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Abstract
The majority of people with autoimmune disorders, including those with rheumatoid arthritis, osteoarthritis, and tendonitis 
report pain, stiffness, and inflammation as major contributors to their worse quality of life in terms of overall health. Of all 
the available treatment options, COX inhibitors are the ones that are utilized most frequently to ease the symptoms. Various 
signaling cascades have been reported to be involved in the pathogenesis of rheumatoid arthritis which includes JAK/STAT, 
MAPK, and NF-kB signaling pathways, and several allopathic inhibitors (tofacitinib and baricitinib) have been reported to 
target the components of these cascades and have received approval for RA treatment. However, the prolonged use of these 
COX inhibitors and other allopathic drugs can pose serious health challenges due to their significant side effects. Therefore, 
searching for a more effective and side effect–free treatment for rheumatoid arthritis has unveiled phytochemicals as both 
productive and promising. Their therapeutic ability helps develop potent and safe drugs targeting immune-inflammatory 
diseases including RA. Various scientific databases were used for searching articles such as NCBI, SpringerLink, BioMed 
Central, ResearchGate, Google Scholar, Scopus, Nature, Wiley Online Library, and ScienceDirect. This review lists vari-
ous phytochemicals and discusses their potential molecular targets in RA treatment, as demonstrated by various in vitro, 
in vivo (pre-clinical), and clinical studies. Several pre-clinical and clinical studies suggest that various phytochemicals can 
be an alternative promising intervention for attenuating and managing inflammation-associated pathogenesis of rheumatoid 
arthritis.
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Introduction

COX inhibitors are a class of drugs that are commonly used 
for the treatment of pain, fever, and inflammation. They have 
been used for decades for a variety of medical conditions 
and have become one of the most commonly used groups 
of drugs in the world (Toda 2021). The history of COX 
inhibitors dates back to the late nineteenth century when 
salicylates (such as aspirin) were first discovered to have 
pain-relieving and anti-inflammatory properties. Since then, 
many other COX inhibitors have been developed, including 
ibuprofen, naproxen, and celecoxib (Hacker and Satre 2021). 
The mechanism of action of COX inhibitors is related to 

their ability to inhibit the activity of enzymes called cycloox-
ygenases (COX), which are involved in the production of 
prostaglandins. Prostaglandins are chemical mediators that 
play a role in inflammation, pain, and fever. By inhibiting 
the activity of COX enzymes, COX inhibitors reduce the 
production of prostaglandins, thereby reducing pain, fever, 
and inflammation (Ngo and Addison 2018). Owing to their 
anti-inflammatory properties, COX inhibitors remain a 
popular and effective option for treating RA and tendini-
tis. They continue to be prescribed by healthcare providers 
and widely used by patients. There are currently at least 20 
distinct allopathic COX inhibitors from six broad groups 
that are available for use in humans based on their chemi-
cal makeup (Chang 2015). Commonly used allopathic cox 
inhibitors include non-selective COX inhibitors like aspirin, 
a salicylate derivative that operates by blocking prostaglan-
din synthesis, inhibiting NF-kappa B, and inducing iNOS 
and COX inhibition (Kersley 2009). Diclofenac, an acetic 
acid derivative, functions by blocking VLA-4 activation 
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(Berney 2007). Sulindac, also an acetic acid derivative, 
operates by inhibiting NF-kappa B (Horino et al. 2019). 
Ibuprofen, a propanoic acid derivative, operates through NF-
kappa B inhibition (Weiser 2021). Naproxen, a propanoic 
acid derivative, functions through PI3/AKT inhibition (Hadi 
et al. 2016). Piroxicam and meloxicam are both enolic acid 
derivatives. They share the common mechanism of blocking 
β2 integrin activation (Samra et al. 2022; Ma et al. 2022). 
Oxaprozin, propanoic acid derivative, operates through 
PI3/AKT inhibition (Zhao et al. 2023). Meclofenamic acid, 
anthranilic acid derivative, functions by inducing L-shed-
ding (Narsinghani and Chaturvedi 2006). Indomethacin, 
derived from acetic acid, operates through NF-kappa B inhi-
bition (Janakiraman et al. 2018). Celecoxib (derived from 
sulfonamide) and etoricoxib (derived from carboxylic acid) 
are selective COX inhibitors that inhibit prostaglandin syn-
thesis (Feng et al. 2018). Commonly used allopathic COX 
inhibitors include non-selective COX inhibitors like aspi-
rin, a salicylate derivative that operates by blocking pros-
taglandin synthesis, inhibiting NF-Kappa B, and inducing 
iNOS and COX inhibition (Kersley 2009). Diclofenac, an 
acetic acid derivative, functions by blocking VLA-4 activa-
tion (Berney 2007). Sulindac, also an acetic acid derivative, 
operates by inhibiting NF-kappa B (Horino et al. 2019). Ibu-
profen, a propanoic acid derivative, operates through NF-
kappa B inhibition (Weiser 2021). Naproxen, a propanoic 
acid derivative, functions through PI3/AKT inhibition (Hadi 
et al. 2016). Piroxicam and meloxicam are both enolic acid 
derivatives. They share the common mechanism of blocking 
β2 integrin activation (Samra et al. 2022; Ma et al. 2022). 
Oxaprozin, propanoic acid derivative, operates through PI3/
AKT inhibition (Zhao et al. 2023). Meclofenamic acid, an 
anthanilic acid derivative, functions by inducing L-shedding 
(Narsinghani and Chaturvedi 2006). Indomethacin, derived 
from acetic acid, operates through NF-kappa B inhibition 
(Janakiraman et al. 2018). Celecoxib (derived from sulfon-
amide) and etoricoxib (derived from carboxylic acid) are 
selective COX inhibitors that inhibit prostaglandin synthesis 
(Feng et al. 2018; Cheng et al. 2021).

