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Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated 
inflammatory chronic diseases. Despite being frequently prescribed, MTX’s severe multiple toxicities can occasionally 
limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and 
patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal 
toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key 
factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-
inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-
kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 
(JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear 
factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that 
counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counter-
acting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, 
perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review 
aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alle-
viated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage 
and the development of various agent plans to attenuate MTX-mediated intestinal injury.
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Introduction

Intestinal mucosal injury is a common unfavorable side 
effect of chemotherapy, which arises from the drugs’ ina-
bility to distinguish between normal and tumor cells. The 
intestinal epithelial cells are frequently attacked during 
chemotherapy treatments due to their ability to prolifer-
ate quickly (Dahlgren et al. 2021). Up to 25–75% of can-
cer patients undergoing various chemotherapy treatments 
experience chemotherapy-induced intestinal mucosal 
injury which can include diarrhea, a decline in quality of 
life, treatment intolerance that forces discontinuation of 
drugs, and even mortality (Li et al. 2023). Methotrexate 
(MTX), a chemotherapeutic medication that has a folate 
antagonistic effect, is frequently used to treat multiple 
types of cancers, including breast cancer and lymphoma as 
well as immune-mediated inflammatory chronic diseases 
(Joerger et al. 2012). Unfortunately, MTX cytotoxicity is 
not limited to cancer cells but extends to affect non-can-
cer cells of vital organs such as intestinal mucosa (Tang 
et al. 2020). Gastrointestinal toxicity by MTX causes nau-
sea, vomiting, and loss of nutrient absorption. Enteritis 
is distinguished histologically by crypt loss and atrophy 
of intestinal villi (Miyazono et al. 2004). Administration 
of MTX impairs mucosa barrier function, which causes 

bacterial translocation and inflammation. Also, its admin-
istration results in intestinal damage involving notable 
morphological small intestine injury and mucosal dam-
age (Huang et al. 2020). Besides, MTX treatment causes 
DNA strands to break in intestinal epithelial cells that pro-
liferate quickly (Sonis 2004) and induces oxidative stress 
(El-Sheikh et al. 2016; Gautam et al. 2016). More signifi-
cantly, MTX may have harmful consequences by inducing 
a dynamic series of inflammatory events in the intestinal 
epithelium and submucosal tissues that are initiated by 
direct cellular damage (Sonis 2004; Sonis et al. 2004). 
Consequently, the purpose of the underlying review is to 
elucidate the potential molecular mechanisms of MTX-
induced intestinal injury and study the protective strategies 
involved in the amelioration of this injury. In particular, 
we aimed to assess the role of inflammation and oxidative 
stress with a focus on the nuclear factor-kappa B (NF-
κB), the Janus kinase/signal transducer and activator of 
the transcription3 (JAK/STAT3), nuclear factor erythroid-
2-related factor 2/heme oxygenase-1 (Nrf2/HO-1), peroxi-
some proliferator-activated receptor-gamma (PPAR-γ), and 
silent information regulator-1 (SIRT1) in pathogenesis 
of intestinal injury induced by MTX. A deeper under-
standing of the molecular mechanisms involved in MTX-
induced intestinal injury may help to explain a number 
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of the drug’s toxicities and develop multiple strategies to 
be investigated to ameliorate the harmful adverse effects 
of MTX.

Chemical properties of methotrexate

The antifolate medication MTX, also referred to 4-amino-
N10-methylpteroylglutamic acid, was developed in 1940 
as the first anticancer medication (Abolmaali et al. 2013). 
MTX and folic acid have remarkably similar structures. 
The structure of MTX consists of a pteridine-diamine core 
and a p-amino benzoyl portion connected to a glutamic 
acid segment containing two highly ionizable carboxylic 
acid groups. Since MTX must dissolve in neutral or basic 
solutions, its solubility is pH-dependent. S and R stereoiso-
mers are the product of an asymmetric carbon in the mol-
ecule. The R isomer is considered an impurity, and S-MTX 
is regarded as the active form (Guichard et al. 2017). It is 
evident that the substitution of an amino function for the 
hydroxyl group on C2 and the methylation of N10 are the 
primary structural differences between MTX and the struc-
ture of naturally occurring folic acid (Rubino 2001). The 
structures of folic acid, MTX, and its three main metabolites 
are illustrated in Fig. 1.

Indication of methotrexate

MTX is an FDA-approved drug for treating rheumatoid 
arthritis patients. It may also be useful in patients suffering 
from juvenile idiopathic arthritis (Braun 2010). MTX was 
used initially in rheumatoid arthritis after a double-blind, 
placebo-controlled clinical trial of MTX in rheumatoid 
arthritis patients (Weinblatt et al. 1985). Nowadays, MTX 
is one of the main chemotherapeutic options for treating dif-
ferent kinds of cancer. It is frequently used to manage sev-
eral cancer types including lung cancer, lymphoma, bladder 
cancer, and breast cancer (Joerger et al. 2012; Khan et al. 
2012) and at low doses for many autoimmune illnesses like 
systemic lupus erythematosus (Cipriani et al. 2014; Bedoui 
et al. 2019). Besides, European and American guidelines 
recommend the use of MTX for active Crohn’s disease and 
psoriasis (Gomollón et al. 2017; Coates et al. 2020; Nielsen 
et al. 2020). Additionally, MTX has demonstrated efficacy 
when paired with anti-tumor necrosis factor-alpha (TNF-α) 
drugs in the treatment of individuals suffering from ulcera-
tive colitis, breast cancer, lung carcinoma, head and neck 
malignancies, and ovarian carcinoma (Chande et al. 2014).

Mechanism of action of methotrexate 
in cancer and autoimmune diseases

MTX has a special mode of action when used in chemo-
therapy and immunosuppression in autoimmune condi-
tions. In cancer, MTX acts as an antifolate antimetabolite. 

Fig. 1   Chemical structures of 
folic acid, MTX, and its main 
metabolites
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When MTX enters a cell through carriers referred to as 
human-reduced folate carriers (SLC19A1), polyglutamate 
synthetase attaches glutamate residues to the γ-carboxylate 
group of MTX, converting it into methotrexate polygluta-
mates (MTX-PGs). Glutamyl hydrolase, on the other hand, 
converts MTX-PGs back into MTX. Dihydrofolate reductase 
(DHFR) which catalyzes the conversion of dihydrofolate 
into tetrahydrofolate, the active form of folic acid, is com-
petitively inhibited by MTX and MTX-PGs, which depletes 
vital tetrahydrofolate (THF) needed for cellular functions 
(Xu et al. 2022). DNA and RNA synthesis is inhibited by 
the dual inhibitory action of MTX-PGs on thymine synthase 
and DHFR, which results in the inhibition of purine and 
pyrimidine de novo synthesis (Giletti and Esperon 2018; 
Cheng et al. 2021; Mikhaylov et al. 2019). DHFR is a key 
enzyme in the process of thymidylate synthesis, catalyzing 
the folate reduction to THF in two steps: during the first 
step, folates are reduced to dihydrofolate (DHF), which are 
further reduced to THF (Neradil et al. 2012). The organism 
contains several active folate forms, including 5-methyl-
THF, 10-formyl-THF, and 5,10-methylene-THF, which are 
donors of monocarbon units like methyl, formyl, and methyl-
ene (Assaraf 2006). The hydroxy methyltransferase enzyme, 
which is also involved in the conversion of L-serine to gly-
cine, mediates the conversion of THF to 5,10-methylene-
THF. 5,10-Methylene-THF is a carbon donor and coenzyme 
in the methylation of 2-deoxyuridine-5-monophosphate 
(dUMP) to 2-deoxythymidine-5-monophosphate (dTMP) 
which is being mediated by thymidylate synthase. Lack of 
THF directly affects de novo pyrimidine synthesis (Rao et al. 
2003). THF is necessary for the synthesis of the nucleotides 
in both DNA and RNA. MTX-polyglutamate further sup-
presses DNA synthesis by blocking the de novo production 
of purine and thymidylate synthase (Singh et al. 2019). For 
autoimmune diseases, MTX is the recommended medica-
tion for several reasons. MTX-glu inhibits the folate pathway 
component thymidylate synthetase that promotes thymine 
nucleoside residue generation. Additionally, MTX-glu pre-
vents the conversion of 5-aminoimidazole-4-carboxamide 
ribonucleotide (AICAR) to formaminoimidazole-4-carboxa-
mide ribonucleotide (FAICAR) by inhibiting the key enzyme 
AICAR transformylase (ATIC) in the purines de novo syn-
thesis pathway, leading to the accumulation of AICAR 
(Friedman and Cronstein 2019). The release of adenosine 
into extracellular space is promoted by the buildup of 
AICAR. Adenosine has an anti-inflammatory effect by inter-
acting with receptors on neutrophils and monocytes (Whittle 
and Hughes 2004). Because of its anti-inflammatory prop-
erties, adenosine inhibits methyltransferase activity, which 
stops interleukin-1beta (IL-1β) from binding to its cell sur-
face receptor, suppresses T-cell activation, down-regulates 
B-cells, and enhances the sensitivity of activated CD-95 
T cells (Mikhaylov et al. 2019; Tukukino and Wallerstedt 

2020). By blocking ATIC with MTX-glu, pro-inflammatory 
cytokines such as TNF-α, IL-1, and IL-6 can also be signifi-
cantly decreased (Budzik et al. 2000).

