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Abstract
Synthetic organic insecticides such as pyrethroids, organophosphates, neonicotinoids, and others have the potential to disrupt 
ecosystems and are often toxic to humans. Thiamethoxam (TMX), a neonicotinoid insecticide , is a widely used insecticide 
with neurotoxic potential. l-Carnitine (LC) is regarded as the “gatekeeper” in charge of allowing long-chain fatty acids into 
cell mitochondria. LC is an endogenous chemical that is renowned for its prospective biological activity in addition to its 
role in energy metabolism. This study investigated the protective effects of LC against TMX-induced neurotoxicity in male 
Wistar rats. For 28 days, animals were divided into four groups and treated daily with either LC (300 mg/kg), TMX (100 mg/
kg), or both at the aforementioned doses. Our results revealed marked serum lipid profile and electrolyte changes, declines 
in brain antioxidants and neurotransmitters (acetylcholine, dopamine, and serotonin levels) with elevations in thiobarbitu-
ric acid reactive substances and proinflammatory cytokine levels, as well as acetylcholinesterase and monoamine oxidase 
brain activity in TMX-treated rats. TMX also increased the expression of caspase-3 and glial fibrillary acidic protein. In 
contrast, pretreatment with LC attenuated TMX-induced brain injury by suppressing oxidative stress and proinflammatory 
cytokines and modulating neurotransmitter levels. It also ameliorated the expression of apoptotic and astrogliosis markers. 
It could be concluded that LC has antioxidant, anti-inflammatory, anti-astrogliosis, and anti-apoptotic potential against TMX 
neurotoxicity.
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Introduction

Neonicotinoids (NEOs), a class of acetylcholine receptor 
inhibitors, are the most widely used pesticides, accounting 
for 30% of the global insecticide market and being registered 
in over 120 countries worldwide (Li et al. 2022). Because 
of their advantages, such as high efficacy against suck-
ing insects, ease of use, and low cost, they have gradually 

replaced organophosphorus, pyrethroid, and carbamate 
insecticides (Distefano et al. 2022). NEOs are made up of 
seven compounds that are classified into three generations: 
the first (imidacloprid, nitenpyram, acetamiprid, and thia-
cloprid), the second (thiamethoxam and clothianidin), and 
the third (dinotefuran) (Li et al. 2022). With the increased 
use of NEOs, they have been detected in a variety of envi-
ronmental matrices, including soil (Chen et al. 2022), water, 
and food (Naumann et al. 2022), and have been linked to 
adverse health effects in nontarget organisms (Zhang et al. 
2021; Addy-Orduna et al. 2022). Despite the initial belief 
that NEOs have low mammalian toxicity, there is growing 
evidence that NEOs can cause a wide range of toxic effects 
in animals and humans, including neurotoxicity, immunotox-
icity, hepatotoxicity, nephrotoxicity, and reproductive cyto-
toxicity in vertebrates and invertebrates (Wang et al. 2018; 
Anadón et al. 2020). They effectively block acetylcholine 
(Ach) binding and overstimulate cells at synaptic junctions, 
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obstructing nerve impulse propagation and leading to cell 
and/or individual paralysis and death (Almeida et al. 2021).

Thiamethoxam (TMX; 3-(2-chloro-1,3-thiazol-
5-ylmethyl)-5-methyl-1,3,5-oxadiazine-4-ylidene (nitro) 
amine) is a representative second-generation neonicotinoid 
(NEO) insecticide with a broad activity spectrum and high 
target specificity against different types of insects, as well as 
a low risk to nontarget mammalian species (Liu et al. 2018). 
TMX is a WHO class III carcinogen with the liver and kid-
ney as its primary targets, and lifelong-fed mice have an 
increased incidence of liver tumors (Yi et al. 2023). TMX, 
as an agonist of nicotinic acetylcholine receptors (nAChRs) 
in the nervous system, can cause neurological disorders and 
systemic neurotoxicity by disrupting synaptic transmission 
in the nervous system (Yang et al. 2023). TMX can also bind 
to Ach receptors and reduce Ach-induced action potentials, 
causing changes in cholinergic-related behavioral and bio-
chemical processes as well as increased anxiety in rats (Yi 
et al. 2023).

