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Abstract
Cisplatin (CP) is a highly effective broad-spectrum chemotherapeutic agent for several solid tumors. However, its clinical use 
is associated with ovarian toxicity. Icariin (ICA) is a bioactive flavonoid of Epimedium brevicornum with reported protective 
activities against inflammation, oxidative stress and ovarian failure. This study aimed to explore the protective effects of 
ICA against CP-associated ovarian toxicity in rats. Rats were randomized into five groups and treated for 17 days: control, 
ICA (10 mg/kg/day, for 17 days. p.o.), CP (6 mg/kg, i.p. on days 7 and 14), CP + ICA (CP 6 mg/kg i.p. on days 7 and 14 
and ICA 5 mg/kg p.o. daily), and CP + ICA (CP 6 mg/kg i.p. on days 7 and 14 and ICA 10 mg/kg p.o. daily). Our results 
indicated that ICA effectively improved ovarian reserve as indicated by attenuating CP-induced histolopathological changes 
and enhancing serum anti-müllerian hormone (AMH). Furthermore, co-administration of ICA with CP showed restoration 
of the oxidant-anti-oxidant balance in ovarian tissues, evidenced by decreased malondialdehyde (MDA) concentrations and 
elevated superoxide dismutase (SOD) and catalase (CAT) activities. Also, ICA suppressed ovarian inflammation as evidenced 
by down-regulation of the expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nuclear factor kappa B 
(NF-κB). ICA inhibited ovarian apoptosis in CP-treated rats by down-regulation of CASP3 and Bax and up-regulation of 
Bcl-2 mRNA expression. Further, ICA enhanced PTEN, p-AKT, p-mTOR, and p-AMPKα expression. In conclusion, ICA 
possesses a protective activity against CP-induced ovarian toxicity in rats by exhibiting antioxidant, antiinflammatory, anti-
apoptotic activities and modulating NF-κB expression and PTEN/AKT/mTOR/AMPK axis in ovarian tissues. 
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Introduction

Adverse effects of cancer chemotherapy on women of repro-
ductive ages (15–44 years) are well-documented (Vo and 
Kawamura 2021; Hoefgen et al. 2023). The ovaries pos-
sess a predetermined number of follicular reserves, which 
diminish progressively from birth until menopause (Broek-
mans et al. 2009). Therefore, exposure to chemotherapeu-
tic regimens can negatively influence the depletion rate of 
these follicular reserves (Spears et al. 2019). In particular, 

treatments involving platinum complexes, such as cisplatin 
(CP), alkylating agents, and taxanes, have been identified to 
cause significant ovarian toxicity (van Dorp et al. 2018; van 
denBoogaard et al. 2022). Consequently, the likelihood of 
pregnancy among women post-cancer diagnosis and treat-
ment is 38% lower compared to the general female popula-
tion (Anderson et al. 2018).

CP, a potent broad-spectrum chemotherapeutic agent, is 
efficaciously employed against numerous solid tumors and 
gynecological cancers (Ozols et al. 2003; Jang et al. 2016; 
Kumar et al. 2017). Once inside the cell, CP binds to DNA 
bases, disrupting DNA replication and inducing apoptosis in 
cancer cells (Forgie et al. 2022). Despite its clinical efficacy, 
CP is associated with a significant risk of ovarian failure (Blu-
menfeld 2012). Several studies have consistently shown that 
CP leads to depletion of the ovarian primordial follicle reserve, 
leading to premature ovarian failure (POF) and infertility 
(Chang et al. 2015; Jang et al. 2016). The condition of POF is 
marked by reduced levels of gonadal hormones, notably the 
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anti-müllerian hormone (AMH) (Pouresmaeili and Fazeli 2014; 
Bedenk et al. 2020). Studies have demonstrated that CP ovar-
ian toxicity involves the induction of oxidative stress (Altuner 
et al. 2013; Yan et al. 2022), inflammation (Ibrahim et al. 2021; 
Algandaby 2021), and apoptosis (kaygusuzoglu et al. 2018; 
Algandaby 2021; Yan et al. 2022; Xing et al. 2022). Further, 
adverse ovarian effects of CIS were reported to involve modu-
lated phosphorylation and expression of key proteins including 
PTEN and Akt, eventually lead to loss of primordial follicles, 
accelerated activation of primordial follicles, follicular atresia, 
and damage to the vasculature (Spears et al. 2019).