Though COX inhibitors are effective in managing pain 
and inflammation, they also have numerous side effects. 
Common side effects of COX inhibitors include gastroin-
testinal symptoms such as nausea, vomiting, diarrhea, and 
abdominal pain. They can also cause damage to the gastroin-
testinal lining, leading to bleeding and ulceration, headache, 
dizziness, and an increased risk of heart attack or stroke 
(Singgih and Achmad 2020). Other side effects of COX 
inhibitors include renal adverse effects and hematologic 
side effects. Inhibition of both COX-1 and COX-2 can harm 
the kidneys. While this may not be a significant problem for 
patients with normal renal function, those with renal dys-
function are more susceptible to complications from reduced 
prostaglandin levels caused by COX inhibitors (Ansari 

2016). Due to their antiplatelet activity, non-selective COX 
inhibitors are more likely to have hematologic side effects in 
patients with GI ulcers, von Willebrand disease, hemophilia, 
and thrombocytopenia and some perioperative situations 
(Gargya et al. 2017). Although COX inhibitors are effec-
tive in inflammation due to associated side effects in long-
term use, there has been a surge in alternative therapies for 
managing pain and inflammation. Some of these alternatives 
include natural compounds (plant-derived COX inhibitors), 
such as ginger and turmeric, which have anti-inflammatory 
effects but may have fewer side effects (Sharma et al. 2021).

Methodology

This review assessed the role of inflammation and oxida-
tive stress in rheumatoid arthritis and explored the role of 
phytochemicals on key signaling mechanisms involved in 
the disease. It provides an overview of in vitro, in vivo, and 
clinical studies that have investigated the underlined mecha-
nisms and their critical targets in RA. The survey process 
for this study encompassed a comprehensive search across 
multiple esteemed scientific databases. These databases 
included NCBI, Springer, BioMed Central, ResearchGate, 
Google Scholar, Nature, Wiley Online Library, Frontiers, 
and ScienceDirect. The terms used during the search of the 
database include COX inhibitors, phytochemicals, rheuma-
toid arthritis, signaling pathways, oxidative stress, factors 
affecting inflammation, and targeting molecules of COX 
inhibitors. These terms were chosen based on their relevance 
to the topics under study. Initially, we found 310 articles 
that seemed to be relevant. After going through their titles 
and abstracts, we selected 218 papers that aligned with the 
objectives of our review, thereby establishing the credible 
scientific literature for the article.

Role of inflammation in rheumatoid arthritis 
and tendinitis

Inflammation is a complex biological response of the body 
against harmful stimuli, such as pathogens, damaged cells, 
or irritants. It is characterized by redness, heat, swelling, and 
pain in the affected area which is the body’s way of signal-
ing the immune system to eradicate the source of injury or 
infection. Post pathogenic attack or infection, the body reacts 
by generating an inflammatory response through the release 
of inflammatory markers such as C-reactive protein (CRP), 
tumor necrosis factor (TNF), interleukin-6 (IL-6), inter-
leukin-1 beta (IL-1β), prostaglandin E2 (PGE2), and nitric 
oxide (NO) (Yang et al. 2019). Recent studies confirmed 
the role of these inflammatory markers in RA, but there are 
limited reports about the involvement of pro-inflammatory 
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markers like IL-1β in the case of tendinitis (Jomaa et al. 
2020).

Rheumatoid arthritis and inflammation

The term arthritis encompasses over 100 different disorders 
that affect joints with symptoms like pain, stiffness, fatigue, 
and deformity. This condition can also affect surrounding 
tissues, connective tissue in muscles, skin, and bones (Sur 
et al. 2021). The underlying causes can range from inflam-
mation, degeneration, metabolism, and viral illness. Rheu-
matoid arthritis (RA) is the most common form of chronic 
inflammatory arthritis. This disease is characterized by 
synovial inflammation and associated tissue damage and 
swelling of soft tissues surrounding synovial joints (McI-
nnes and Schett 2017). RA is considered an autoimmune 
disease and is associated with risk factors such as smoking, 
older age, positive family history, and female gender (Alieva 
2016). There is evidence that patients with RA, particularly 
those with more severe illnesses, have a shorter life expec-
tancy compared to the general population. The exact cause 
of RA remains unknown, but numerous studies suggest that 
a combination of genetic, environmental, and hormonal fac-
tors may play a role in its development (Mateen et al. 2016). 
The advancement of knowledge about the molecular and 
immunological processes contributing to rheumatoid arthri-
tis (RA) has greatly improved in recent years. Elevated levels 
of pro-inflammatory cytokines such as C-reactive protein 
(CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha 
(TNF-α) in both synovial tissue and plasma of RA patients 
have been identified as indicators of inflammation (Yang 
et al. 2019). The imbalance between pro-inflammatory and 
anti-inflammatory cytokines is a hallmark of autoimmune 
disorders, including RA (Uttra et al. 2019). Their concentra-
tion in blood corresponds to the severity of the inflamma-
tion. The synovial tissue is considered to be the primary site 
of inflammation in RA (Takeuchi 2022). The diagnosis of 
RA can be a challenging task due to the absence of a single 
diagnostic test and the variable symptoms among individu-
als. Symptoms may not appear until several months after the 
onset of joint discomfort. Furthermore, the results of hema-
tologic and X-ray screening may still be normal even after 
several months of joint discomfort (Ziegelasch et al. 2017). 
The diagnostic criteria for definite rheumatoid arthritis (RA) 
were updated by the American College of Rheumatology 
(ACR) and the European League Against Rheumatism 
(EULAR); according to the criteria given, there must be the 
presence of synovitis in at least one joint and a total score of 
6 or higher from scores in four categories: the number and 
location of involved joints, serologic abnormality, elevated 
acute-phase response, and the level of rheumatoid factor 
(Aletaha and Smolen 2018). These updated classification 
criteria provide a new method for identifying individuals 

with early symptoms of RA and may benefit from early 
treatment.