l-Carnitine (LC; β-hydroxy-γ-trimethyl-amino-butyric 
acid) is a water-soluble antioxidant found in the liver, kid-
ney, and brain of most mammals (El-Sherbini et al. 2017; 
Nouri et al. 2022). LC is derived from various foods (75%), 
and the body synthesizes it using various essential amino 
acids (25%), such as lysine and methionine (Hamza et al. 
2020). The biologically active enantiomer LC mediates 
the transport of long-chain fatty acids into the mitochon-
drial matrix for cellular energy metabolism and has anti-
oxidant and anti-inflammatory properties (Abdulidha et al. 
2020; Sarzi-Puttini et al. 2021). LC is also important in 
cell osmoregulation and in the stabilisation of cellular and 
mitochondrial membranes, thereby preventing cell damage 
(Türkyılmaz et al., 2010). Because LC is easily transported 
through the blood˗brain barrier via the organic cation/carni-
tine transporter novel family member 2 (OCTN2), its plasma 
and cerebrospinal fluid concentrations increase after oral 
administration (Sarzi-Puttini et al. 2021). Furthermore, LC 
protects against neurotoxicity and decreases Ach activity and 
thus cognitive abilities (Mahmoud et al. 2021). This was the 
first study to investigate the effect of LC on TMX-induced 
neurotoxicity in male rats. The current study aimed to inves-
tigate the effects of LC on oxidative stress, inflammatory 
factors, and neurochemicals, and the expression of regula-
tory astrogliosis and apoptosis markers induced by TMX in 
male Wistar rat brains.

Materials and methods

Chemicals

A 25% TMX (Actara®, Syngenta Canada Inc.) was pur-
chased from a local pesticide market. LC was purchased 

from an Arab company for Pharmaceuticals and Medical 
Plants (Egypt). All other chemicals used in our experiment 
were of analytical grade.

Animal care

Wistar male rats weighing 180 ± 20 g were obtained from 
the animal house of the Medical Research Institute, Alexan-
dria University. The rats were group-housed in plastic cages 
in normal laboratory conditions regarding humidity at a tem-
perature of 28 ± 3 °C and a 12-h light/12-h dark cycle, fed a 
standard pellet diet, and provided drinking water ad libitum. 
All animals were accommodated in laboratory conditions 
for 1 week before treatment and maintained under the same 
conditions throughout the experiment. The study protocol 
was approved by the Ethical Committee for the Use and Care 
of Laboratory Animals established by Alexandria University 
(Alexandria, Egypt). Animal experiments received approval 
from the Ethical Committee (No. AU 04230427301).

Experimental design

Twenty rats were randomly divided into four groups with 
five animals in each group as follows: control animals were 
administered distilled water as a vehicle, LC (300 mg/kg), 
TMX (100 mg/kg; 1/15.6 from LD50), and LC + TMX. LC 
was administered first, and after 30 min, TMX was admin-
istered. The doses of TMX and LC were chosen according 
to previous studies (Feki et al. 2019; Essawy et al. 2022, 
respectively). The rats were treated orally for 4 weeks daily.

 Blood and brain tissue preparation

At the end of the study period, all rats were sacrificed by 
decapitation, under ketamine (100 mg/kg) and xylazine (20 
mg/kg) anesthesia, and blood was withdrawn by intracardiac 
puncture. The serum was immediately separated by centrifu-
gation at 3000 rpm for 15 min at 4 °C and stored at −80 °C. 
The whole brain of each animal was rapidly dissected, thor-
oughly washed with ice-cold isotonic saline, dried, weighed, 
and then divided into two portions. The first portion was 
directly homogenized in ice-cold 10 mM phosphate buffer 
(pH 7.4) to prepare a 10% (w/v) homogenate, which was 
centrifuged at 5000 rpm for 10 min at 4 °C. The supernatant 
was collected and stored at −80 °C and then utilized for bio-
chemical analyses. The second portion was frozen in liquid 
nitrogen and stored at −80 °C for RNA extraction.