Epimedium brevicornum is is a Chinese medicine that is 
commonly used for treatment of sexual dysfunction and osteo-
porosis (Agrawal et al. 2024). Also, it is also a component of 
modern proprietary traditional Chinese medicine products for 
the treatment of several ailments including arthritis, amnesia, 
infertility, and impotence (Ma et al. 2011). The plant belongs 
to the genus Epimedium that has been reported to contain fla-
vonoids, lignans, ionones, phenol glycosides, phenethyl alco-
hol glycosides and sesquiterpenes (Ma et al. 2011; Zhuang 
et al. 2023). Icariin (ICA) was found to be the major con-
stituent of Epimedium brevicornum and responsible for almost 
every pharmacological activity (Agrawal et al. 2024).. Also, 
ICA possesses a rich a wide range of applications in tradi-
tional medicine (He et al. 2020). It is commonly used as an 
aphrodisiac agent and for the treatment of erectile dysfunction 
through its ability to increase blood flow and enhance sexual 
function (Chen et al. 2014). Beyond its traditional uses, ICA 
has been extensively reported to offer various pharmacological 
properties. These include protective effects on the cardiovas-
cular and immune systems and anti-depressant and anti-tumor 
properties (Li et al. 2015a). Moreover, ICA protects gainst 
experimentally-induced ovarian failure (Wang et al. 2019; 
Li et al. 2024) and ovarian insufficiency (Chen et al. 2014). 
It exhibits potent antioxidant activities, contributing further 
to its therapeutic profile (El-Shitany and Eid 2019; Xia et al. 
2022). Additionally, ICA has been shown to exert significant 
anti-inflammatory effects by inhibiting nuclear factor kappa 
B (NF-κB) signaling pathways (Deng et al. 2017; El-Shitany 
and Eid 2019; Zhang et al. 2021). It also demonstrates anti-
apoptotic activities, highlighting its potential for cellular pro-
tection (Deng et al. 2017). Thus, the current study aimed to 
investigates the protective potential of ICA against CP-induced 
ovarian toxicity in rats as well as its impact on expression of 
key proteins ovarian injury.

Materials and methods

Chemicals

ICA (> 97% purity) was acquired from Royal Pharm 
(Hangzhou, China). CP was sourced from EBEWE Pharma 

G.m.b.H. Nfg. KG (Unterach Am Attersee, Austria). All 
other chemicals used were of the highest commercial ana-
lytical quality.

Animals

Female Wistar rats (12–14-week-old, 200–220 g) were kept 
in our animal facility for two weeks to acclimate to labora-
tory conditions. The humidity and temperature in the animal 
house were maintained at 50% and 22 ± 2 °C, respectively. A 
12-h cycle of darkness and light was provided. There were 
plenty of standard food pellets and drinking water. The 
study was ethically approved by the Research Ethics Com-
mittee, the Faculty of Pharmacy, King Abdulaziz University 
(PH-1442–53).

Experimental design

A total of 30 female Wistar rats were allocated randomly 
into five groups (6 rats per group) as follows: Group I (Con-
trol) was the control group and received normal saline daily 
p.o. for 17 days and i.p. on the 7th and 14th days. Group 
II (ICA 10 mg) received ICA (10 mg/kg/day p.o.) by oral 
gavage once daily for 17 days. Group III (CP group) was 
injected by CP only (6 mg/kg/day; i.p.) as a single dose on 
the 7th and 14th days. Group IV (ICA 5 mg + CP) received 
ICA (5 mg/kg/day, p.o.) by gavage once daily for 17 days 
and was injected with CP 6 mg/kg/day i.p. one hour after 
ICA oral administration on the 7th and 14th days. Group 
V (ICA 10 mg + CP) received ICA (10 mg/kg/day, p.o.) by 
gavage once daily for 17 days and was injected with CP 6 
mg/kg/day i.p. one hour after ICA oral administration on the 
7th and 14th days (Algandaby 2021). The chosen doses were 
based on a pilot experiment.