Administration of methotrexate

MTX is usually given as a single weekly dose in treating 
autoimmune disorders. In clinical practice, based on clini-
cal response or intolerance, the starting dose of medication 
is 10 mg/week, with increases of 5 mg every 2–4 weeks, up 
to a maximum dose of 20–30 mg/week (Visser and van der 
Heijde 2009; Inoue and Yuasa 2014). MTX monotherapy 
has been included in recent clinical guidelines for the treat-
ment and remission maintenance of active Crohn’s disease 
(Torres et al. 2020; Feuerstein et al. 2021). Previous publica-
tions demonstrated the effectiveness of intramuscular (IM) 
MTX at a dose of 25 mg/week for 12 months in a rand-
omized controlled trial including thiopurine-naïve patients 
with Crohn’s disease (Feagan et al. 1995; Park et al. 2023a). 
The use of parenteral MTX has gained popularity recently 
and is more beneficial than taking it orally, especially when 
administered subcutaneously (SC). It has been demonstrated 
that SC MTX is more clinically effective and has better tol-
erance than the oral route. Currently, when oral MTX is not 
tolerated or shows insufficient clinical response, SC MTX 
treatment is advised (Visser and van der Heijde 2009; Bello 
et al. 2017).

Pharmacokinetic of methotrexate

Absorption

Following oral treatment, MTX is absorbed in the proximal 
jejunum by the proton-coupled folate transporter (PCFT/
SLC46A1), which then transports reduced folates in addition 
to MTX (Desmoulin et al. 2012). A tiny amount of MTX 
may be converted by intestinal bacteria to 4-amino-4-de-
oxy-N10-methylpterroic acid (Grim et al. 2003). Although 
MTX has a relatively high bioavailability (64–90%), it varies 
significantly among patients and reaches a plateau at doses 
beyond 15 mg/week, suggesting intestinal transporter satu-
ration (Hillson and Furst 1997; Hoekstra et al. 2004; Schiff 
et al. 2014). Studies have shown that SC MTX has a better 
bioavailability than oral MTX (Hoekstra et al. 2004; Bianchi 
et al. 2016).

MTX bioavailability varies from 30 to 90% in different 
people. Under fasting conditions, MTX’s Tmax was attained 
in 0.75–2 h, and its Cmax ranged from 0.3 to 1.6 µmol/L. 
Food does not considerably alter the bioavailability of MTX; 
however, it slightly prolongs the Tmax and decreases the 
Cmax. Various administration routes result in varying 
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medication concentrations. When MTX is injected with IM 
or SC, the serum concentration is extremely high (Rajitha 
et al. 2017). The concentration of MTX in the synovium is 
significantly higher than that in the serum following intraar-
ticular injection. The synovial MTX concentration is equiva-
lent to the plasma concentration after oral or IM treatment 
(Rajitha et al. 2017).

The oral absorption of MTX is rapid but incomplete 
due to factors like receptor saturation, the inhibitory effect 
of food on its absorption, and rapid metabolization by gut 
flora (Attwa et al. 2019). The SC method of administration 
of MTX is becoming more popular, despite the oral route 
still being used the most commonly. The reason for this is 
that multiple trials have shown that the bioavailability of 
SC MTX is greater, and the bioavailability of oral MTX is 
somewhat variable. The bioavailability of oral MTX exhibits 
significant interpatient variability and a plateaued effect at 
doses over 15 mg/week. In contrast, the bioavailability of SC 
MTX is dose-dependent and linear, displaying no plateau 
(Schiff et al. 2014). In fact, some clinical trials have also 
suggested switching from the oral to the parenteral route of 
MTX administration (Jundt et al. 1993; Hoque et al. 2023). 
Studies on SC MTX have also revealed a good risk-benefit 
profile, indicating that the SC route may be superior to the 
oral route for administering higher doses of MTX because of 
the speed and sustainability of response (Warren et al. 2017; 
Dogra et al. 2022).

It is currently unclear what mechanism underlying the 
saturation and variability of oral bioavailability of MTX 
in clinical practice (Murakami and Mori 2012). Besides, 
the increase in oral bioavailability by administration of a 
higher oral dose of MTX suggests the contribution of satu-
rated transport in oral bioavailability (VanWert and Sweet 
2008). MTX is recognized as a substrate for several trans-
porters, such as solute carrier (SLC) influx transporters and 
ATP-binding cassette transporters (ABC) efflux transport-
ers. Regarding SLC transporters, reduced folate carrier 
(RFC), proton-coupled folate transporter (PCFT), organic 
anion transporter 3 (OAT3), and organic anion transport-
ing polypeptide 1A2 (OATP1A2) all transport MTX as a 
substrate (Badagnani et al. 2006; Shibayama et al. 2006). 
Intestines exhibit PCFT and RFC, with PCFT being par-
ticularly expressed in the brush-border membranes of the 
proximal small intestine (Urquhart et al. 2010). Multiple 
strategies for optimizing MTX dosing regimens should be 
followed to ensure consistent drug exposure in patients. 
Oral MTX responsiveness can be enhanced by administer-
ing a large starting dose and rapidly titrating the medica-
tion; this approach does not seem to compromise safety or 
tolerability (Bello et al. 2017). Patients who are not able 
to tolerate MTX treatment or whose efficacy is insufficient 
can be “rescued” by converting to SC MTX. Beginning 
with SC MTX should also be taken into consideration due 

to its advantageous pharmacokinetic profile and absorption 
(Tornero Molina et al. 2021). Treatment persistence is prob-
ably going to be improved if patients are started on SC MTX 
or switch from oral to SC delivery (Li et al. 2021a).

Distribution

MTX can be distributed to synovial fluid in amounts similar 
to those in plasma (Herman et al. 1989).

Metabolism

One of MTX’s main metabolites, 7-hydroxymethotrexate 
(7-OH-MTX), is produced by the liver during the first-pass 
metabolism of MTX (Seideman et al. 1993).

Excretion

Renal excretion is the main route of MTX elimination. The 
medication goes through active tubular secretion and reab-
sorption in addition to being filtered by the glomeruli. Bile 
excretes a tiny amount of MTX, and some enterohepatic 
recycling also takes place (Nuernberg et al. 1990; Seideman 
et al. 1993).

Renal elimination is the primary route of excretion for 
both MTX and its metabolites. This process involves glo-
merular filtration, tubular secretion, and tubular reabsorp-
tion. Tubular secretion and reabsorption have high interin-
dividual variability, and both can be saturated which can 
result in nonlinear pharmacokinetics (Van Roon and Van 
De Laar 2010; Maksimovic et al. 2020). Between 2 and 
12% of patients receiving high-dose MTX therapy may get 
acute kidney injury, mostly as a result of crystal nephropa-
thy caused by MTX and its metabolite, 7-OH-MTX. Under 
acidic conditions, MTX and its metabolite, 7-OH-MTX, 
precipitate pH-dependent crystals within the tubular lumen 
of renal tubules. Urine alkalinization dramatically improves 
MTX and 7-OH-MTX solubility and excretion reduc-
ing medication toxicities (Howard et al. 2016; Reed et al. 
2019). Since more than 90% of MTX is excreted by the 
renal tubules, any kidney problem could result in inefficient 
elimination of MTX. As a result, there may be a notable 
rise in MTX-related toxicities due to prolonged, persistent, 
or elevated MTX plasma levels. Renal impairment was 
thought to be caused by the precipitation of MTX and its 
metabolites in the renal tubules. Previous publications stated 
that renal tubular enlargement and MTX-induced kidney 
failure are the two reasons why MTX causes renal failure 
(Grönroos et al. 2006; Hamed et al. 2022). Therefore, as 
soon as MTX treatment starts, routine monitoring of serum 
creatinine and plasma MTX levels is crucial to predict the 
onset of renal failure. Recent studies have demonstrated the 
use of biomarkers for kidney impairment, including kidney 
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injury molecule-1 (KIM-1) and cystatin C in the diagnosis 
of kidney impairment (Hagos and Wolff 2010; van Meer 
et al. 2014).