Blood lipid profile and electrolyte assays

Serum samples were assayed for lipid profiles (triglycerides 
(TG), total cholesterol (TC), high-density lipoprotein cho-
lesterol (HDL-C), and low-density lipoprotein cholesterol 
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(LDL-C)) using colorimetric kits from Bio-System Com-
pany (Egypt).

Serum electrolyte levels (Na+ and Ca+2) were determined 
by an automatic electrolyte analyzer (PL1000A).

Determination of oxidant/antioxidant capacity 
biomarkers

Lipid peroxidation was measured using the thiobarbituric 
acid reactive substances (TBARS) assay by Tappel and 
Zalkin (1959). The TBARS concentration was calculated 
using standard curves of increasing 1,1,3,3-tetramethoxypro-
pane concentrations and expressed as nmol/g tissue.

In addition, the levels of reduced glutathione (GSH) as a 
nonenzymatic antioxidant biomarker were determined based 
on the method of Jollow et al. (1974). Briefly, the superna-
tant was centrifuged with 5% trichloroacetic acid. To 0.1 ml 
of homogenate, 2 ml of phosphate buffer (pH 8.4), 0.5 ml 
of dithiobis (2-nitrobenzoic acid) (DTNB), and 0.4 ml of 
double distilled water were added, and the absorbance was 
read at 412 nm. The results were expressed as mg/g tissue.

Furthermore, three enzymatic antioxidants, superoxide 
dismutase (SOD), catalase (CAT), and glutathione peroxi-
dase (GPx), were evaluated according to the methods of 
Mishra and Fridovich (1972), Aebi (1984), and Flohé and 
Günzler (1984), respectively.

SOD activity was assayed by the inhibition of epinephrine 
auto-oxidation in an alkaline medium (pH 10.2) to adreno-
chrome, which is markedly inhibited by the presence of 
SOD. Epinephrine was added to the assay mixture, contain-
ing tissue supernatant, and the change in extinction coef-
ficient was followed at 480 nm in a spectrophotometer. The 
enzyme activity was expressed as U/g.

CAT activity in brain supernatants was determined by 
the decomposition of hydrogen peroxide according to Aebi 
(1984) using a reaction mixture consisting of hydrogen per-
oxide (H2O2; 10 mmol/l final concentration) in phosphate 
buffer (pH 7.0) as the substrate. Changes in absorbance due 
to H2O2 degradation were monitored spectrophotometrically 
at 240 nm for 1 min, and the enzyme activity was expressed 
as U/g tissue.

GPx activity was measured using cumene hydroperoxide 
as a substrate. The assay method is based on monitoring the 
generation of GSH from glutathione disulfide (GSSG) by the 
action of glutathione reductase in the presence of reduced 
nicotinamide adenine dinucleotide phosphate (NADPH). 
The absorbance at 340 nm was recorded. The enzyme activ-
ity was expressed as mU/g tissue.

Determination of inflammatory markers

To evaluate neuroinflammation in brain tissue treated 
with TMX and/or LC, proinflammatory markers such as 

tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 
interleukin-1β (IL-1β), and nuclear factor kappa B (NF-κB) 
were measured by enzyme-linked immunosorbent assay 
(ELISA) kits obtained from ABclonal and Biosourse (USA), 
respectively, according to the manufacturer’s instructions for 
TNF-α (ABclonal, cat no. RK00029), IL-6 (Biosourse, cat 
no. MBS726707), IL-1β (Biosourse, cat no. MBS82​5017), 
and NF-κB (Biosourse, cat no. MBS453975).