At the end of the study, animals were anesthetized using 
ketamine (80 mg/kg, i.p.), and blood was collected from 
the retro-orbital plexus and centrifuged for 15 min at 3000 
rpm to separate the sera, which were subsequently stored 
at -80°C for future analyses. Next, animals were sacrificed 
by decapitation, and the ovaries were carefully removed, 
cleansed with normal saline, and weighed. The right ova-
ries were homogenized in phosphate buffered saline (0.1 
M, pH 7.4) to yield a 10% w/v homogenate for the bio-
chemical tests. The homogenate was kept at 4 °C for 15 
min before being centrifuged at 10,000 rpm, and the super-
natant was kept at -80 °C until the assays were performed. 
Part of the left ovaries were kept in 10% neutral formalin 
for histological and immunohistochemical examinations. 
The other part of the left ovary was flash-frozen in liquid 
nitrogen and kept in RNA later for molecular biomarker 
investigations.
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Determination of the serum levels of AMH 
and estradiol

According to the vendor's instructions, the serum levels 
of AMH and Estradiol were measured using an ELISA 
kit (MBS726534, MyBioSource, USA) and (K4266-100, 
Biovision, USA), respectively, following the manufac-
turer's instructions.

Histological assessments

Portions of the left ovaries that were fixed in formalin were 
dehydrated using ascending concentrations of alcohol. This 
was followed by paraffinization of the ovarian tissues and 
sectioning at a thickness of 5 � m. Xylene was used to depar-
affinize the sections, after which they were rehydrated and 
stained with hematoxylin and eosin (H&E). The slides were 
studied and photographed by light microscopy (Carl Zeiss 
Axiostar plus, Oberkochen, Germany). A pathologist blindly 
examined the slides and classified the follicles as primordial, 
pre-antral, antral, or atretic. Then, the percentage of healthy 
follicles was calculated as follows (Algandaby 2021):

Assessment of ovarian oxidative stress biomarkers

Oxidative injury markers such as content of malondi-
aldehyde (MDA) (Cat. No. MD 25 29, Biodiagnostic, 
Giza, Egypt) and activities of the enzymes superoxide 
dismutase (SOD) (Cat. No. SD 25 21, Biodiagnostic, 
Giza, Egypt) and catalase (CAT) (Cat. No. CA 25 17, 
Biodiagnostic, Giza, Egypt) in the homogenates of the 
ovary were assessed using commercial kits.

Immunohistochemical analysis

Paraffin-embedded blocks were deparaffinized by immersion 
of the tissue sections twice in 100% xylene for 15 min each 
time. Graded ethanol was used to complete a rehydration 

Number of primordial + pre antral + antral follicles

Total number of follicles
× X100

stage. Tissues were rehydrated and then rinsed with phos-
phate buffered saline (PBS) for 5 min. For antigen retrieval, 
sections were then incubated in boiling citrate buffer for 
5 min. Endogenous peroxidases were quenched by incuba-
tion in 3%  H2O2 for 10 min. The sections were then exposed 
to one of the following primary antibodies: TNF-α (Catalog 
# ab307164, ABCAM), IL-6 (Catalog # ab9324, ABCAM), 
NF-κB (Catalog # 8242, CST), PTEN (Catalog # ab170941, 
ABCAM), p-AKT (Catalog # 4060, CST), p-mTOR (Cata-
log # 2976, CST), and p-AMPKα (Catalog # 2535, CST) 
for overnight incubation at 4  °C, followed by a 20-min 
incubation with the secondary antibody at room tempera-
ture. Hematoxylin was used to counteract staining caused 
by peroxidase activity using DAB. Light microscopy was 
employed to assess the immunostaining. Image J software 
(1.46a, NIH, Bethesda, MD, USA) was used to quantify the 
immunostaining.

qRT‑PCR analysis

To determine the effect of ICA on CP-induced ovarian apop-
tosis, qRT-PCR was used to evaluate the mRNA expression 
levels of CASP3, Bax, and Bcl-2. Direct-zol RNA Miniprep 
Plus kit (R2072, ZYMO RESEARCH CORP., USA) was 
used to extract the total RNA from the ovary homogen-
ate. A spectrophotometer was used to determine the total 
RNA, which was then reverse-transcribed to cDNA using 
an appropriate kit (12594100, Thermo Fisher Scientific, 
Waltham, MA, USA). This was followed by amplification 
using the SYBR Green Master Mix Kit (204143, Qiagen, 
MD, USA). In the analysis of qRT-PCR data using the 
 2−ΔΔCt method, β-actin was used as a housekeeping gene. 
The primers are listed in Table 1 (Wang et al. 2015; Hareeri 
et al. 2023).