Several studies have reported that IL-1 and TNF-α (tumor 
necrosis factor-α) are key players in the development of RA 
(Vasanthi et al. 2007; Unal et al. 2008). IL-1 is a major con-
tributor to the synovial inflammation and pannus formation 
in RA through stimulating a variety of cells such as mono-
cytes, macrophages, T and B lymphocytes, fibroblast-like 
synoviocytes, chondrocytes, and osteoclasts to contribute to 
the inflammatory processes (Dam and Buckner 2016). This 
further leads to the production of more pro-inflammatory 
mediators and destructive enzymes. It also increases the pro-
duction of cell-adhesion molecules, cytokines, chemokines, 
angiogenic factors, and small inflammatory agents (prosta-
glandin E2 and nitric oxide) leading to inflammation (Kong 
et al. 2020). Several studies have reported the effectiveness 
of TNF-α inhibitors in treating of RA clinical trials. How-
ever, the use of TNF-α inhibitors in RA treatment can be 
associated with side effects such as infections and the devel-
opment of malignancies. Also, the antibodies used to sup-
press TNF-α have been reported to decrease the production 
of other pro-inflammatory cytokines in synovial cells from 
RA patients (Amber et al. 2015). Also, interleukin-17 (IL-
17) leads to activation of transcription factors like nuclear 
factor-kappa B and mitogen-activated protein kinase. This 
leads to the release of other pro-inflammatory cytokines 
such as IL-1, TNF-α, IL-6, IL-8, and prostaglandin-E2. 
IL-17 has a dual effect on cartilage, causing proteogly-
can breakdown and inhibiting chondrocyte metabolism in 
healthy cartilage and promoting the production of metal-
loproteinases in chondrocytes and synoviocytes (Krueger 
and Brunner 2017). Interleukin-23 (IL-23) is a member of 
the IL-12 family. IL-23 is produced by activated dendritic 
cells and macrophages and triggers memory T cells, natu-
ral killer cells, macrophages, and dendritic cells. IL-23 is 
essential for the survival and growth of Th17 (T helper 17) 
cells, which secrete IL-17, IL-17F, IL-6, and TNF-α. These 
secreted cytokines cause inflammation in RA patients (Zaky 
and El-Nahrery 2016). Overproduction of these cytokines 
due to mutations in the TNF-α and IL-1 promoter leads to 
joint damage in RA patients (Voirin et al. 2020).

Tendinitis and inflammation

Tendinitis or tendonitis refers to the inflammation and pain 
of a tendon (a fibrous connective tissue that connects mus-
cle to bone and enables movement). Tendons and their sur-
rounding tissues can be damaged due to overuse and misuse, 
particularly in athletes and manual labor workers (Loiacono 
et al. 2019). Symptoms include pain and tenderness along 
a tendon, typically near a joint, and pain that worsens with 
activity. Tendonitis can also result from small tears in sur-
rounding tissue or the slow degeneration of a tendon where 
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it attaches to the bone. Commonly affected areas include 
the shoulders, elbows, hips, knees, heels, wrists, and fingers 
causing Tennis elbow, golfer’s elbow, and Achilles tendinitis 
(Mandot 2020). Treatment for tendonitis aims to relieve pain 
and reduce inflammation. This may involve rest and immo-
bilization of the affected tendon, as well as non-steroidal 
anti-inflammatory medications. In some cases, surgical or 
non-surgical treatments may be necessary. Effective treat-
ments for tendonitis may include rest, medication, and in 
some cases, surgery (Vaishya et al. 2021).

Scientific studies suggest that inflammation is a key fac-
tor in the development of tendinitis as in RA. Inflammatory 
cells, such as macrophages and neutrophils, are typically 
present in the affected tendons of individuals with tendini-
tis. These cells secrete pro-inflammatory cytokines, such as 
tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta 
(IL-1β), which contribute to the inflammatory process in 
tendinitis. The release of pro-inflammatory cytokines leads 
to an increase in the expression of matrix metalloproteinases 
(MMPs), which are enzymes that degrade the extracellular 
matrix (ECM) of tendons (Connizzo and Grodzinsky 2018) 
leading to decreased mechanical strength of the tendons and 
ultimately tendinitis. Additionally, the release of pro-inflam-
matory cytokines also leads to increased production of proteo-
glycans, which are large macromolecules that can disrupt the 
normal organization of tendon fibers and contribute to tend-
initis (Brauer 2011). Another mechanism by which inflam-
mation contributes to tendinitis is through the recruitment of 
additional inflammatory cells to the affected area. These cells 
further contribute to the inflammatory process by releasing 
additional pro-inflammatory cytokines and enzymes (Dean 
et al 2015). This results in a vicious cycle of inflammation, 
ECM degradation, and further recruitment of inflammatory 
cells, which exacerbates the severity of tendinitis (Dakin et al. 
2015). The role of inflammation in tendinitis has important 
implications for its treatment. Anti-inflammatory drugs, such 
as COX inhibitors and corticosteroids, are commonly used to 
reduce the inflammation associated with tendinitis (Heine-
meier et al. 2017). Physical therapy and rehabilitation exer-
cises can also be used to improve the strength and function 
of affected tendons, reducing the risk of further episodes of 
tendinitis (Hak et al. 2010; Capogna et al. 2017).