Neurochemical biomarkers

Acetylcholinesterase (AchE) activity was assessed by using 
commercial rat ELISA kits obtained from Elabscience (cat 
no. E-EL-R0355) according to the manufacturer’s instruc-
tions. Enzyme activity was determined using a molar extinc-
tion coefficient of 412 nm.

The activity of monoamine oxidase (MAO) was estimated 
using p-tyramine hydrochloride as a substrate according to 
the method of Sandler et al. (1981).

The levels of Ach (cat no. CEA912Ge), dopamine (DA, 
cat no. DOP31-K01), and serotonin (5-HT, cat no. CSB-
E08364r) were estimated in the brain by using commercial 
rat ELISA kits obtained from Cloud-Clone Crop, Eagle Bio-
sciences Inc, and Cusabio (USA), respectively. The opti-
cal density was read at 450 nm in a microplate photometer 
within 15 min according to the manufacturer’s protocol.

Quantitative real‑time polymerase chain reaction 
(qRT˗PCR)

Total RNA was extracted from 30 mg of brain tissue sam-
ples using TRIzol reagent (Invitrogen, cat no. 15596-026). 
The extracted RNA concentration was quantified using Nan-
oDrop spectrophotometry (Thermo Fisher Scientific, USA); 
then, 110 ng of total RNA was transcribed using RNA 
reverse transcriptase kits (cat no. K0251, Thermo Fisher 
Scientific, USA). The thermal cycler was programmed at 
25 °C for 10 min, 37 °C for 120 min, 85 °C for 5 min, and 4 
°C for 20 h. Prepared cDNA was used in the qPCR analyzer 
(StepOne, Applied Biosystems, Singapore) using MAXIMA 
SYBR Green qPCR Master Mix with the following program: 
1 cycle at 95 °C for 10 min; 40 cycles of 95 °C for 15 s, 60 
°C for 30 s and 72 °C for 30 s; and one cycle at 95 °C for 15 
s, 60 °C for 1 min and 95 °C for 15 s. The primer sequences 
used and the sizes of caspase-3 and glial fibrillary acidic 
protein (GFAP) housekeeping β-actin are shown in Table 1. 
Duplicate plates were tested for each condition and were 
compared to assess the reproducibility of the results. The 
threshold cycle (Ct) for each well was recorded, and data 
analysis was performed by the 2−ΔΔCT method with normali-
zation to β-actin expression.

https://www.mybiosource.com/il1b-rat-elisa-kits/il-1-beta/825017
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Statistical analysis

Values are expressed as the means ± SE. The normality of 
data distribution was assessed using Shapiro-Wilk’s test. 
Significant differences between values were analyzed by 
two-way analysis of variance (ANOVA) followed by post 
hoc Tukey’s multiple comparisons tests. P values < 0.05 
were considered statistically significant. The study was car-
ried out using GraphPad Prism 6.0 Software (USA).

Results

Ameliorative effect of LC on TMX‑induced changes 
in the serum lipid profile and electrolyte ions

Serum levels of TG, TC, and LDL-C were significantly (P 
< 0.05 vs. controls; 57, 48, and 158%, respectively) higher 
in TMX-treated rats, while HDL-C was significantly lower 
(Fig. 1A–D; −49%). Similarly, TMX-treated animals had 
significantly lower ionic Na+ (−8%) and Ca+2 (−41%) levels 
than the control group (Fig. 2A, B). Oral administration of 
LC and TMX, on the other hand, resulted in significant (P 
< 0.05 vs. TMX group) decreases in TG, TC, LDL-C, and 
elevated HDL-C levels (Fig. 1A–D; −9, −21, −39, and 69%, 
respectively). Furthermore, when compared to the TMX-
treated group, administration of LC + TMX resulted in a 
significant improvement in ionic electrolyte levels. Two-way 
ANOVA revealed a significant interactive effect on TG (F 
= 1.012; P = 0.001), TC (F = 3.196; P = 0.001), LDL-C (F 
= 5.532; P = 0.001), and HDL-C (F = 4.401; P = 0.001) 
levels. Furthermore, when compared to the TMX-treated 
group, administration of LC + TMX resulted in a significant 
improvement in ionic electrolyte (F Na+ = 2.701, P = 0.001; 
F Ca+2 = 6.542, P = 0.001) levels.