Factors affecting MTX pharmacokinetics

Multiple factors contribute to the variability in MTX bio-
availability among patients. Age is considered a crucial fac-
tor in both pediatric and adult populations. Delayed MTX 
excretion increases with age as indicated by a previous study 
(Zang et al. 2019; Yang et al. 2024). Additionally, total pro-
tein, albumin, and globulin levels may have some influence 
on MTX’s clearance because of its about 50% protein bind-
ing rate (Mei et al. 2018). Urine pH has been implicated in 
MTX bioavailability. Both MTX and 7-OH-MTX show lim-
ited solubility in water under acidic circumstances (pH 5–7), 
with 7-OH-MTX having a solubility of three to five times 
lower than MTX (Schofield et al. 2015). Since urine pH is 
directly related to renal injury, in patients receiving MTX 
treatments, low urine pH in the early stages of treatment 
is a substantial independent risk factor for MTX-induced 
nephrotoxicity (Kawaguchi et al. 2021). MTX is mostly 
taken up by cells via the SLC superfamily of transporters 
such as SLC19A1, SLC21, SLC22, and SLC46A and can 
be pumped out by different ABC (Desmoulin et al. 2012). 
Multiple membrane-bound proteins make up the human SLC 
transporter family. This family influences the development 
of many human diseases due to the physiological and phar-
macological roles of its members. For this reason, research 
on SLC transporters is a crucial area for the study of ther-
apeutic medications. In addition, gene polymorphisms in 
SLC transporters impact drug efficacy and toxicity (Schaller 
and Lauschke 2019). The solute carrier family 19 member 
1 (SLC19A1) is encoded by the RFC1 gene. The second 
exon of RFC1 gene known as rs1051266 (80 G > A) has 
the most prevalent single nucleotide polymorphism (SNP), 
which causes arginine to histidine substitution, therefore 
modifying the transport capacity of MTX and subsequent 
pharmacokinetic profile of MTX (Giletti and Esperon 2018; 
Xu et al. 2022).

Adverse effects of methotrexate

Intestinal inflammation and injury are a common side effect 
of MTX treatment, which are caused by elevation in oxidant 
parameters and a decline in antioxidant status (Ozcicek et al. 
2020). Additionally, various difficult toxicities associated 
with MTX such as testicular toxicity, which is regarded as 
a severe adverse effect that may result in infertility, may 
limit the drug’s therapeutic impact (Howard et al. 2016). 
Liver injury is also developed following MTX administra-
tion characterized by elevated liver function biomarkers 

(Bannwarth et al. 1994; Ezhilarasan 2021). As a member of 
category X medication, MTX is not recommended for usage 
during pregnancy. If this treatment is provided to a female 
of reproductive age, she must be aware of the possibility 
of teratogenesis and be instructed to use double contracep-
tion. Patients may also get mucosal ulcers when taking large 
doses. Other potentially severe side effects include gastroin-
testinal bleeding, pancreatitis, alopecia, lethargy, high body 
temperature, low white cell count, infections, and intersti-
tial pneumonitis (Kremer et al. 1995; Gohar 2019; Yang 
et al. 2024). Generally speaking, toxicity rather than inef-
fectiveness is the primary reason for stopping MTX treat-
ment (Romao et al. 2014). Periodic, meticulous, and suffi-
cient patient monitoring appears to considerably reduce the 
dangers associated with the administration of MTX (Braun 
2010). A better knowledge of MTX’s molecular mechanisms 
of action could aid in the explanation of many toxicities 
associated with the drug (Tian and Cronstein 2007).

Molecular mechanisms promoting intestinal 
injury in methotrexate injury

The exact mechanism of intestinal toxicity caused by MTX 
is not fully understood. However, it was reported that MTX 
could cause intestinal damage via producing reactive oxygen 
species (ROS) and transcription factor activation as NF-ĸB 
(Miyazono et al. 2004; Natarajan et al. 2018). NF-ĸB regu-
lates the production of numerous cytokines and mediates 
cell damage, which can be activated by ROS generation 
(Baeuerle and Baichwal 1997; Asehnoune et  al. 2004). 
The production of inflammatory cytokines such as TNF- α, 
IL-1β, and IL-6 is provoked by ROS production (Asami and 
Shimizu 2021). Also, MTX administration leads to inflam-
matory cascades involving the activation of NF-κB, with 
increased expression of pro-inflammatory cytokines such as 
IL-6 and TNF-α, followed by activation of the JAK/ STAT3 
signaling (RFd et al. 2014; Kamel et al. 2022). Upon JAK/
STAT phosphorylation, it translocates to the nucleus, binds 
with the target gene promoter region, and provokes the tran-
scription of genes involved in the inflammatory reactions 
(Rawlings et al. 2004; Xin et al. 2020) (Fig. 2).

Role of inflammation in MTX‑induced intestinal 
injury

Inflammation is a physiological reaction of the body towards 
external and internal stimuli (Pahwa et al. 2023). Leuco-
cytes and plasma molecules are transported to tissues and 
infection sites via this process. Three main alterations take 
place during acute inflammation: increased capillary per-
meability, which permits larger serum molecules to enter 
the tissues, increased leukocyte migration into the tissue, 
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and increased blood flow to the affected area (Al-Kofahi 
et al. 2017). The activation of macrophages and lymphocytes 
which leads to a coordinated cytokine response is a hallmark 
of chronic inflammation (Germolec et al. 2018). A key fac-
tor in intestinal injury pathogenesis is inflammation (Huang 
et al. 2020). Inflammatory cells against antigens release 
molecules called cytokines that regulate immunological 
and inflammatory responses. IL-1β and TNF-α, which are 
related to inflammation, are among these cytokines. Among 
these substances that raise inflammatory cytokines is MTX 
(Yucel et al. 2016). Numerous previous investigations have 
suggested that increased pro-inflammatory cytokine levels 
are crucial in the development of MTX-induced intestinal 
damage (Tunalı-Akbay et al. 2010; He et al. 2015; Kirbas 
et al. 2015).

Involvement of nuclear factor‑kappa B (NF‑ĸB) 
in methotrexate‑induced intestinal injury

NF-kB is a key regulator of inflammation that is involved 
in the synthesis of inflammatory mediators and activa-
tion of pro-inflammatory cytokines (Liu et  al. 2017a). 
A cellular NF-κB regulates the expression of numerous 
immune system components and modulates inflammation 
(Li and Verma 2002). Among these are pro-inflammatory 
cytokines, chemokines, and inducible enzymes such as 
nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-
2). Moreover, NF-κB regulates cytokines including IL-2 

and IL-12 that affect the proliferation and differentiation 
of lymphocytes. Consequently, deregulation of NF-κB may 
lead to inflammatory conditions (Yamamoto and Gaynor 
2001). The cytoplasmic NF-κB complex is bound to an 
inhibitor of NF-kB (IκB) and exists in an inactive state. The 
IκB kinase (IKK) complex is activated by TNF-α and other 
cell stressors through a series of intermediate stages that 
result in IkB phosphorylation and ubiquitination, which in 
turn causes IkB degradation and activates NF-κB followed 
by nuclear translocation to bind a specific DNA sequence 
(As Jr 1996; Hacker and Karin 2006; Palkowitsch et al. 
2008). The transcriptional activation of NF-κB regulated 
genes implicated in inflammation, including IL-6 and TNF-
α, is the outcome of these activities (Khongthong et al. 
2019). In the same context, it is believed that the produc-
tion of pro-inflammatory cytokines such as TNF-α, IL-1β, 
and IL-6 are also thought to contribute to the intestinal 
damage caused by MTX. Also, TNF-α inhibitors have been 
shown to heal mucositis in studies on humans and animals 
(Logan et al. 2007; Kim et al. 2009; Kirbas et al. 2015). 
Earlier findings have proved that MTX administration 
induces a series of inflammatory cascades as evident by 
raised NF-κB, IL-1β, and TNF-α (Sayed et al. 2021; Abd 
El-Ghafar et al. 2022; Hassanein et al. 2023b). Similarly, 
multiple previous investigations have reported that NF-κB 
signaling activation is highly responsible for intestinal 
inflammation in MTX-induced intestinal injury (Hatada 
et al. 2000; Jahovic et al. 2004; Zhang et al. 2022).