Statistical analysis

GraphPad Prism version 8 (GraphPad, La Jolla, CA, USA) 
was used for the statistical analysis. Mean ± standard devia-
tion (SD) was used to present the results. One-way ANOVA 
and the Tukey-post hoc test were used to determine the 
statistical significance between groups for each biomarker. 
Significance was taken at P < 0.05.

Table 1  Primers sequences Forward  Reverse 

Bax 5′- CCT GAG CTG ACC TTG GAG CA-3′ 5′-GGT GGT TGC CCT TTT CTA CT-3′
Bcl-2 5′-TGA TAA CCG GGA GAT CGT GA-3′ 5′-AAA GCA CAT CCA ATA AAA AGC-3′ 
CASP3 5′-AGC TGG ACT GCG GTA TTG AG-3′ 5′-GGG TGC GGT AGA GTA AGC AT-3′
β-actin 5′- TCC GTC GCC GGT CCA CAC CC-3′ 5′-TCA CCA ACT GGG ACG ATA TG-3′
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Results

Assessment of serum estradiol and AMH levels

Serum AMH and estradiol levels were evaluated as indica-
tors of ovarian function to determine the protective effects 
of ICA against CP-induced ovarian damage. As shown 
in Fig. 1, administration of ICA (10 mg/kg) alone had no 
impact on serum AMH levels. Cisplatin (7 mg/kg) injection 
significantly reduced serum AMH by 49% compared to the 
control group. Conversely, co-administration of ICA with 
CP mitigated this effect and enhanced AMH levels by 44 
and 52% as compared to CP-alone group. There were no 
significant differences in serum estradiol levels between all 
treatment groups.

Histopathological examination

Microscopic examination of ovaries from the control group 
(Fig. 2A) revealed normal histology of rat ovaries that exhib-
ited numerous corpora lutea with growing follicles in dif-
ferent stages of maturation and a few interstitial tissue cells. 
Likewise, the ovaries of rats from the ICA alone (10 mg/kg) 
group (Fig. 2B) were also histologically normal. Regard-
ing the CP (7 mg/kg) treated group (Fig. 2C), the exam-
ined sections showed marked histopathological alterations; 
interstitial cell hyperplasia was noticed, manifested by large 
polygonal pale vacuolated cells in between growing folli-
cles. Ovarian fibroplasia and fibrous strands in the ovarian 
tissue were also seen. Moderate improvement was noticed 
in the CP + ICA (5 mg/kg) co-treated group (Fig. 2D), as 
the examined sections exhibited mild and limited interstitial 
cell hyperplasia. The best protective action was detected in 
the CP + ICA (10 mg/kg) co-treated group (Fig. 2E), as all 
examined sections showed normal architecture.

Figure 2F demonstrates the effects of the four treat-
ments on the ovarian tissues of rats as a % of healthy fol-
licles. The combined administration of CP and ICA helped 
in retaining the health of the follicles. The group that was 
administered ICA (10 mg/kg) did not show a change in the 
percentage of healthy follicles compared with the control 
group. Cisplatin (7 mg/kg) reduced the follicle count by 
52% compared to the control group. In contrast, the groups 
treated with CP + ICA (5 mg/kg) and CP + ICA (10 mg/
kg) had significantly more healthy follicles (52% and 80%, 
respectively) than the CP group.