Ameliorative effect of LC on TMX‑induced oxidant/
antioxidant imbalance

Figure 3A and B depicts the effect of LC administration 
on TMX-induced oxidative stress. TMX significantly (P ˂ 
0.05 vs. controls) increased the levels of TBARS (F (3, 16) 
= 178.42; P < 0.001; 213%) while decreasing the levels of 
GSH (F (3, 16) = 409.06; P < 0.0001; −27%) in the exposed 
rat brains. Coadministration of LC and TMX significantly 

improved the levels of TBARS and GSH (−28 and 23%, 
respectively) in the brain compared to animals exposed to 
TMX alone. Two-way ANOVA revealed a significant inter-
active effect of LC and TMX on TBARS (F = 2.194; P = 
0.001) and GSH (F = 3.572; P = 0.001) levels.

TMX-treated rats had significantly lower activities of 
CAT (F (3, 16) = 137.80; P < 0.001; −47%), SOD (F (3, 16) 
= 16.75; P < 0.0001; −28%), and GPx (F (3, 16) = 28.86; P 
< 0.0001; −64%). The significant decreases in antioxidant 
status (44, 14, and 56%, respectively) caused by the coad-
ministration of LC and TMX were increased when compared 
to rats treated with TMX (Fig. 3C–E). Two-way ANOVA 
revealed a significant interactive effect of LC and TMX on 
CAT (F = 8.751; P = 0.001), SOD (F = 2.437; P = 0.0001), 
and GPx (F = 637.236; P = 0.0001).

Ameliorative effect of LC on TMX‑induced 
inflammatory stress

TMX alone significantly elevated NF-κB (F (3, 16) = 
190.47; P < 0.0001; 128%), IL-1β (F (3, 16) = 354.45; P 
< 0.0001; 64%), TNF-α (F (3, 16) = 142.93; P < 0.0001; 
93%), and IL-6 (F (3, 16) = 1.03; P < 0.0001; 89%) lev-
els in contrast to the control. In contrast, rats treated with 
LC had significantly lower levels of these proinflammatory 
cytokines (−29, −30, −41, and −30%, respectively) in the 
brain than the TMX-treated group (Fig. 4A–D). Two-way 
ANOVA revealed a significant interactive effect of LC and 
TMX on NF-κB (F = 4.793; P = 0.0001), IL-1β (F = 2.338; 
P = 0.0001), TNF-α (F = 4.738; P = 0.0001), and IL-6 (F 
= 4.121; P = 0.0001).

Ameliorative effect of LC on the neurochemical 
disturbance caused by TMX

Figure 5A and B depicts the data on the brain AchE and 
MAO activity of rats treated with LC and/or TMX. TMX 
administration resulted in a significant (P ˂ 0.05 vs. con-
trols) increase in AchE (F (3, 16) = 115.66, P < 0.0001; 
93%) and MAO (F (3, 16) = 50.71, P < 0.0001; 64%) brain 
activity, the key indicators of nervous system function in 
the exposed rats. Furthermore, the reduction in Ach, DA, 
and 5-HT levels after TMX exposure was worsened in 
exposed animals (F (3, 16) = 42.04, P < 0.0001; −56%, 
F (3, 16) = 265.81, P < 0.0001; −64%, and F (3, 16) = 