Fig. 2   Illustration of the interplay between MTX, oxidative stress, JAK1/STAT3 pathway, and intestinal injury
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Role of JAK/STAT3/SOCS3 in MTX‑induced intestinal 
injury

Many ligands use the intracellular signal transduction path-
way known as JAK/STAT to activate target genes transcrip-
tionally. When ligands bind to their receptors, they cause 
JAK phosphorylation, which then stimulates STAT phos-
phorylation, which subsequently controls the transcription 
of target genes which produce chemokines and pro-inflam-
matory cytokines (Villarino et al. 2017). There are four cyto-
plasmic protein tyrosine kinases in the JAK class: JAK1, 
JAK2, JAK3, and TYK2 (Laurence et al. 2012). Seven tran-
scription factors are members of the STAT family: STAT1, 
STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6 
(Nicolas et al. 2013). Notably, inflammatory diseases that 
cause organ damage have also been associated with the JAK/
STAT signaling pathway. The three primary components of 
the JAK/STAT signaling system are JAK, STAT, and tyros-
ine kinase-associated receptors (Li et al. 2015). JAK/STAT 
is the traditional signal pathway for multiple cytokines and 
growth factor production (Xin et al. 2020). When cytokines 
like IL-6 bind to JAK/STAT3, STAT3 becomes phospho-
rylated. After nuclear translocation, the phosphorylated 
form of STAT3 acts as a transcriptional factor that boosts 
the production of genes related to inflammation (Huang 
et al. 2016; Zhu et al. 2019). Furthermore, STATs play a 
crucial role in neuronal and cytokine-mediated inflammation 
(Kim et al. 2011). Previous studies demonstrated that MTX 
administration provoked JAK1 and STAT3 phosphorylation 
in rat models of intestinal injury and hepatotoxicity using 
MTX (Hassanein et al. 2021; Sherif and Al-Shaalan 2022). 
The regulation of the JAK/STAT system involves numer-
ous mechanisms, one of which is the control of JAK kinase 
activity phosphorylation by suppressor of cytokine signaling 
(SOCS) proteins (Cha et al. 2015; Fouad et al. 2020; Hasan 
et al. 2022). The most important member of the SOCS fam-
ily is SOCS3, which can block JAK/STAT3 signaling in 
response to mitosis, growth factors, and cytokines (Xiao 
et al. 2018). SOCS3 has ability to reduce JAK phosphoryla-
tion by inhibiting JAK kinase binding and competing with 
JAK to prevent STAT3 phosphorylation (Lin et al. 2010). 
Previous study showed that MTX administration showed 
decline in SOCS3 (de Araujo Junior et al. 2014).

Correlation between oxidative stress 
and MTX‑induced intestinal injury

Moderate ROS is useful for multiple physiological processes 
such as wound healing, tissue repair, and the elimination 
of invasive pathogens. On the other hand, excessive ROS 
production leads to oxidative stress, disturbs homeostasis, 
and damages human tissue. It increases cellular swelling, 

decreases the fluidity of the cell membrane, and damages 
DNA, proteins, and lipids in cells (Lushchak 2014; Zhang 
et al. 2016). A significant source of ROS is the gastrointes-
tinal tract, and many gastrointestinal disorders are caused 
by ROS. Overexposure to oxidative stress causes intestinal 
inflammation and mucous epithelium apoptosis, further 
impairing the intestinal mucosa barrier (Bhattacharyya et al. 
2014). When intestinal damage is triggered by MTX, oxi-
dative stress, a consequence of an imbalance between ROS 
and the body’s natural antioxidant defense mechanism, is 
developed and plays a crucial role (Zhang et al. 2022). ROS 
mediates lipid peroxidation, which leads to tissue damage 
development after MTX administration. This degradation 
of cell membranes impairs normal cellular activities (Şener 
et al. 2006). Additionally, according to a prior study, the 
antioxidant glutathione (GSH) content in cells was lowered 
and cytosolic peroxide was elevated following MTX treat-
ment (Kesik et al. 2009). Multiple previous studies showed 
that MTX treatment altered redox status in the small intes-
tine and increased intestinal ROS biomarkers (Miyazono 
et al. 2004; Hassanein et al. 2021, 2022, 2023a; Sayed et al. 
2022). However, the underlying mechanism by which MTX 
provokes tissue injury is not yet well known, and direct toxic 
effects of MTX are thought to be caused by excessive gen-
eration of free radicals, causing an imbalance between free 
radical production and antioxidant defense, which finally 
results in the development of oxidative stress (Drishya et al. 
2022). Tissue damage developed after MTX utilization is 
caused by ROS which mediates destruction of lipids result-
ing in a breakdown of cell membrane and disturbance of 
physiological processes (Şener et al. 2006). Oxidative stress 
causes necroptosis and apoptosis in enterocytes, as well 
as the destruction of the intestinal structure (Zorov et al. 
2006; Pi et al. 2014). In addition, cytoskeletal proteins and 
other cellular proteins are damaged by an overabundance 
of free radicals in the intestinal epithelium. Furthermore, it 
increases intestinal permeability, which makes it more likely 
for microorganisms and antigens from the luminal environ-
ment to enter the bloodstream and increase the risk of sys-
temic reaction syndrome (Trushina and McMurray 2007). 
Reactive nitrogen species (RNS) and ROS have harmful 
cytotoxic effects on mammalian cells in living organism. 
The free radicals generated during oxidative stress include 
non-free radical species like hydrogen peroxide (H2O2) and 
nitrous acid, as well as different forms of activated oxygen 
and nitrogen such as superoxide anion (O2•−), hydroxyl, and 
nitric oxide (NO) radicals (Marra et al. 2011). Oxidative 
stress leads to lipid peroxidation, which generates a vari-
ety of oxidative compounds, including hexanal, 4-hydroxy 
nonanal (4-HNE), and malondialdehyde (MDA). Although 
4-HNE is the most toxic byproduct of lipid peroxidation, 
MDA is thought to be the most mutagenic one. Additionally, 
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oxidative stress products such as ROS covalently modify 
peptide bonds or amino acid side chains resulting in protein 
oxidation (Unsal and Belge-Kurutaş 2017). Elevated amount 
of ROS leads to prolonged oxidative stress and produces a 
potentially hazardous environment for the cells. In normal 
physiologic condition, there is a balance between ROS gen-
eration and antioxidative defense mechanism in the cell. A 
crucial role is played by endogenous antioxidant enzymes 
such as superoxide dismutase (SOD) and catalase (CAT) that 
act on O2•− and H2O2, respectively, as well as glutathione 
peroxidase (Gpx) that uses GSH as co-substrate (Fu and 
Chung 2018).

Nuclear factor erythroid‑2‑related factor 2 
(Nrf2)‑Kelch‑like ECH‑associated protein 1 (Keap1) 
pathway and intestinal injury by MTX

The primary regulator of cellular responses to external 
stressors is nuclear factor erythroid-2-related factor 2 (Nrf2) 
(Kobayashi et al. 2004). The nuclear factor erythroid-2-re-
lated factor 2 gene is responsible for encoding antioxidants 
and detoxification enzymes providing a redox sensing sys-
tem (Wang et al. 2008). Kelch-like ECH-associated protein 
1 (KEAP1) is a natural inhibitor of Nrf2 that negatively 
regulates its activity by proteasomal degradation (Singh 
et al. 2006). Following xenobiotic exposure, the Nrf2/Keap1 
pathway is activated, releasing Nrf2 and causing it to trans-
locate into the nucleus where it forms a heterodimer with 
its partner sMAF oncogene homolog. Then, it binds to the 
antioxidant response element (ARE) sequences regulating 
several targeted genes such as glutathione S-transferase (Gst) 
and heme oxygenase-1 (HO-1) (Taguchi et al. 2011).

The genes that encode drug-metabolizing enzymes and 
transporters, antioxidant enzymes, and heme and iron meta-
bolic enzymes are among Nrf2’s target genes (Suzuki et al. 
2013). The intestine and lung, two detoxifying organs or 
tissues that directly oppose the environment, have notably 
high Nrf2 expression levels (Kobayashi et al. 2004).

In a dose- and time-dependent manner, hyperactivation 
of Nrf2 diminished oxidative stress by ameliorating cell 
apoptosis and improving the redox state of the cell (Song 
et al. 2017). Several experimental models have been used 
to study Nrf2’s capacity to maintain the intestinal barrier, 
including Salmonella typhi infections (Theiss et al. 2009), 
colitis caused by dextran sodium sulfate (Theiss et al. 2009; 
Li et al. 2018), intestinal ischemic-reperfusion (Chi et al. 
2015; Han et al. 2016b), intestinal mucosa damage, malfunc-
tion of the epithelial barrier brought on by traumatic brain 
injury (Liu et al. 2017b), and intestinal burn (Chen et al. 
2016). In the same context, the previous publication reported 
the involvement of Nrf2 in MTX-induced intestinal injury 
(Katturajan and Evan Prince 2023).