Assessment of oxidative stress biomarkers

To assess the effect of ICA on CP-induced ovarian oxida-
tive damage, the lipid peroxidation biomarker MDA, along 
with antioxidant enzymes SOD and CAT, were measured in 
ovarian tissues using ELISA kits. Table 2 demonstrates that 
ICA treatment (10 mg/kg) did not significantly alter oxida-
tive stress markers. However, the ovarian MDA content was 
significantly increased by 55%, while the levels of ovarian 
SOD and CAT were markedly reduced by 48% and 47% 
respectively as compared to control values following CP 
administration (7 mg/kg). Notably, the oxidant/antioxidant 
balance in the ovaries of CP-intoxicated rats was effectively 
restored by ICA co-treatment (5 and 10 mg/kg), as shown 
by a significant decrease in MDA levels (approximately 27% 
and 38% respectively) as compared to CP-alone group. This 
was paralled by enhancements of of SOD (37% & 63%) and 
CAT (43% & 65%) activities in the ovarian tissues by ICA (5 
or 10 mg/kg, respectively) as compared to CP-alone values.
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Fig. 1  Effect of ICA administration on serum hormones level in 
CP-induced ovarian impairment in rats. (A) AMH (ng/ml) level and 
(B) estradiol (pg/mg) level in different experimental groups. Data 
are expressed as mean ± SD (n = 6). a, b, c indicate significant differ-
ences from control, ICA (10 mg/kg), or CP (7 mg/kg), respectively, 
at p < 0.05 using one-way ANOVA followed by Tukey post-analysis
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Immunohistochemical determination of IL‑6, TNF‑α 
and NFκB (p65)

The anti-inflammatory effects of ICA against CP-induced 
ovarian inflammation were investigated. Figure 3 demon-
strates that the control group displayed only slight immu-
nopositivity for IL-6, TNF-α, and NF-κB. The expression 
levels of these inflammatory markers were unchanged 
when rats were treated with ICA alone (10 mg/kg). How-
ever, CP injection (7 mg/kg) significantly increased the 
expression of inflammatory markers IL-6, TNF-α, and 
NF-κB (in the evaluated nuclei), highlighted by strong 

brown staining. Quantification of optical densities showed 
significant increases in IL-6, TNF-α, and NF-κB (p65) 
expression by 132%, 135%, and 118%, respectively, com-
pared to respective control values. Co-administration of 
ICA (5 mg/kg) to CP treatment significantly reduced the 
immunostaining intensity for IL-6, TNF-α, and NF-κB 
(p65), which dropped by 35%, 31% and 25%, respectively, 
compared to the CP group. Increasing the ICA dose to 
10 mg/kg further decreased the immunostaining for IL-6, 
TNF-α, and NF-κB (p65), which declined by 50%, 47%, 
and 36%, respectively, compared to the CP group.
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Fig. 2  Representative photomicrographs of ovarian sections show-
ing the effect of ICA administration on CP-induced ovarian impair-
ment in rats. The ovarian sections stained with hematoxylin and 
eosin (H&E) are shown from the following groups: (A) The con-
trol group has a normal architecture of the ovaries. (B) ICA 10 mg/
kg group with no observable histological changes. (C) CP 7  mg/kg 
group showing inflammation in the ovarian follicles. Arrows point 
to marked interstitial cells hyperplasia as cords and clusters of vacu-
olated cells occupying the ovarian tissue with increasing numbers of 

atretic follicles. (D) CP group co-treated with ICA 5 mg/kg showing 
almost normal follicles and corpora lutea with mild interstitial cells 
hyperplasia. (E) CP group co-treated with ICA 10  mg/kg show-
ing healthier development. (F) Effect of ICA on the percentage of 
healthy follicles in CP-induced ovarian impairment in rats. Data are 
expressed as mean ± SD (n = 6). a, b, c, d indicate significant differences 
from control, ICA (10 mg/kg), CP (7 mg/kg), or CP + ICA (5 mg/kg), 
respectively, at p < 0.05 using one-way ANOVA followed by Tukey 
post-analysis

Table 2  Effect of ICA 
administration on ovarian 
oxidative stress biomarkers in 
CP-induced ovarian impairment 
in rats

Data are expressed as mean ± SD (n = 6). a, b, c indicate significant differences from control, ICA (10 mg/
kg), or CP (7 mg/kg), respectively, at p < 0.05 using one-way ANOVA followed by Tukey post-analysis

Group MDA (nmol/mg Protein) SOD (U/mg Protein) CAT (U/mg Protein)

Control 2.90 ± 0.30 6.60 ± 0.70 51.30 ± 5.60
ICA (10 mg/kg) 2.65 ± 0.25 6.50 ± 0.68 53.00 ± 6.10
CP (7 mg/kg) 4.50 ± 0.44 a,b 3.50 ± 0.37 a,b 27.20 ± 3.10 a,b

