 
the abundance of hydroxyl bases (Guvvala et al. 2017). It 
also mediates antioxidant changes by inhibiting the gen-
eration of hydroxyl radicals, superoxide, and hydrogen 
peroxide (Guvvala et al. 2017).

Ogunlade et  al. (2021) described the potentiating 
response of D-ribose-L-cyteine on sodium arsenic-induced 
endocrine alterations, spermatogenic deficits, and histo-
morphometric abnormalities in rats exposed to 30 mg/kg 
for 28 days. D-ribose-L-cysteine ameliorated the distortion 
of testicular morphology, oxidative stress, and impaired 
semen quality while increasing hormone concentrations 
(Ogunlade et al. 2021).

Fisetin is a bioactive flavonoid with strong antioxidant 
effects on rat testes. Treatment with FIS resulted in sig-
nificant improvement in an arsenic-induced decrease in 
enzyme antioxidant defense while decreasing metabolic 
alterations evidenced by decreased cholesterol, low-den-
sity lipoprotein, and triglycerides and increased high-den-
sity lipoprotein. These have a stimulatory effect on the 

expression of steroidogenic enzymes 3B-HSD, 17B-HSD, 
STAR, CYP11A1, and CY17A1 to cause increased secre-
tion of T, LH, and FSH and associated increase in sperm 
count, motility, and sperm morphology. This is charac-
terized by attenuation of histoarchitectural degenerative 
changes and decreased caspase-3, Bax, and Bcl-2 (Ijaz 
et al. 2023).

Ellagic and ferulic acids exert protective effects on Swiss 
albino mice at 40 mg/kg after exposure for 40 days causing a 
decline of lipid peroxidation and protein carbonylation, with 
an associated increase in sperm kinematics and increased 
expression of StAR, Ppargc1a, and Nfe212 (Guvvala et al. 
2019). Laboratory investigation of the effect of grape seed 
proanthocyanidin on arsenic-induced reproductive toxic-
ity in male mice showed that administration of the extract 
improved oxidative stress, Nrf2, and NADPH. This suggests 
that the extract counteracts arsenic-induced reproductive 
toxicity by mitigating oxidative damage and inhibiting Nrf2 
(Li et al. 2015).

Female reproduction

Vitamin B and folic acid have also been demonstrated to 
be protective agents against arsenic-induced reproductive 
toxicity in female rats. At doses 0.07 μg and 4.0 μg respec-
tively/100 g b.wt./day, they mitigated the disorganization of 
uteroovarian histoarchitecture, disruption of female gonadal 
function, ROS generation, and DNA fragmentation (Deb 
et al., 2021). In another study, Peerveen et al. (2024) showed 
that pectic polysaccharide (CCPS) from Momordica charan-
tia administered for 8 days at varying oral doses of 1.5, 2.0, 
and 2.5 mg/kg led to a decrease in uterine oxidative stress 
and lipid peroxidation evidenced by decreased MDA and 
increased activities of CAT and SOD (Perveen and Chat-
tophadhayy 2024). The study demonstrated that CCPS has 
chelating properties which ameliorated arsenic-induced ovar-
ian toxicity and damage (Perveen and Chattophadhayy 2024).

Fig. 1  Schematic illustration of 
the impact of arsenic exposure 
on male and female reproduc-
tion. Arsenic exposure promotes 
reactive oxygen species (ROS) 
generation and induces oxida-
tive stress, which suppresses the 
hypothalamic-pituitary–gonadal 
axis and inactivates 3β-HSD 
and 17β-HSD. This leads to 
reduced gonadal steroidogenesis 
and apoptosis of oocytes and 
sperm cells, thus contributing to 
the development of infertility
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Similarly, dietary N-acetyl cysteine (NAC) at 250 mg/kg 
has also been shown to demonstrate chelation properties in 
arsenic-induced reproductive dysfunction rat model (Dash 
2021). NAC caused a decrease in the structural disintegra-
tion of ovarian-uterine tissues while increasing antioxidant 
enzymatic activities and gonadotropin’s utility (rise in LH, 
FSH) significantly favoring ovarian steroidogenesis. It also 
inhibited the inflammatory condition following the arseni-
cation inflammatory reaction to diminish the progression of 
ovarian-uterine apoptosis (Dash 2021).

Modal et al. (2013) demonstrated that a high protein 
diet prevents female reproductive toxicity and damage 
due to arsenic in a 30-day long exposure duration. Arsenic 
exposure led to a reduction in ovarian and uterine weight, 
utero-ovarian degeneration, ovarian DNA damage, and 
a decrease in ovarian activities of steroidogenic enzymes 
3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid 
dehydrogenase leading to decreased serum estradiol level 
via an oxidative stress and lipid peroxidation. However, con-
sumption of a high protein diet showed effective protection 
against these observations with associated optimum anti-
oxidant defense.

Conclusion and future perspectives

Convincing data from the literature demonstrate that arsenic 
exposure promotes ROS generation and induces oxidative 
stress. This suppresses the hypothalamic-pituitary–gonadal 
axis and inactivates 3β-HSD and 17β-HSD, leading to 
reduced gonadal steroidogenesis and spermatogenesis. 
This cascade of events triggers the apoptosis of oocytes and 
sperm cells, thus contributing to the development of infer-
tility (Fig. 1). More so, there are increasing data that reveal 
the benefits of antioxidants in ameliorating arsenic-induced 
reproductive toxicity. These molecules suppress ROS gen-
eration and maintain optimal activities of the hypothalamic-
pituitary–gonadal axis, resulting in adequate steroidogenesis 
and gametogenesis as well as improved germ cells. However, 
more experimental studies exploring other possible path-
ways through which arsenic may mediate its reproductive 
toxicity is recommended. Also, clinical trials validating the 
therapeutic values of potential drug candidates in the man-
agement of arsenic-induced reproductive toxicity should be 
conducted.
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