By activating transcription factors like NF-κB and activa-
tor protein 1 (AP-1) and upregulating kinases like phosphati-
dylinositol 3-kinase (PI3K) and mitogen-activated protein 
kinases (MAPKs), ROS generation can cause pro-inflamma-
tory responses (Chen and Kunsch 2004). The production of 
ROS has the potential to trigger immune cell activation and 
persistent inflammation. However, persistent inflammation 
can also worsen the production of ROS, creating a vicious 
circle (Chen and Kunsch 2004). It has been proposed that 
reducing ROS production can lessen inflammation. Numer-
ous investigations have indicated that there is a strong cor-
relation between Nrf2 and NF-κB pathways. To test it, coli-
tis was induced in Nrf2-deficient animals by administering 
dextran sulfate sodium treatment. Also, mice lacking Nrf2 
showed higher levels of inflammation than wild-type mice 
(Khor et al. 2006). In conclusion, Nrf2 activation can reduce 
intestinal inflammation due to direct control of inflamma-
tory pathways by suppression of ROS production (Wen et al. 
2019).

Involvement of peroxisome proliferator‑activated 
receptor‑gamma (PPAR‑γ) in MTX‑induced intestinal 
toxicity

Peroxisome proliferator-activated receptors (PPARs) belong 
to the nuclear hormone receptor superfamily and are ligand-
dependent transcription factors. They are essential for the 
metabolism of carbohydrates and lipids (Wahli et al. 1995). 
Vertebrates have been found to have the two PPAR isotypes: 
PPAR-α and PPAR-γ. The liver, kidney, testes, heart, pan-
creas, and smooth muscle all have high levels of PPAR-α 
isoform expression. For instance, adipose tissue has high 
levels of PPAR-γ expression, and the intestines, particularly 
the colon, also contain it (Auboeuf et al. 1997). In addition 
to being a powerful regulator of energy balance and systemic 
as well as cellular metabolism, PPARα also suppresses a 
number of inflammatory responses (Liu et al. 2018). In both 
white and brown adipose tissue, PPAR-γ is highly expressed 
and is essential for controlling lipid production, energy bal-
ance, and adipogenesis. Additionally, it is expressed in the 
intestines, liver, kidneys, brain, immune system, and muscles 
(Willson et al. 2001; Moreno et al. 2004; Grygiel-Górniak 
2014). PPARs move into the nucleus after interacting with 
agonists, where they heterodimerize with the retinoid X 
receptor (RXR) to perform their function. The heterodimers 
stimulate the transcription of the targeted genes by bind-
ing to sequence-specific PPAR response elements (PPREs) 
(Berger and Moller 2002). Interestingly, it is widely known 
that PPAR-γ is a powerful inhibitor of ROS and inflamma-
tion (Stafeev et al. 2015). PPAR-γ carries out numerous bio-
logical functions. Its conformation changes upon activation 
preventing the production of pro-inflammatory mediators, 
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which in turn prevents a range of inflammatory responses 
(Wang et al. 2016). The reduction of NF-kB, STAT1, and 
AP-1 transcriptional activity is one of the PPAR-γ anti-
inflammatory actions (Ricote et al. 1999). Actually, a number 
of studies have also shown a metabolic advantage associ-
ated with the anti-inflammatory effects of PPAR-γ targeting 
(Hevener et al. 2007). It is interesting to note that PPAR-γ is 
a significant nuclear receptor whose beneficial antioxidant 
and anti-inflammatory properties have led to the investiga-
tion of a variety of disorders (Korbecki et al. 2019). Previous 
literature has indicated that the expression of the antioxi-
dant defense can be induced by activated PPAR-γ (Girnun 
et al. 2002; Chung et al. 2009) while inhibiting inflammatory 
cytokine productions (Vandewalle et al. 2008). Previous stud-
ies showed that a decreased level of PPAR-γ is associated 
with oxidative stress development in a rat model of duodenal 
injury induced by MTX (Sayed et al. 2022; Mansoury et al. 
2023).

Role of silent information regulator‑1 (SIRT1) 
in MTX‑induced intestinal toxicity

Among the histone deacetylases which are referred to as 
sirtuin1, is the silent information regulator-1 (SIRT1) pro-
tein. Significantly, SIRT1 is critical for controlling oxida-
tive stress and mitochondrial metabolism. By controlling 
antioxidant genes through the FoxO3a/proliferator-activated 
receptor-gamma coactivator 1 alpha (PGC-1α) complex, 
SIRT1 prevents the generation of superoxide (Wang et al. 
2020c). Additionally, recent studies suggested that SIRT1 is 
an essential regulator of intestinal barrier function (Tanno 
et al. 2007; Tao et al. 2010). Moreover, SIRT1 activation 
significantly ameliorated colitis induced by dextran sulfate 
sodium in mice (Kwon et al. 2017). It has been demonstrated 
to block the NF-κB signaling suppressing the inflammatory 
response. According to recent reports, SIRT1 contributes 
to cellular lifespan extension, resistance to oxidative stress, 
and repair of DNA damage (Elshazly et al. 2020; Gao et al. 
2021). Mice with intestinal deletion of SIRT1 have been 
shown to exhibit microbiota dysbiosis and aberrant activa-
tion of the inflammatory response (Wellman et al. 2017). 
Previous publications have demonstrated that oxidative 
stress significantly decreased SIRT1 activity in previously 
experimental models. (DiNicolantonio et al. 2022). High 
ROS can suppress SIRT1 function by causing oxidative 
changes in its cysteine residues (Salminen et al. 2013). 
In addition, SIRT1 induces the inhibition of NF-κB and 
additional pro-inflammatory mediators (Shao et al. 2014). 
Previous publications have demonstrated the involvement 
of SIRT1 in MTX-provoked intestinal injury (Sayed et al. 
2022; Katturajan and Evan Prince 2023; Abd-Alhameed 
et al. 2024).

Therapeutic protection 
against methotrexate‑induced intestinal 
injury

Omega‑3 polyunsaturated fatty acids

Over the past decades, polyunsaturated fatty acids (PUFAs) 
have become a topic of interest for the public and scientific 
community due to their involvement in numerous metabolic 
and physiological conditions (Palmquist 2009). Fatty fish 
and seafood are the main sources of them (Han et al. 2016a). 
Interestingly, omega-3 FAs anti-inflammatory and antioxi-
dant properties proved their effectiveness in both preventing 
and treating a wide range of illnesses (Swanson et al. 2012; 
Scorletti and Byrne 2013; Firat et al. 2017; Oscarsson and 
Hurt-Camejo 2017; Karageorgou et al. 2023). Additionally, 
omega-3 PUFAs exhibited potential protective effect against 
MTX-induced apoptosis in spleen (Elsayed et al. 2021) 
and intestinal mucosa (Koppelmann et al. 2021) as well as 
acute kidney injury induced by lipopolysaccharide (Li et al. 
2021b). Interestingly, omega-3 PUFAs were evaluated in rat 
models of intestinal damage by MTX, and this study demon-
strated that omega-3 PUFAs exhibited the ability to prevent 
intestinal damage and stimulate intestinal recovery. Besides, 
MTX + omega-3 PUFA-treated rats showed a significant 
decrease in enterocyte apoptosis together with reduced 
numbers of macrophages in conjunction with lower levels 
of COX-2, TNF-α, and NF-κB in the mucosa of treated rats 
(Koppelmann et al. 2021). This study found that omega-3 
PUFAs may be used as a novel therapy for attenuating MTX-
induced intestinal injury through its antioxidant, anti-inflam-
matory, and antiapoptotic effect.

Taurine

Taurine, also known as 2-aminoethanesulfonic acid, is 
a common organic substance found in animal tissues. It 
accounts for 0.1% of the human body weight and is primar-
ily found in the large intestine as well as the main component 
of bile (Ronalds 2019). Taurine plays a vital role in many 
processes, including control of osmotic pressure, the stabi-
lization of membranes, reproduction, inflammation, and the 
regulation of heart muscle. Numerous studies have proved 
that taurine is a promising agent due to its ability to over-
come oxidative stress and inflammation. It can be used to 
protect against a wide range of conditions in several organ 
systems, including the skeletal, muscular, cardiovascular, 
respiratory, and endocrine systems (Ahmed 2023). Taurine 
plays a crucial role in protecting against nervous system 
diseases including Parkinson’s and Alzheimer’s (Jakaria 
et al. 2019). Molecular studies have indicated that it may 
act as a neuroprotectant against stroke. In a diabetic mouse 
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model, it reduced oxidative stress-induced neuropathy by 
triggering antioxidative defense signals (Agca et al. 2014). 
Obviously, previous publications demonstrated the protec-
tive effect of taurine against MTX-induced intestinal injury 
through a variety of mechanisms following careful exami-
nation. The effective modulation of cytoglobin and Keap1/
Nrf2/HO-1 signals mediated its potent antioxidant effects. 
The inhibition of the NF-κB/iNOS signal suggests its anti-
inflammatory effects. Intestinal proliferating cell nuclear 
antigen (PCNA) and caspase-3 suppression mediate antia-
poptotic and antiproliferative effects (Hassanein et al. 2022). 
This study explained that taurine may be used as a promising 
therapy in mitigating intestinal damage provoked by MTX 
through the regulation of oxidative stress, inflammation, 
apoptosis, and proliferation.