CP + ICA (5 mg/kg) 3.30 ± 0.36 c 4.80 ± 0.50 a,b,c 39.00 ± 4.00 a,b,c

CP + ICA (10 mg/kg) 2.80 ± 0.29 c 5.70 ± 0.58 c 45.00 ± 4.70 c
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Assessment of mRNA expression of Bax, Bcl‑2 
and CASP3

To assess the effect of ICA on apoptosis, the mRNA 
expression levels of the apoptotic markers Bax, Bcl-2, 
and CASP3 were evaluated by RT-PCR in ovarian tissues 
(Fig. 4). Treating rats with ICA alone (10 mg/kg) did not 
affect the expression level of these apoptosis markers rela-
tive to the control. Conversely, the administration of CP 
(7 mg/kg) resulted in an increased mRNA expression of 
Bax (a pro-apoptotic protein) by 280% in comparison to 

the control (Fig. 4A). Interestingly, co-treatment of the CP 
group with ICA at doses of 5 and 10 mg/kg significantly 
reduced this increase in Bax mRNA expression by 42% and 
66%, respectively, compared to the CP group. Moreover, 
the CP (7 mg/kg) group exhibited a significant decrease 
in the mRNA expression level of Bcl-2 (an anti-apoptotic 
protein) by 57% compared to the control (Fig. 4B). In 
contrast, ICA co-administration at 5 and 10 mg/kg doses 
markedly enhanced the Bcl-2 mRNA expression by 69% 
and 81%, respectively, compared to the CP group.

Fig. 3  Effect of ICA administration on the expression of inflamma-
tory markers in ovarian sections. This figure presents photomicro-
graphs of IL-6 (upper panel), TNF-α (middle panel), and NF-κB 
(lower panel) immune reactions in different experimental groups. Bar 
charts represent the semi-quantification of the expression of corre-

sponding proteins. Data are expressed as mean ± SD (n = 6). a, b, c, d 
indicate significant differences from control, ICA (10  mg/kg), CP 
(7 mg/kg), or CP + ICA (5 mg/kg), respectively, at p < 0.05 using one-
way ANOVA followed by Tukey post-analysis
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Fig. 4  Effect of ICA administration on mRNA expression of apop-
totic markers in CP-induced ovarian impairment in rats. (A) Bax, 
(B) Bcl-2, and (C) CASP3 in different experimental groups. Data are 
expressed as mean ± SD (n = 6). a, b, c, d indicate significant differences 

from control, ICA (10 mg/kg), CP (7 mg/kg), or CP + ICA (5 mg/kg), 
respectively, at p < 0.05 using one-way ANOVA followed by Tukey 
post-analysis
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Additionally, CP (7 mg/kg) injection led to a significant 
elevation in CASP3 mRNA expression by 176% relative to 
the control (Fig. 4C). As expected, co-administration with 
ICA at 5 and 10 mg/kg provided considerable protection 
against this increase by 34% and 39%, respectively, com-
pared to the CP group.

Immunohistochemical determination of PTEN, AKT, 
mTOR and AMPK

Figure 5 demonstrates no notable difference between the 
ICA and the control groups. However, rats that received 
CP (7 mg/kg) exhibited a significant decrease in immu-
nostaining for PTEN, p-AKT, p-mTOR, and p-AMPKα 
with reductions of 60%, 60%, 57%, and 58%, respectively, 
when compared to the control group. When ICA (5 mg/kg) 
was co-administered, there was a marked increase in the 
levels of PTEN, p-AKT, p-mTOR, and p-AMPKα increasing 
by 68%, 34%, 26%, and 37%, respectively, in comparison 
to the CP treated group. Importantly, using a higher dose 
of ICA (10 mg/kg) with CP led to even more significant 

enhancements in PTEN, p-AKT, p-mTOR, and p-AMPKα 
expression by 113%, 95%, 84%, and 68%, respectively, com-
pared to the CP treated group.