Table 1   Primer sequences specific for the analyzed genes

Name Size (bp) Accession no. Forward Reverse
β-Actin 81 NC_051347.1 ATG​TGG​CTG​AGG​ACT​TTG​ATT​ ATC​TAT​GCC​GTG​GAT​ACT​TGG​
Caspase-3 160 NC_051351.1 CTT​GGA​ACG​CGA​AGA​AAA​GT AGC​CCA​TTT​CAG​GGT​AAT​CC
GFAP 121 NC_051345.1 GAA​GAA​AAC​CGC​ATC​ACC​AT CCG​TCT​TTA​CCA​CGA​TGT​TC
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12.38, P < 0.0001; −46%, respectively) compared to con-
trol animals (Fig. 5C–E). In contrast to TMX-treated rats, 
the protective group treated with LC showed a significant 
decrease in AchE (−51%) and MAO (−25%) activity and 
a significant increase in Ach, DA, and 5-HT levels (117, 
84, and 37%, respectively). Two-way ANOVA revealed a 
significant interactive effect of LC and TMX on AchE (F 
= 3.101; P = 0.0001) and MAO (F = 3.397; P = 0.0001) 
brain activity, and Ach (F = 1.588; P = 0.0001), DA (F = 
6.344; P = 0.0001), and 5-HT (F = 761.262; P = 0.0001) 
levels.

Ameliorative effect of LC on TMX‑induced caspase‑3 
and GFAP activation

The levels of caspase-3 and GFAP expression were meas-
ured in the experimental groups to investigate whether LC 
has anti-apoptotic and anti-astrogliosis effects in the brain. 
TMX-intoxicated rats had significantly higher expression 
levels of cleaved caspase-3 (F (3, 16) = 105.83; P < 0.0001; 
471%) and GFAP (F (3, 16) = 582.97; P < 0.0001; 85%) 
than the control group. LC cotreatment with TMX, on the 
other hand, significantly (P ˂ 0.05 vs. TMX group) inhibited 

Fig. 1   Effect of l-carnitine (LC) on the levels of (A) triglycerides 
(TG), (B) total cholesterol (TC), (C) high-density lipoprotein choles-
terol (HDL-C), and (D) low-density lipoprotein cholesterol (LDL-C) 
in the serum of rats treated with thiamethoxam (TMX). Values are 

presented as mean ± S.E.; n = 5 animals; different superscripts on 
the columns are significantly different at P < 0.05. a, P < 0.05 vs. 
control. b, P < 0.05 vs. LC. c, P < 0.05 vs. TMX. d, P < 0.05 vs. LC 
+ TMX
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cleaved caspase-3 (−36%) and GFAP (−13%) expression in 
the brain (Fig. 6A, B). Two-way ANOVA revealed a signifi-
cant interactive effect of LC and TMX on caspase-3 (F = 
632.236; P = 0.0001) and GFAP (F = 2.399; P = 0.0001) 
expression levels.

Discussion

The persistent use of chemical inputs such as pesticides 
has caused significant environmental damage as well as 
human illness. NEO intoxication has also been reported 
in humans, with clinical signs such as sleepiness, diso-
rientation, dizziness, leukocytosis, muscular weakness, 
hypothermia, and convulsions (Hussain et al. 2022). With 
growing evidence of NEO neurotoxicity, there is an urgent 
need for a better understanding of their negative effects 
on nontarget organisms (Wang et al. 2018; Habotta et al. 
2023). TMX is a potent NEO insecticide that has been 
shown to affect a variety of physiological indices and his-
tological structures in albino rats (El-Din et al. 2023). LC 
has already been shown to have a significant neuroprotec-
tive effect against aspartame (Hamza et al. 2020), atra-
zine (Aziz et al. 2018), bisphenol A (Edres et al. 2018), 
and valproic acid (Nouri et al. 2022; Salimi et al. 2022) 
toxicity. Furthermore, LC has been shown to have sig-
nificant antioxidant activity in animal models of depres-
sion (Martinotti et al. 2011), Alzheimer’s disease (Ahmed 
2012), Parkinson’s disease (Salama and Elgohary 2021), 
neuropathic pain (Sarzi-Puttini et al. 2021), and epilepsy 
(Essawy et al. 2022). It was proven for the first time that 
administration of LC potently ameliorates brain oxidative 

stress, neuroinflammation, astrogliosis, and apoptosis after 
sequential 28-day TMX exposure in adult male rats.