Umbelliferone

A naturally occurring member of the coumarin family, 
umbelliferone (UMB) or 7-hydroxycoumarin, is present in 
a wide variety of plants, including garden angelica, corian-
der, and carrots (Mazimba 2017). Numerous investigations 
have determined that UMB possesses biological properties, 
including anti-inflammatory (Navarro-García et al. 2011), 
antioxidant (Hoult and Payá 1996; Cruz et al. 2020), and 
anticancer (Lopez-Gonzalez et al. 2004) effects. In testicu-
lar dysfunction in diabetic heavy metal-treated mice (Allam 
et al. 2022; Alotaibi et al. 2023), liver injury (Shalkami et al. 
2021), kidney injury (Sami et al. 2022), and liver fibrosis 
(Park et al. 2023b), UMB showed potent antioxidant and 
anti-inflammatory properties as well as decreased cell dam-
age. According to a study reported previously (Jagadeesh 
et al. 2016), UMB improved heart function and reduced oxi-
dative stress and infarct size in rats. Previous study proved 
the promising protective effect of UMB against MTX-
induced intestinal damage by markedly improved oxidant/
antioxidant status, as shown by the parallel decrease in MDA 
contents and the elevation of Nrf2, SOD, HO-1, and GSH 
levels. Additionally, it reduced the number of inflammatory 
cascades by inhibiting STAT3, NF-κB, IL-6, and TNF-α lev-
els. Furthermore, the expression of Wnt and β-catenin was 
dramatically increased by UMB (Hassanein et al. 2023a). 
According to these results, UMB might be applied as a pos-
sible adjuvant treatment in MTX chemotherapy regimens 
to overcome intestinal injury caused by MTX through the 
regulation of oxidative stress and inflammatory cascades.

Vinpocetine

Ethyl apovincaminate, also known as vinpocetine, is a 
nootropic substance that has been intended to manage neu-
rological illnesses related to cerebrovascular diseases. It 
is a synthetic derivative of the alkaloid vincamine, which 

is taken from the leaves of the periwinkle plant (Moham-
med et al. 2023). Moreover, vinpocetine has a strong anti-
oxidant impact by scavenging free radicals and a strong 
anti-inflammatory effect by directly inhibiting IKK (Abdel-
Salam et al. 2016; Nadeem et al. 2018; Zhang et al. 2018). 
Additionally, previous study has demonstrated the increase 
in cerebrovascular flow by vinpocetine in individuals with 
cerebrovascular illness (Patyar et al. 2011). Vinpocetine’s 
anti-neuroinflammatory and antioxidant pathways have been 
suggested to be involved in its neuroprotective impact on 
rotenone-induced Parkinson’s disease (Ishola et al. 2023). 
Vinpocetine has been studied in a rat model of duodenal 
injury by MTX, and this study showed that the injection 
of vinpocetine retained the normal histology of the crypt 
and villous while attenuating the dramatic histological 
alterations caused by MTX. Through the upregulation of 
intestinal Nrf2 and HO-1 expression, vinpocetine dramati-
cally reduced oxidative stress damage. By lowering IL-1β 
and TNF-α levels and downregulating the expressions of 
NF-κB, interferon regulatory factor3 (IRF3), p-JAK-1/p-
STAT-3, and vinpocetine reduced inflammation. Moreover, 
vinpocetine efficiently inhibited caspase-8, RIPK1, RIPK3, 
and MLKL to counteract intestinal necroptosis (Tashkandi 
et al. 2023). Due to these favorable effects, vinpocetine can 
be used as a complementary therapy with MTX to counter-
act apoptosis, inflammation, and oxidative stress by MTX.

Perindopril

Through processes involving angiotensin II, perindopril 
(PER), a typical angiotensin-converting enzyme inhibitor 
(ACEI), has been shown to be useful in a number of cardio-
vascular disorders (Ancion et al. 2019). PER has also been 
demonstrated to have antiapoptotic, anti-inflammatory, and 
antioxidant properties (Varin et al. 2000, Kobara et al. 2003). 
Earlier study has shown that PER has a potent antioxidant 
and anti-inflammatory activity which be helpful in treating 
acute kidney injury associated with sepsis (Ali et al. 2016; 
Kostakoglu et al. 2020). Previous research has also demon-
strated that PER can reduce drug-induced kidney damage 
due to its antioxidant and anti-inflammatory properties (Tang 
et al. 2008; Shalkami et al. 2018). Preliminary investigation 
also showed gastroprotective effect of perindopril through 
counteracting oxidative stress and inflammation induced by 
indomethacin in a rat model of gastric injury (Mohamed 
et al. 2022). Previous publication has demonstrated the 
potential protective effect of perindopril on intestinal injury 
induced by MTX. This study showed that perindopril pre-
served the goblet cells in the villi/crypts and reduced the his-
tological abnormalities, indicating that the intestinal injury 
had been attenuated. Additionally, PER reduced intestinal 
MDA and increased SOD activity and GSH content along 
with PPAR-γ and SIRT1 cytoprotective signals to attenuate 
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the pro-oxidant processes. These favorable effects were 
also associated with upregulating angiotensin (1–7) and 
anti-inflammatory cytokine IL-10 while downregulating 
the production of pro-inflammatory cytokines IL-6, IL-1β, 
and TNF-α. Besides, in rats with inflamed intestines, PER 
downregulated the toll-like receptor 4 (TLR4), NF-κB, and 
c-Fos/c-Jun pathways at the molecular level (Sayed et al. 
2022). In conclusion, PER significantly reduced MTX-
induced intestinal damage by inhibiting inflammatory path-
ways and increasing the antioxidant cytoprotective signals.

Rutin

Rutin is one of the main flavonoid glycosides present in 
fruits and fruit peels, mainly in citrus fruits such as lem-
ons and oranges (Nafees et al. 2015; Çelik et al. 2020). It 
possesses several pharmacological activities, including the 
ability to effectively scavenge superoxide radicals and act 
as an immunomodulator, anti-inflammatory, antioxidant, 
antihypertensive, and anti-carcinogenic (Nafees et al. 2015; 
Caglayan et al. 2019; Kandemir et al. 2020). The main phar-
macological effects and underlying mechanism of action of 
rutin contribute to its antioxidant capacity through the Nrf2/
ARE and anti-inflammatory properties due to NF-κB, COX-
2, IL-6, and TNF-α suppression. It inhibits caspase-3 and 
enhances B-cell lymphoma 2 (Bcl-2) suggesting its antia-
poptotic effect (Janbaz et al. 2002; Nafees et al. 2015). It 
has been shown that rutin can ameliorate liver and/or kid-
ney injury induced by different agents such as lead acetate 
(Ansar et al. 2016), acrylamide (Ahmed and Ibrahim Laila 
2018), and carbon tetrachloride (Hafez et al. 2015). Accord-
ing to a previous investigation, rutin protects the kidneys in 
diabetic nephropathy (Kamalakkannan and Prince 2006) and 
ischemic/reperfusion renal damage (Korkmaz and Kolan-
kaya 2013). Rutin has been shown to inhibit renal apop-
tosis and inflammation caused by cisplatin by lowering 
the expression of caspase-3, as well as TNF-α,and NF-κB 
(Tambağ et al. 2021). Rutin has been evaluated in a previ-
ous study of intestinal toxicity induced by MTX, and this 
study showed its ability to attenuate intestinal oxidative 
stress changes by lowering intestinal MDA and boosting 
GSH content and SOD activity. Moreover, administration 
of rutin attenuated MTX-induced intestinal inflammation, 
as proved by decreased IL-2 and increased IL-4 and IL-10. 
Additionally, rutin was found to inhibit the enzymatic activ-
ity of COX and lipoxygenase.

It can be concluded that rutin, in a dose-dependent man-
ner, has significant physiological, immunological, and bio-
chemical protection against MTX-induced intestinal injury 
(Gautam et al. 2016). The immunoregulatory and free radi-
cal scavenging potential activity could be thought of as the 
explanations for rutin’s activities.