Discussion

The advent of chemotherapeutic agents like CP has markedly 
improved cancer survival rates. However, the resultant off-
target effects, particularly ovarian toxicity, pose significant 
challenges, especially for female patients of reproductive 
age (Chow et al. 2016). This has driven a search for miti-
gating strategies and increased interest in phytochemicals 
known for their extensive therapeutic potential and minimal 
side effects. Our study focused on ICA, a flavonoid known 
for its multifaceted pharmacological activities, including 
anti-oxidative and anti-inflammatory effects (Li et al. 2010; 
He et al. 2020; Seyedi et al. 2023). Here, we demonstrated 
ICA's effectiveness in alleviating CP-induced ovarian dam-
age by reducing histological damage and improving ovarian 
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function markers such as AMH while modulating key signal-
ing pathways involved in cellular survival and inflammation.

In evaluating the protective effects of ICA against CP-
induced ovarian toxicity, this study assessed biochemical 
markers and histological changes in ovarian tissues. It was 
observed that serum AMH levels, indicative of the quantity of 
primordial ovarian follicles, were significantly declined fol-
lowing CP administration (Kevenaar et al. 2006). ICA treat-
ment restored serum AMH levels to almost normal values, 
highlighting its capacity to shield against CP-induced ovar-
ian damage—a finding supported by earlier reports (Li et al. 
2015b; Jiang et al. 2019). Despite the observed changes in 
AMH levels, serum estradiol levels remained stable across all 
groups. This suggests that the protective mechanism of ICA 
may specifically target the preservation of ovarian reserve 
without altering the overall hormonal balance. Histological 
analysis revealed substantial ovarian damage in response to 
CP exposure, notably a reduced count of healthy primordial 
ovarian follicles. This observation aligns with previous find-
ings indicating CP's impact on ovarian primordial follicle 
numbers (Chang et al. 2015). However, our data revealed that 
ICA treatment effectively mitigated these histopathological 
changes. The administration of ICA, particularly at higher 
doses, significantly preserved the count of healthy follicles 
in a dose-dependent manner. These findings are in line with 
previous studies marking the ability of ICA to protect against 
experimentally-induced ovarian injury induced by D-galac-
tose (Li et al. 2019) and CP (Li et al. 2024).

Oxidative stress is a critical factor in CP-induced toxici-
ties, substantially impairing the antioxidant defense system 
and raising the production of ROS, which in turn triggers 
apoptosis through increased release of pro-apoptotic fac-
tors (Santos et al. 2007; Hassanein et al. 2022; Ali et al. 
2023). Specifically, CP has been shown to elevate MDA 
levels while decreasing the activities of critical free radi-
cal scavenging enzymes such as SOD and CAT in ovarian 
tissues, confirming its role in ovarian toxicities in rat mod-
els (Altuner et al. 2013). This insight builds on our prior 
findings, where ICA was shown to mitigate carrageenan-
induced acute inflammation by enhancing both enzymatic 
and non-enzymatic antioxidants (El-Shitany and Eid 2019). 
Additionally, previous reports emphasize ICA's effectiveness 
in countering CP-induced oxidative stress and cell damage 
(Zhou et al. 2019). ICA has been shown to explicitly attenu-
ate oxidative stress by modulating antioxidants such as glu-
tathione peroxidase (GSH-Px), CAT, and SOD and lower-
ing MDA levels (Yoon et al. 2021), thereby diminishing the 
detrimental effects of CP (Zhou et al. 2019; Xia et al. 2022). 
Our current study extends these observations by confirming 
ICA's capacity to alleviate oxidative damage, as evidenced 
by its impact on enhancing antioxidant enzyme activities 
(SOD and CAT) and reducing MDA levels in the ovaries of 
CP-treated rats.

CP-induced release of oxidative stress has been linked to 
inflammatory pathways, notably activating NF-κB, which 
is implicated in organ toxicities (Abdel-Wahab et al. 2021; 
Ali et al. 2021; Sami et al. 2022; Ramadan et al. 2023). In 
line with these findings, a previous study showed that CP 
injection elevated expression of pro-inflammatory cytokines 
like IL-6, IL-1β, and TNF-α in ovarian tissues (Algandaby 
2021). Interestingly, our findings showed that ICA effec-
tively reduces NF-κB expression along with diminishing 
the expression of IL-6 and TNF-α in ovarian tissues in a 
dose-related fashion. This suggests ICA's effectiveness in 
reducing the pro-inflammatory impacts triggered by CP. 
Such findings align with prior research recognizing ICA's 
anti-inflammatory effects, further establishing its role as an 
effective countermeasure to CP-induced inflammatory harm 
(Deng et al. 2017; El-Shitany and Eid 2019; Zhang et al. 
2021).