Oxidative stress in inflammation: a key role

Numerous biological mechanisms are controlled by chemical 
reactions that involve the exchange of electrons among mol-
ecules. This alters the redox state of the molecules involved 
(Schafer and Buettner 2001). When the level of oxidants sur-
passes the cell’s antioxidant defenses, the redox balance is 
disrupted, resulting in either oxidative stress (a more positive 
redox potential) or reductive stress (a more negative redox 
potential). Oxidative stress is a frequent type of stress that 

occurs in living systems (Shao et al. 2012). Therefore, oxida-
tive stress arises due to the overproduction of oxidizing mol-
ecules compared to the cell’s reducing abilities. The reac-
tive oxygen species (ROS) and the reactive nitrogen species 
(RNS) are the common oxidants that cause oxidative stress 
in living systems (Pacher et al. 2007). Scientific studies sug-
gest that ROS is positively associated with the severity of 
RA. Innate immune cells like macrophages and neutrophils 
produce ROS in the form of  O2- and  H2O2 (Crowley 2014). 
Scientific reports suggest that an increase in ROS production 
due to redox reactions is related to the pathophysiology of 
inflammation in RA (Nathan and Cunningham-Bussel 2013; 
Blaser et al. 2016). ROS can also modify NF-kB signaling 
and nuclear translocation of NF-kB can be induced by  H2O2 
(Kabe et al. 2005). Other components of the signaling cas-
cade that lead to inflammation like AP-1 inducible hypoxia 
factor (HIF-1), and gamma-activated peroxisome proliferator 
receptor (PPARγ) are also induced by ROS (Espinosa-Diez 
et al. 2015). Scientific studies suggest that mitochondria con-
tinuously produce  O2- because of the discharge of electrons 
from the electron transport chain (Drose and Brandt 2012). 
Mitochondrial ROS help in the production of inflammatory 
cytokines like IL-1, IL-6, and TNF-α (Bulua et al. 2011). OS 
is considered a pathogenic signature in RA given the fivefold 
increase in mitochondrial ROS production in whole blood 
and monocytes of RA patients compared to healthy persons 
(Ponist et al. 2020; García-Sánchez et al. 2020).

Other factors affecting inflammation

Heredity

There is strong evidence to suggest that genetics play 
a major role in the development of RA. MacGregor 
et al. (2000) reported the estimated heritability of RA 
to be ~ 60%. Different genetic loci have been identified 
that are associated with increased risk of RA as shown 
in Table 1. One of the strongest genetic risk factors for 
RA is associated with a set of alleles within the major 
histocompatibility complex (MHC) region. The MHC 
genes encode human leukocyte antigens (HLAs); within 
the MHC region, there are specific amino acid sequences 
in the HLA peptide binding groove that are associated 
with the risk of development of RA (Bang et al. 2010; 
Raychaudhuri et al. 2012). These are collectively referred 
to as shared epitope (SE). Some studies suggest SE alleles 
contribute ~ 40% of the genetic risk of RA (Plenge 2009; 
Kronzer and Davis 2021). Other genetic factors have 
shown a strong association with RA; as per genome-
wide studies, more than 100 loci are associated with RA 
(Okada 2014; Messemaker et al. 2015a, b). A signifi-
cant genetic association with RA has been identified in 
the PTPN22 gene; specifically, the polymorphism that 



5367Naunyn-Schmiedeberg's Archives of Pharmacology (2024) 397:5363–5385 

affects its function is believed to be a major factor for 
RA development. However, the precise mechanism by 
which this polymorphism leads to RA is not fully known. 
Recent studies suggest that PTPN22 polymorphism 
may also influence the process of citrullination, which 
involves the conversion of arginine to citrulline. This is 
catalyzed by PAD (peptidylarginine deiminases) enzyme. 
Altered interactions between PAD and PTPN22 may lead 
to increased citrullination. This hypercitrullination may 
contribute to inflammation in RA (Chang et al. 2015). 
Some other genes or their products have been reported 
to be associated with RA including CTL4A (Plenge et al. 
2005), STAT4 (Remmers et al. 2007), IL-6(Ferreira et al. 
2013), and NF-kB (Spurlock et al. 2015). In addition, 
non-coding regions within the TRAF-C5 region have 
also been identified as being associated with RA. TRAF 
genes are involved in immune signaling pathways, and 
variations within TRAF-C5 region may affect the immune 
response and contribute to RA development (Messemaker 
et al. 2015a, b).

High glucose levels

Elevated glucose concentrations above the physiological 
normal of 22mmol/L have been found to induce a rise in 
the release of TNF-α and IL-6 from normal human mono-
nuclear cells in in vitro experiments (Weyand and Goronzy 
2017). There is also evidence that a 24-h incubation in 
a high-glucose medium increases the production of IL-6 
by human monocytes separated from healthy individu-
als (Morohoshi et al. 2006). The chance of tendinopathy 
development is increased by the possibility of chronic 
inflammation caused by these cytokines (Ruscitti et al. 
2015). Moreover, the development of RA is also signifi-
cantly influenced by inflammatory cytokines like TNF-α, 
IL-6, and IL-1 (Movahedi et al. 2015). Therefore, high 
glucose levels have a significant impact on the develop-
ment of inflammation in rheumatoid arthritis and tendinitis 
patients.

Sedentary lifestyle

A sedentary lifestyle refers to activities that involve remain-
ing seated or reclining and require minimal energy expendi-
ture. Examples include watching television, playing games, 
and spending prolonged periods being seated. A sedentary 
lifestyle in RA patients may be associated with increased 
inflammation. This could result in a vicious loop whereby 
the decreased physical function, increased fatigue, and 
increased local disease may result in sedentariness which 
may further increase inflammation and contribute to the 
severity of RA-related health outcomes (Thomsen et al. 
2015). The majority of experimental conditions that cause 
a drop in mechanical stress result in a loss of tendon elastic 
characteristics in both humans and animals, except Botox-
induced muscle paralysis (Fenton et al. 2017; Steultjens 
et al. 2022) (Fig. 1).