Hesperidin

Flavonoids, which are easily derived from various vegetables 
and fruits and possess anti-inflammatory and antiapoptotic 
effects in addition to their anti-autophagic properties, have 
gained more attention in recent times. Hesperidin (HES), 
a flavanone group member, is one of these compounds 
(Semis et al. 2021). Citrus fruits, including lemon, orange, 
and grapefruit, are a good source of this natural antioxidant 
compound (Yurtal et al. 2020; Patel and Shah 2021). HES 
exhibited antiapoptotic, anti-inflammatory, vasoprotective, 
and anti-carcinogenic properties together with its antioxi-
dant activity, with no known adverse effects (Çetin et al. 
2016; Sheikhbahaei et al. 2016; El et al. 2017). According 
to reports, HES scavenges ROS, chelates metal ions, and 
guards against lipid peroxidation to avoid oxidative dam-
age and cell death (Polat et al. 2016; Iskender et al. 2017). 
Previous studies have shown the protective effect of HES 
against MTX-induced hepatotoxicity (Abdelaziz et  al. 
2020), experimental ischemia/reperfusion testicular injury 
in rats (Celik et al. 2016), nephrotoxicity and hepatotoxicity 
induced by sodium arsenite (Turk et al. 2019), paclitaxel-
induced peripheral neuropathy in rats (Semis et al. 2021), 
and renal ischemia-reperfusion injury in rats (Meng et al. 
2020). A potential experimental investigation has assessed 
the protective effect of HES against intestinal damage pro-
voked by MTX using histopathological and immunohis-
tochemical techniques. Pretreatment with HES attenuated 
intestinal injuries evidenced by enhancing intestinal scor-
ing damage and crypt injury. Additionally, administration 
of HES counteracted intestinal oxidative stress changes by 
lowering intestinal myeloperoxidase concentration. Moreo-
ver, treatment with HES attenuated MTX-induced intestinal 
inflammation, as proved by inhibiting INOS and IL-8 level 
immunostaining (Acipayam et al. 2013). In conclusion, HES 
significantly showed notable amelioration of intestinal dam-
age induced by MTX through its powerful antioxidant and 
anti-inflammatory effect.

Lycopene

Tomatoes and other red fruits have a high concentration of 
the red pigment lycopene. Many double bonds in lycopene’s 
chemical structure play a significant part in scavenging ROS 
(Abdel-Daim et al. 2019; Ibrahim et al. 2022). Because of its 
11 conjugated double bonds, lycopene exhibited the highest 
antioxidant activity among carotenoids and phytochemicals 
(Saini et al. 2020). Lycopene has numerous pharmacological 
properties including potent and effective anti-inflammatory, 
immunostimulant, antibacterial, and anti-mutagenic prop-
erties (Müller et al. 2011). In addition, lycopene exhibits 
chemo-preventive properties against some types of cancer 
(Huang and Hu 2011). It was found to have a potent free 
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radical scavenging effect during severe stressful conditions. 
Eating tomatoes or tomato-derived products is frequently 
associated with lower levels of oxidative damage to proteins, 
lipids, and DNA due to higher amounts of circulating lyco-
pene (Palabiyik et al. 2013). Furthermore, it is well known 
that dietary lycopene supplementation shields the animal 
intestine’s structure and tissue from harmful events when 
it comes into touch with pathogens, poisons, or any other 
foreign antigen (Sarker et al. 2021). Previous investigations 
showed that lycopene administration exhibited significant 
protection against intestinal injury provoked by radiation in 
rats (Anwar et al. 2013). Due to its strong scavenging activ-
ity of free radicals, lycopene has a powerful ability to protect 
the kidney, liver, and nervous system from oxidative stress 
(Zhang et al. 2020). Lycopene has recently shown obvious 
neuroprotective effects in several conditions involving neu-
roinflammatory conditions. These advantageous outcomes 
were due to NF-κB suppression, the maintenance of mito-
chondrial integrity, and the reduction of apoptosis in neurons 
(El Morsy and Ahmed 2020).

Lycopene was studied in a previous study investigating 
its protective effect against MTX-provoked intestinal injury, 
and this study showed that when lycopene was administered 
to the MTX group, the small intestinal histological damage 
showed a considerable recovery. Additionally, the intesti-
nal levels of IL-1β, total oxidant status (TOS), and oxida-
tive stress index (OSI) were dramatically reduced (Yucel 
et al. 2016). Because lycopene counteracts oxidative stress, 
inflammation, and NF-κB activation created by MTX, it may 
be an excellent adjuvant therapy taken with MTX.

Quercetin

Of all the flavonoids, quercetin (3, 39, 49, 5, 7-pentahydrox-
yflavone) is the most widely distributed. Apples, potatoes, 
soybeans, and other fruits and vegetables are rich sources 
of quercetin (Mao et al. 2018). Strong cytoprotective and 
antioxidative properties of quercetin help in inhibiting 
endothelial cell apoptosis induced by oxidants (Choi et al. 
2003). Besides, by stopping lipid peroxidation and scaveng-
ing oxygen free radicals, quercetin inhibits oxidative damage 
and cell death (Wang et al. 2020a). Quercetin is a powerful 
antioxidant that protects against ROS and has been shown 
to have remarkable protective benefits against diabetes, 
cardiovascular disease, inflammation, cancer, and damage 
to nerves and the eyes (Carrillo-Martinez et al. 2024). Pre-
vious publication has investigated the ability of quercetin 
to attenuate small intestine damage and improve intestinal 
recovery in MTX-induced intestinal mucositis in rats. When 
quercetin was administered to rats treated with MTX, a sig-
nificant reduction in the intestinal injury score, a significant 
increase in the intestinal and mucosal weight in the ileum 
and jejunum, and an increase in the ileum’s protein content 

and villus height were observed in comparison to the MTX 
group (Sukhotnik et al. 2018).

Apocynin

Apocynin (APO) (4-hydroxy-3-methoxyacetophenone) is 
a natural organic methoxy-substituted catechol compound 
that acts as an antioxidant. It is separated from Apocynum 
cannabinum root and Picrorhiza kurroa Royle ex Benth, a 
traditional medicinal plant, that belongs to the Scrophulari-
aceae family (Nwokocha et al. 2020). The primary enzyme 
that produces ROS is nicotinamide adenine dinucleotide 
phosphate oxidase (NOX), and blocking this enzyme offers a 
significant therapeutic target for the management of numer-
ous illnesses (Auten et al. 2009; Datta et al. 2015). APO 
efficiently blocks NOX in activated leukocytes to stop ROS 
generation (Stefanska and Pawliczak 2008). APO has been 
shown in numerous animal and cell culture experiments to 
decrease neutrophil chemotaxis and neutrophil oxidative 
burst, which in turn reduces neutrophil-mediated cell dam-
age (Stolk et al. 1994; Impellizzeri et al. 2011). According 
to previous investigations, APO ameliorated lung damage by 
reducing lipid peroxidation, inhibiting NOX expression and 
activity, blocking the NF-κB pathway, and suppressing the 
transcription of pro-inflammatory cytokines in lung tissue 
(Kim et al. 2012; Choi et al. 2017). A previous study investi-
gated the protective role of APO against MTX-induced intes-
tinal mucositis. The conserved histology of goblet cells (villi 
and crypts) indicates that APO preserved the histological 
structure of the duodenal mucosa. Besides, APO reduced 
intestinal oxidative stress by decreasing intestinal MDA and 
increasing SOD activity and GSH content. APO exhibited 
powerful anti-inflammatory by inhibiting the production of 
NF-κB mRNA and decreasing pro-inflammatory cytokine 
levels together with upregulating anti-inflammatory PPAR-γ 
proteins. Furthermore, the intestinal mucosa of rats that 
received APO + MTX revealed weak positive immunologi-
cal staining for cleaved caspase-3 (Mansoury et al. 2023). 
The findings suggest that APO may be used as a potential 
treatment drug to stop mucositis caused by MTX due to 
counteracting oxidative stress, inflammatory, and apoptotic 
pathways.