This study explored ICA’s critical function in protect-
ing ovarian tissues from CP-induced apoptosis, specifically 
through its interactions with the Bcl-2 family of proteins 
essential for regulating apoptosis. This family includes pro-
apoptotic proteins such as Bax, which initiate apoptosis via 
caspase activation, and anti-apoptotic proteins like Bcl-2, 
which block apoptosis by preventing Bax translocation to 
mitochondria (Deng et al. 2017). Our findings revealed that 
CP significantly altered the critical balance within ovar-
ian tissues, enhancing Bax and decreasing Bcl-2 mRNA 
expression, amplifying apoptotic activities. This highlights 
the complex regulation of apoptosis essential for cellular 
health, reflecting similar outcomes observed in previous 
research (Hengartner 2000; Cory and Adams 2002; Deng 
et al. 2017). Further, a rise in CASP3 mRNA expression was 
observed following CP insult, confirming apoptosis progres-
sion. However, these observations were significantly miti-
gated by ICA treatment. This aligns with previous studies, 
reinforcing ICA's anti-apoptotic efficacy (Shao et al. 2022; 
Wu et al. 2023). The ability of ICA to reverse CP-induced 
changes in gene expression related to apoptosis suggests a 
complex mechanism of action.

PTEN/AKT/mTOR/AMPK signaling pathway plays a 
vital role in cellular defenses against chemotherapy's oxi-
dative and inflammatory impacts, influencing crucial cel-
lular processes such as proliferation, survival, and metabo-
lism (Zhou et al. 2017). Previous studies highlighted CP’s 
detrimental effects on this pathway, mainly showing that 
a significant reduction in the mRNA expression levels of 
AKT, mTOR, and PTEN in ovarian tissues, contributes to 
ovarian toxicity (Al-Shahat et al. 2022). Our immunohis-
tochemical analysis corroborates these findings, revealing 
a substantial decrease in the immunostaining of PTEN, 
p-AKT, p-mTOR, and p-AMPKα in CP-treated rats. This 
disruption in signaling pathways is likely pivotal in reduc-
ing ovarian primordial follicles and the subsequent onset 
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of premature ovarian failure (Chang et al. 2015). In con-
trast, the co-administration of ICA with CP effectively 
counteracted the negative impacts of CP, showing a dose-
dependent upregulation of PTEN, p-AKT, p-mTOR, and 
p-AMPKα. Data on ICA's impact on PTEN expression 
are controversial (Zou et al. 2020; Al-Shahat et al. 2022). 
Notably, ICA has been shown to enhance the expression of 
the Akt/mTOR signaling pathway and reduce autophagy 
and apoptosis in cisplatin-resistant ovarian cancer cells 
(Jiang et al.2019). Additionally, ICA influences the pro-
liferation and apoptosis of human ovarian cancer cells by 
increasing the expression of targeting proteins such as 
PTEN and Bcl-2 (Li et al. 2015b). These findings suggest 
that ICA's modulation of this signaling pathway could be 
a promising strategy for protecting against CP-induced 
ovarian toxicity, highlighting its potential therapeutic ben-
efits in enhancing the efficacy and safety of chemotherapy 
treatments.

Conclusion

In conclusion, our study highlights the potential of ICA to mit-
igate the adverse effects of CP on ovarian tissues, demonstrat-
ing its potential as a viable adjunct therapy in chemotherapy. 
Administration of ICA was associated with attenuation of the 
histopathological changes, enhancing serum AMH levels, and 
restoring the oxidant-anti-oxidant balance in ovarian tissues. 
Furthermore, ICA effectively exhibited anti-inflammatory and 
anti-apoptotic activities. Additionally, ICA enhanced PTEN, 
p-AKT, p-mTOR, and p-AMPKα expression. These multifac-
eted protective effects justify further substantiation of ICA's 
efficacy in preserving ovarian reserve in CP-treated patients.
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