Gender

Women make up about two-thirds of RA patients. In the 
adult population, the cumulative risk of having RA is esti-
mated to be 3.6% for women and 1.7% for males (Maranini 
et al. 2022). Although the contribution of hormones to the 
onset of RA is still debatable, estrogen’s immune system-
stimulating properties may explain why RA affects women 
more frequently than males. Early menopause, polycystic 
ovarian syndrome, and pre-eclampsia are among the factors 
that have been connected to an elevated risk for the manifes-
tation of RA (Alpízar-Rodríguez et al. 2016). Breastfeeding, 
oral contraception, and hormone replacement treatment are 
the things that can postpone the start of RA (Ghamarzad 
et al. 2016). First-degree relatives (FDRs) of RA patients 
with lower rates of rheumatoid factor (RF) positivity have 
been linked to oral contraceptive use, indicating that hor-
mones may have an early “pre-clinical” impact on the etiol-
ogy of RA (Orellana et al. 2017). Although exogenous hor-
mone use is associated with a lowered risk for RA and may 
reduce endogenous hormone synthesis, the exact processes 
behind this link are yet unknown (Makol and Krause 2016).

Table 1  Genetic factors and their role in inflammation in RA

Genetic regions Mechanism

The “shared epitope” of MHC regions that code for HLA proteins is where the 
majority of risk is linked to the specific amino acids located at positions 70 and 71

Citrullinated antigens are presented preferentially, and this 
causes intracellular changes that worsen inflammation

Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) Extensive cellular hyperreactivity; may interfere with 
interactions between PTPN22 and PAD and cause 
hypercitrullination

Interleukin-6 receptor (IL6R) Faulty IL6 metabolism causes an increase in inflammation
Tumor necrosis factor receptor-associated factor-1 (TRAF1/C5) Elevated inflammation
Signal transducer and activator of transcription 4 (STAT4) Elevated inflammation
Peptidylarginine deiminase 4 (PADI4) Increased citrullination
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Why plant‑derived COX inhibitors?

The utilization of natural compounds derived from medici-
nal plants for the treatment of various diseases has gained 
substantial popularity in clinical research. Of particular 
interest are polyphenolic compounds, which have garnered 
significant attention for their ability to modulate inflam-
masomes (Ambriz-Pérez et al. 2016). Medicinal plants are 
being utilized as an alternative to allopathic COX inhibi-
tors due to the undesirable side effects associated with their 
or usage, particularly on the gastrointestinal tract and renal 
system. The use of potent synthetic drugs is accompanied 
by concerns regarding their toxicity and the recurrence of 
symptoms upon discontinuation. As a result, there is a grow-
ing need to develop anti-inflammatory drugs derived from 
medicinal plants. Extensive efforts are being made to explore 
the potential of medicinal plants in the search for effective 
and safer anti-inflammatory treatments (Asenso et al. 2016). 
Acheflan® is an example of a phytotherapeutic agent used 
for the local treatment of inflammatory conditions; another 
phytotherapeutic agent, Daflon 500 mg®, is composed of 
a purified flavonoid fraction and is known for its venotonic 
and vasoprotective effects (Nunes et  al. 2020). Conse-
quently, the immunopharmacological properties of various 
plant species have revealed various extracts, fractions, and 
chemical classes that exhibit significant therapeutic poten-
tial. This not only offers a promising alternative for treating 
inflammatory processes and associated diseases but also 
validates their traditional use in ethnobotanical practices. 

Furthermore, scientific literature highlights the significant 
anti-inflammatory activities displayed by plant-derived mol-
ecules, with many of their mechanisms involving the inhibi-
tion of cytokines, chemokines, and adhesion molecules, as 
well as pathways involving arachidonic acid and nitric oxide 
(Hughes et al. 2017; Akbari et al. 2022) (Tables 2 and 3).

Associated target in inflammation by plant‑derived 
COX inhibitors

Plant-derived COX inhibitors target various pathways and 
molecules involved in inflammation. These main targeted 
pathways and molecules include inducible nitric oxide syn-
thase (iNOS), MAP kinase signaling pathway, oxidative 
stress, and inflammatory cytokines (Fig. 2) (Table 4).

Inducible nitric oxide synthase

Inducible nitric oxide synthase (iNOS) is an enzyme that 
is involved in the production of NO (nitric oxide), a key 
mediator of inflammation. iNOS is one of the three isoforms 
of nitric oxide synthase (NOS) (Vannini et al. 2015; Kashfi 
et al. 2021). Unlike other forms, it produces significantly 
higher amounts of NO, reaching levels in the micromolecu-
lar range, and it can sustain NO production for longer peri-
ods ranging from hours to even days (Vannini et al. 2015). 
The interplay of pro- and anti-inflammatory cytokonins in 
the affected tissues of RA patients leads to the activation of 
iNOS (McInnes and Schett 2007). A study by Grabowski 

Fig. 1  Hypothesized mechanism of sedentary lifestyle on rheumatoid arthritis
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et al. (1997) suggested that CD68 + macrophages in the 
synovial lining and fibroblasts are the source of iNOS 
expression in the synovium of RA patients. In the case of 
tendonitis, all three isoforms of iNOS synthesize NO after 
tendon injury. The expression of all three isoforms was seen 
during shoulder surgery in tendon-injured patients (Millar 
et al. 2017). In the activation of iNOS gene transcription, the 
process involves the binding of LPS (lipopolysaccharide) to 
TLR4, which triggers the activation of its adaptor protein 
MyD88. This activation leads to the recruitment of down-
stream proteins like IRAK and TRAF6. Subsequently, multi-
ple protein kinases including IkB, IKK, and MAPKs (such as 
p38, MAPK, JNK1/2, ERK 1/2) are activated. The activation 
of these protein kinases plays an important role in the activa-
tion of central transcription factors involved in iNOS gene 
expression, namely, NF-kB and activator protein-1 (AP-1) 
(Murakami and Ohigashi 2007; Wu et al. 2019). Studies by 
Lee et al. suggested that the iNOS promoter gene contains 
binding sites for NF-kB and AP-1 and these binding sites are 
important for the expression of iNOS induction (Lee et al. 
2003; Tsai et al. 1999).