Lactobacillus

A genus of gram-positive anaerobic or microaerophilic, 
rod-shaped, non-spore-forming bacteria is called Lactoba-
cillus. They are an important component of the microbiota 
in humans and can be found in the urinary, genial, and diges-
tive systems (Wanchao et al. 2018). Moreover, Lactobacillus 
scavenges ROS to prevent oxidative damage development 
(Kong et al. 2020). Besides Lactobacillus administration 
diminishes ROS such as hydroxyl radicals, superoxide 
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anions, and peroxide radicals (Wang et al. 2017). Research 
conducted on pigs has demonstrated that a diet containing 
Lactobacillus raises muscle SOD, CAT, and serum SOD 
(Wang et al. 2009). Lactobacillus has been shown to have 
a variety of anti-carcinogenic effects due to its ability to 
antagonize proliferation, apoptosis, and oxidative stress 
(Nowak et al. 2019). Lactobacillus shields the intestines 
against several intestinal damage models (Jian et al. 2022; 
Hassanein et al. 2023a). In the same context, Lactobacillus 
showed a protective effect against a rat model of 5-amino-
salicylic-induced ulcerative colitis through the Nrf2/Ho-1 
pathway and gut microbiota modulation (El-Baz et al. 2020). 
A previous publication has proved the intestinal protective 
effect of Lactobacillus acidophilus LB strain (LB) against 
MTX-induced intestinal injury. Pretreatment with Lactoba-
cillus attenuated intestinal injury as evidenced by improve-
ment of intestinal histopathology. Lactobacillus treatment 
attenuated intestinal oxidative stress changes by lowering 
intestinal MDA and boosting GSH content, SOD3 activity, 
Nrf2, and OH-1. Moreover, administration of Lactobacillus 
attenuated MTX-induced intestinal inflammation, as proved 
by inhibiting TNF-α, IL-6, STAT3, and NF-κB (Hassanein 
et al. 2023a). In conclusion, by restoring the oxidant/anti-
oxidant balance and reducing the inflammatory burden, a 
pretreatment regimen with lactobacillus may be a potential 
therapeutic approach for attenuating intestinal injury caused 
by MTX.

Berberine and zinc

Berberine, a well-known natural isoquinoline alkaloid, is 
found in a variety of plants, such as Coptis and Berberis 
(Cicero and Baggioni 2016). It is interesting to note that tra-
ditional medicine uses berberine to treat intestinal disorders 
and diarrhea (Tan et al. 2019). It also has anti-inflamma-
tory, antioxidant, and anticancer properties (Tan et al. 2011; 
Deng et al. 2019; Hassanein et al. 2019). Significantly, it 
was documented that berberine prevented ulcerative coli-
tis provoked by dextran sulfate sodium (Zhu et al. 2019). 
Obviously, berberine has been shown to have a potent anti-
inflammatory impact in cases of severe abdominal infec-
tion and to mitigate intestinal mucosa injury due to stressful 
conditions (Wang et al. 2020b). Zinc (Zn) is a vital trace 
element that has anti-inflammatory and antioxidant effects 
and is involved in numerous biological processes (Haase 
et al. 2008; Marreiro et al. 2017). Previous publications 
have shown that Zn attains a beneficial protective effect on 
intestinal injury conditions. They found that Zn in the intes-
tinal lumen can decrease sensitivity to damage and increase 
mucosal repair and restoration. Besides, they reported that 
Zn supplementation improved the gut’s ability to heal from 
MTX-induced injury (Tran et al. 2003; Musa et al. 2015). A 
previous study showed that berberine and/or Zn exhibited a 

notable protective effect against MTX-induced intestinal tox-
icity. Berberine and/or Zn ameliorated oxidative stress and 
enhanced changes in SIRT1, Nrf2, forkhead box-O3 (FOXO-
3), JAK1, and STAT3 (Hassanein et al. 2021). Berberine and 
Zn may be possible medications for the intestinal damage 
management produced by MTX by altering the signaling 
pathways involved in oxidative stress and inflammation.

Nifuroxazide

Nifuroxazide (NIF) is a highly safe oral antidiarrheal anti-
biotic that has been approved for the treatment of several 
gastrointestinal infections (Hassan et al. 2021). NIF, an 
antidiarrheal antibiotic, demonstrated efficacious suppres-
sion of STAT3 activation in cell lines of colorectal cancer, 
multiple myeloma, colon ulcer, and diabetic kidney tissues 
(Althagafy et al. 2023). Previous research demonstrated 
that NIF inhibited NF-κB signaling in liver failure induced 
by thioacetamide in rats (Khodir and Said 2020) and ace-
tic acid-induced ulcerative colitis (Yousra et  al. 2020). 
Remarkably, NIF also improved rat diabetic nephropathy by 
inhibiting pro-inflammatory cytokine production, oxidative 
stress, and NF-κB activation in diabetic kidneys (Elsherbiny 
et al. 2018). Regarding the impact of NIF on MTX-induced 
intestinal injury, NIF exhibited potent antioxidant benefits 
against MTX-provoked intestinal injury by controlling 
PPAR-γ, SIRT1, and Nrf2 redox-sensitive signals expression 
(Abd-Alhameed et al. 2024). In addition, intestinal inflam-
mation was reduced by NIF due to suppression of NF-κB 
protein expression, downregulation of JAK1/STAT3 phos-
phorylation, and reducing the release of pro-inflammatory 
cytokines such as IL-6, IL-1β, and TNF-α. Furthermore, 
the histological analysis showed that NIF decreased the 
invasion of inflammatory cells, maintained the goblet cells, 
and improved the pathological alterations in the intestines. 
Consequently, NIF may be a good option as MTX adjuvant 
therapy via counteracting oxidative stress, inflammation, and 
NF-κB activation caused by MTX.

Conclusions and perspectives

MTX is a well-known cytotoxic medication that is frequently 
used for managing autoimmune diseases and malignancies. 
Using MTX may be associated with intestinal mucous mem-
brane damage as well as mucositis, which impairs the abil-
ity of patients to tolerate treatment and disturbs their nutri-
tional status. Due to limited treatment options and severe 
adverse effects associated with MTX, multiple approaches 
strongly need to be investigated to counteract these severe 
adverse effects. By inducing lipid peroxidation and exces-
sive ROS, MTX induces a series of oxidative stress of the 
intestinal mucosal membrane. Besides, it triggers the release 
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of pro-inflammatory cytokines like NF-kB, IL-6, IL-1β, and 
TNF-α as well as the activation of many pro-inflammatory 
signaling pathways via ROS-driven mechanisms. Various 
molecular pathways are also involved in MTX-induced 
intestinal injury including JAK/STAT3/SOCS3, Nrf2/OH-1, 
PPAR-γ, and SIRT1. Thus, individuals with rheumatoid 
arthritis, psoriasis, and cancer who take MTX need to be 
monitored for intestinal injury. Multiple compounds such as 
omega-3 polyunsaturated fatty acids, taurine, umbelliferone, 
vinpocetine, perindopril, rutin, hesperidin, lycopene, querce-
tin, apocynin, lactobacillus, berberine, zinc, and nifurox-
azide have been studied in previous publications and were 
reported to have potential protective effects in ameliorating 
MTX-provoked intestinal injury. As a result, novel treat-
ment approaches for managing and alleviating MTX-induced 
intestinal injury will soon be required. Possible molecular 
mechanisms involved in MTX-induced intestinal injury and 
mechanisms of actions of protective agents are graphically 
illustrated in Fig. 3.

Hence, more investigations are needed to assess other 
signaling molecular pathways involved in MTX-induced 
intestinal injury to develop novel strategies for amelioration 
of intestinal injury induced by MTX. Also, further clinical 

studies should be done to emphasize the potential uses of 
previously mentioned protective agents as a potential sup-
plementary therapy for preventing MTX-provoked intestinal 
injury.
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Fig. 3   Detailed mechanism of signaling molecular pathways involved 
in MTX-induced intestinal injury. MTX-induced intestinal injury by 
increasing oxidative stress characterized by decreasing the activa-
tion of antioxidants GSH and SOD and increasing pro-oxidant MDA 
mediated by the downregulation of Nrf2/HO-1, PPAR-γ, and SIRT1. 
Also, MTX administration enhanced inflammation characterized by 
increasing pro-inflammatory cytokines TNF-α and IL-6 mediated 
by the upregulation of NF-κB and JAK/STAT3 phosphorylation and 
decreasing SOCS3. Furthermore, it increased apoptosis characterized 

by an elevation of cleaved caspase-3 and caspase-8. Abbreviations: 
GSH, glutathione; IL-6, interleukin-6; JAK/STAT3, Janus kinase/
signal transducer and activator of transcription3; MDA, malondial-
dehyde; MTX, methotrexate; Nrf2/HO-1, nuclear factor erythroid-
2-related factor 2/heme oxygenase-1; NF-κB, nuclear factor-kappa 
B; PPAR-γ, peroxisome proliferator-activated receptor-gamma; SOD, 
superoxide dismutase; SOCS3, suppressor of cytokine signaling3; 
SIRT1, silent information regulator-1; TNF-α, tumor necrosis factor-
alpha
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