Various studies showed the therapeutic potential of phy-
tochemicals in suppressing iNOS expression. For instance, 
resveratrol, a phytochemical extracted from red grapes, sup-
presses LPS-induced iNOS mRNA expression. This sup-
pression results due to inhibition of IKB degradation by 
resveratrol thus blocking the activation of NF-KB in mac-
rophages (Youn et al. 2009). Curcumin, a phytochemical 
extracted from turmeric plants, has also been reported to 
suppress iNOS activity (Nakatake et al. 2017). While the 
exact target of this agent in macrophages is not known, stud-
ies suggest that curcumin may act on several signaling path-
ways upstream of iNOS transcription and post transcription; 
these pathways include MAPK and JAK/STAT (Murakami 
2009). Also, several novel phytochemicals have been iso-
lated such as 1-acetoxychavicol acetate (ACA)—derived 
from Alpinia galangal (Zingiberaceae), zerumbone extracted 
from Zingiber zerumbet (zingiberaceae) and Auraptene and 
Nobiletin found in citrus fruits. These can attenuate iNOS 
induction in macrophages, which may help in combating the 
inflammation in RA as well as tendonitis (Giang et al. 2009; 
Murakami 2009; Murakami 2009; Kobayashi 2010).

Mitogen‑activated protein kinase

Mitogen-activated protein kinase (MAPK) regulates vari-
ous cellular functions in eukaryotes including cell pro-
liferation, cell differentiation, and cell death. It consists 
of a series of protein kinases, MAPKKKs, MAPKKs, 
and MAPKs, which sequentially phosphorylate each 
other, finally activating several transcription factors. 
In mammals, MAPKs can be classified into three main 
classes—extracellular signal-regulated kinase (ERK), Ta
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stress-activated protein kinases (SAPK), and p38 MAPK 
(Korb et al. 2006; (Liang and Yang 2019) (Fig. 3).

In the synovial tissues of RA patients, all three types 
of MAPKs have been reported but the significant one is 
p38 MAPK (Thalhamer et al. 2007; Li et al. 2017). The 
p38 MAPK is a crucial member of the MAPK family that 
plays an important role in the regulation of inflamma-
tory cytokines like- IL-1 and TNF-α. Different isoforms 
of p38 have been reported to play a significant role in 
the pathogenesis of RA by regulating various processes 
like migration of inflammatory cells and mediators and 
cytokine production. The activation of p38 MAPK cas-
cade is initiated by various stimuli like LPS, TNF-α and 
IL-1 (Li et al. 2016). These ligands bind to cell surface 
receptors and cause conformational changes in receptors 
which ultimately leads to the recruitment and activation of 
downstream signaling proteins like TRAF. These proteins 
then activate the MAPKKKs (mitogen-activated protein 
kinase kinase kinase) like MEKK1-4, MLK, TAK-1, and 
ASK-1. These kinases are activated by interaction with 
small GTPases. Activated MAPKKKs then phosphorylate 
the next components in a cascade like MAPK or MAPKK 
(mitogen-activated protein kinase kinase). Important 
MAPKKs in p38 cascade are MKK-3 and MKK-6. These 
MAPKKs primarily activate p38 by phosphorylation of 
serine and tyrosine residues on p38 MAPK. Once acti-
vated, p38 MAPK phosphorylates downstream targets 
like ATF-2, MSK-1, Max/Myc, and ELK-1 (Li et al. 2002; 
Bassi et al. 2008).

The stress-activated protein kinase (SAPK) also known 
as the c-Jun N-terminal kinase (JNK) cascade is another 
member of the MAPK family. It plays an important role in 
various cellular and inflammatory responses. The external 
stimuli in the case of the JNK pathway can be stress. The 
MAPKKK in the case of JNK is MEKK-1 (MAPK/ERK 
kinase kinase-1) which can be activated by various upstream 
signals. Activated MAPKKK phosphorylate MAPKK which 
in the case of JNK are MKK4 and MKK7 (Kitanaka et al. 
2017). These MAPKKs then directly activate JNK by phos-
phorylating serine threonine residues in its activation loop. 
Activated JNK translocates to the nucleus and phospho-
rylates transcription factors like c-Jun, smad-4, AP-1, and 
ELK-1 (Namba et al. 2017; Hu et al. 2018).

ERK (extracellular signal-regulated kinase) is another 
member of MAPK family. The extracellular signals acti-
vate surface receptors which stimulate ERK–GTPases (RAS, 
RAF). The activated GTPases phosphorylated MAPKKKs 
of ERK cascade–MEKK-1/4 which then activate MAPKKs 
of ERK-MEK-1/2. These MEKs are dual-specificity kinases 
that phosphorylate ERK. Phosphorylated ERK then translo-
cates into the nucleus and activates transcription factors like 
ELK-1, Ets-1, and c-Myc (Lu and Malemud 2019; (Shang 
et al. 2016).

FMAPKs are considered the most promising therapeutic 
targets for RA. Some phytochemicals directly suppress phos-
phorylated MAPK complex hence stopping them from acti-
vating transcription factors leading to inflammation. These 
include allylpyrocatechol (APC) a phenolic compound 
derived from the leaves of Piper betle belonging to Piper-
aceae family. It has been found to suppress p38 complex 
and thus stop it from activating transcription factors inside 
the nucleus. It also has been found to inhibit the produc-
tion of pro-inflammatory cytokines like TNF-α. Therefore, 
it helps to modulate inflammatory response in RA (De et al. 
2016). Berberine (BBR) is an isoquinoline alkaloid that is 
extracted from various plant species belonging to the gen-
era Berberis, Coptis, and Phellodendron of the Ranuncu-
laceae family. It has been extensively used in RA patients 
for its anti-inflammatory properties. Studies suggest the sup-
pressive effects of berberine on p-ERK, p-p38, and p-JNK 
(Wang et al. 2014). Cryptotanshinone (CTS) is a quinoid 
triterpene that is extracted from the roots of Salvia miltio-
rhiza of the Lamiaceae family. It has been found to possess 
significant anti-inflammatory and anticancer activities. It has 
been found that CTS suppresses ERK-1/2, JNK, and p38 and 
hence prevents the activation of transcription factors (Tang 
et al. 2010). Andrographolide (AD) is a triterpenoid com-
pound extracted from the plant Andrographis paniculata, of 
the Acanthaceae family. Chemically it is [1-naphthalenyl] 
ethylidene} dihydroxy-4–2(3H)-furanone. AD has exten-
sively shown anti-inflammatory and antioxidant activity. 
Studies have suggested that AD completely suppressed ERK 

Fig. 2  Mechanism of action of various phytochemicals in inhibi-
tion of iNOS activation (ACA = 1-acetoxychavicol acetate (ACA), 
LPS = lipopolysaccharide, TLR = Toll-like receptor 4, MAPK = mito-
gen-activated protein kinase, NF-KB = nuclear factor-kappa B)
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signaling while it did not have any impact on p38 and JNK 
signaling (Li et al. 2017). Curcumin (CUR) is extracted from 
the roots of Curcuma longa, of the Zingiberaceae family. 
Studies have suggested that CUR inhibited p-p38, p-ERK, 
and p-JNK by preventing their translocation to the nucleus 
(Shang et al. 2016). Epigallocatechin-3-gallate (ECGC) is a 
polyphenol that is found in green tea. It has anticancerous, 
anti-inflammatory, and cardioprotective properties. Scien-
tific studies suggest that ECGC inhibits the phosphorylation 
of MAPKs including p38, JNK, and ERK in response to 
TNF-α stimulation. It also inhibits the activation of tran-
scription factors—c-Jun, AP-1, and smad-4 in JUN-k cas-
cade. MAPKK- TAK-1 is also inhibited by ECGC (Singh 
et al. 2003).

NF‑κB

NF-κB is the most important regulator in RA. It con-
trols inflammation, cell survival, and cell proliferation. 
It is generally present in immune cells and regulates the 
transcription of cytokines. NF-κB activation is initiated 
by various stimuli including TNF-α, IL-1, and oxidative 
stress (Hutami et al. 2019). Mammalian NF-kB has five 

regulators—p105, p100, ReIA, REI-B, and C-ReI. In the 
active state, these regulators dimerize and activate the 
signaling cascade. In the inactivate state, IkB, an inhibi-
tor, prevents the dimerization of NF-kB complex and 
its subsequent translocation into nucleus. NF-kB can be 
activated by two distinct pathways—canonical and non-
canonical. But the most significant pathway in RA is 
canonical pathway (Fig. 4). It progresses by the dimeri-
zation of IKK proteins consisting of IKK-α, IKKβ, and 
IKK-γ/NEMO. NEMO (NF-kappa-B essential modulator) 
is a crucial regulator of NF-κB (Chakraborty et al. 2021). 
Scientific studies have shown that canonical pathway acti-
vation requires NEMO for phosphorylation of IkB. IkB 
is the inhibitor that controls regulatory unit of NF-kB. 
The pathway is primarily dependent on degradation of 
IkB that allows translocation of NF-kB complex into 
the nucleus and stimulate transcription. NF-kB complex 
in the nucleus predominantly includes p65/p50 dimers 
(Sarmiento Salinas et al. 2017; Choi et al. 2019).

Various molecules in NF-kB can be targeted to suppress 
RA, and numerous phytochemicals have shown the ability 
to effectively to inhibit activity of molecules within this 
pathway without causing side effects (Bacher and Schmitz 

Fig. 3  Interaction of various phytochemicals with their target mole-
cules in MAPK pathways.(RAS = rat sarcoma protein, TRAF = tumor 
necrosis factor receptor-associated dactor, ASK1 = apoptosis signal-
regulating kinase 1, MLK3 = mixed-lineage kinase 3, TAK1 = trans-
forming growth factor-beta-activated kinase 1, MEKK = mito-
gen-activated protein kinase kinase kinase, ERK = extracellular 

signal-regulated kinase, JNK = Jun N-terminal kinase, AP1 = activa-
tor protein 1, SMAD = mothers against decapentaplegic homolog, 
MSK = mitogen- and stress-activated protein kinase, ELK = ETS-like 
gene, E-ts = E twenty-six, C-MYC = cellular myelocytomatosis viral 
oncogene)
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2004). These include the following: andrographolide (AD) 
is a triterpenoid extracted from Andrographis paniculata, 
of the Acanthaceae family. It has shown anti-inflammatory 
and antioxidant properties. Scientific studies have shown 
that AD prevents NF-kB signaling by inhibiting the IkB 
degradation and by suppressing the nuclear translocation 
of p65 subunit of NF-Kb (Zhai et al. 2014). Berberine 
(BBR) is an isoquinoline alkaloid that is extracted from 
various plant species belonging to the genera Berberis, 
Coptis, and Phellodendron, of the Ranunculaceae family. 
It inhibits the upregulation of AMPK (5′ AMP-activated 
protein kinase) and phosphorylation of p65 and IkB result-
ing in a negative effect on NF-kB signaling (Zhou et al. 
2019). Apigenin (APG) is a flavone and is most com-
monly found in vegetables and fruits. It is known for its 
anti-inflammatory properties. It inhibits NF-kB activation 
inhibiting IkB degradation and phosphorylation (Xu et al. 
2008). Cafeic acid (CA) is a phenol and is naturally found 
in various plants. It strongly inhibits the phosphorylation 
of P-IKKα/β and P-IκBα (Wang et al. 2017b). Celastrol 
(CEL) is a triterpenoid extracted from Tripterygium wil-
fordii, of the family Cealstraceae. It has been shown to 
possess anti-inflammatory activity. It suppresses the phos-
phorylation of IKK and IKBα and therefore inhibits the 
nuclear translocation of p65 (Cascão et al. 2017). CTS 
also inhibited the nuclear translocation of p65 (Wang et al. 

2015). EGCG inhibits activation of the NF-kB pathway by 
inhibiting the NF-kB p65 subunit transcriptional activity 
without affecting IkB degradation (Lee et al. 2009). Gen-
istein (GN) (4,5,7-trihydroxy isoflavone) is a phytoestro-
gen and a tyrosine kinase inhibitor. It is extracted from 
soybeans and has been shown to have anticancer and anti-
inflammatory properties. Scientific studies have shown 
complete suppression of TNF-α-induced phosphorylation 
of p65 subunit; it also suppresses the expression levels of 
IKK and p65 (Li et al. 2014).

JAK‑STAT pathway

The Janus kinase-signal transducers and activators of tran-
scription (JAK-STAT) pathway is an important signaling cas-
cade involved in the pathogenesis of RA. The cytokines that 
activate JAK-STAT cascade in RA include IL-6, IFN-γ, and 
TNF-α (Kato 2020). The JAK family consists of 4 cytoplas-
mic non-receptor tyrosine kinases—JAK-1, JAK-2, JAK-3, 
and TYK2. These kinases phosphorylate STAT proteins. The 
STAT proteins are transcription factors that cause the activa-
tion of target genes. STAT-3 is one of the STATs that gets acti-
vated continuously in RA. After the binding of the ligand to 
the receptor on the cell surface, the activation of JAK proteins 
is triggered. This activation leads to the autophosphorylation 
of JAK. The activated JAK then phosphorylates the STAT-3 

Fig. 4  Canonical activation 
of NF-kB and its targets in 
RA (TCR  = T cell receptor, 
TNFR = tumor necrosis factor 
receptor, NF-kB = nuclear fac-
tor kappa B, IKK = inhibitor of 
nuclear factor kappa-B kinase, 
EGCG  = epigallocatechin-3-gal-
late, GN = genistein)
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proteins. Phosphorylated STAT-3 proteins undergo dimeriza-
tion and translocate into the nucleus, where it binds to specific 
nuclear sequences and promote gene expression. One impor-
tant regulator of this pathway is a family of proteins known as 
SOCS (suppressor of cytokine signaling). There are 8 mem-
bers of the SOCS protein family and each plays a distinct role 
in regulating the JAK-STAT cascade. Specifically, SOCS-1 
and SOCS-3 inhibit the cascade by binding to phosphoryl-
ated STAT proteins and activated proteins (Malemud 2018). 
Targeting this pathway has emerged as a potential therapeu-
tic approach for managing RA. Various phytochemicals have 
been shown to possess the property of inhibiting this cascade 
by targeting the key molecules of the cascade (Malemud and 
Pearlman 2009; Böhmer and Friedrich 2014).

Scientific studies have shown CTS downregulated the 
p300-mediated acetylation of STAT-3, which is necessary 
for its activation, and suppressed the JAK-2-independent 
STAT-3 activation (Wang et al. 2017c). Curcumin sup-
presses the production of IFN-γ and IL-6, the key pro-
inflammatory cytokines of the cascade. It also inhibited the 
expression of IFN-γ at the transcription level, thereby sup-
pressing IFN-γ-stimulated STAT-1 phosphorylation and 
its subsequent translocation to the nucleus (Huang et al. 
2012). ECGC also suppressed the nuclear translocation of 
p-STAT-3 proteins (Lee et al. 2016). Resveratrol (RVL) 
is a polyphenol that is extracted from grapes, cranber-
ries, and peanuts. It has anticancer and anti-inflammatory 

properties. It inhibits the mRNA expression levels of 
STAT-3 (Fig. 5).

Conclusion

Although COX inhibitors’ anti-inflammatory, antipyretic, 
and analgesic effects have been thoroughly studied, a vari-
ety of other molecular and cellular mechanisms that are still 
poorly understood are crucial in the etiology of inflamma-
tion. This review covers the role of various molecules in 
inflammation and their pathways. The role of inflamma-
tion in the etiology of rheumatoid arthritis and tendinitis 
has also been thoroughly covered. COX inhibitors are the 
widely prescribed drugs worldwide. These drugs should be 
provided for the shortest amount of time at the lowest dos-
age while being closely monitored for GI, renal, and cardio-
vascular damage. Many plant-derived substances are now 
being researched as possible anti-inflammatory drugs with 
the least side effects. This review also assists present and 
future researchers in identifying anti-inflammatory plants 
whose active components can be separated through a variety 
of separation techniques. Such a kind of research could result 
in the identification of novel compounds of natural origin 
that can be used to treat inflammatory diseases. However, 
more thorough research could be done to determine the real 
mechanism(s) of action of these phytochemical agents.

Fig. 5  Depiction of the over-
view of JAK-STAT pathway and 
its phytochemical target in RA. 
(JAK-STAT = Janus kinase-sig-
nal transducers and activators of 
transcription, RVL = resveratrol)
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