Reactive oxygen species (ROS) produced from hazard-
ous substances influence energy molecules such as pro-
teins, lipids, and carbohydrates; the synthesis and utili-
zation of these molecules may change under toxic stress 
(Kayis et al. 2019). Lipids are important in changing the 
structure and composition of cellular membranes and are 
also employed as energy sources during toxic biotrans-
formation (Kayis et al. 2019). The lipid profile of TMX-
exposed rats indicated a substantial increase in serum TC 
and TG, probably due to lipoprotein lipase hypoactiv-
ity, which breaks down triglycerides. Furthermore, LDL 
receptors become dysfunctional, increasing serum LDL-
C, while inhibition of HDL-C concentration in the blood 
causes undesirable changes in lipid metabolism, producing 
hypercholesterolemia (Yousef et al. 2020). Increased lev-
els of total lipids, cholesterol, and TG in this study could 
indicate high lipid peroxidation, which is associated with 
glycolipid metabolism disorders, loss of cell membrane 
integrity, and increased energy demand, resulting in cell 
damage, lipid accumulation, and apoptosis (Saad et al. 
2022). Hyperstimulation of the nervous system causes 
energy demands, which activate hormone-sensitive tri-
glyceride lipase in tissue, resulting in hydrolysis of stored 
triglycerides from fat stores and mobilization of free fatty 
acids in the bloodstream, resulting in increased serum 
total lipid concentration (Pothu et al. 2019). These results 
agreed with those of Wilkens et al. (2019) who found an 
increase in TG and very low-density lipoprotein (VLDL) 
levels in the plasma of bullfrog tadpoles exposed to two 
herbicides (sulfentrazone and glyphosate).

Fig. 2   Effect of l-carnitine (LC) on the levels of (A) Na+ and (B) 
Ca+2 in the serum of rats treated with thiamethoxam (TMX). Values 
are presented as mean ± S.E.; n = 5 animals; different superscripts 

on the columns are significantly different at P < 0.05. a, P < 0.05 vs. 
control. b, P < 0.05 vs. LC. c, P < 0.05 vs. TMX. d, P < 0.05 vs. LC 
+ TMX
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Fig. 3   Effect of l-carnitine (LC) on the levels of (A) thiobarbitu-
ric acid reactive substances (TBARS) and (B) reduced glutathione 
(GSH) as well as the activities of (C) catalase (CAT), (D) superoxide 
dismutase (SOD), and (E) glutathione peroxidase (GPx) in the brain 

of rats treated with thiamethoxam (TMX). Values are presented as 
mean ± S.E.; n = 5 animals; different superscripts on the columns are 
significantly different at P < 0.05. a, P < 0.05 vs. control. b, P < 0.05 
vs. LC. c, P < 0.05 vs. TMX. d, P < 0.05 vs. LC + TMX
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LC is required for long-chain fatty acid transport metabo-
lism in mitochondria and consequently for energy metabo-
lism. As acyl-carnitine derivatives, fatty acids pass through 
mitochondrial membranes and enter pathways for oxidation, 
acylation, chain shortening, or chain elongation-desaturation 
(Cha 2008). As a result, LC-dependent fatty acid transfer 
is critical to lipid metabolism; dietary supplementation of 
LC enhances fat utilization, resulting in a significant drop 
in plasma TG levels (Amin and Nagy 2009). The hypotri-
glyceridemic effect of LC may be due to its effect on lipase 
hyperactivity and antioxidant efficacy, which could lower 
serum lipid levels. Our findings are consistent with those 
of González-Ortiz et al. (2008) and Salama et al. (2012), 
who found that oral LC decreases blood TG, VLDL, TC, 
and LDL-C; improves dyslipidemia; and inhibits oxidative 

stress, as well as lowers cardiac parameters. LC treatment in 
obese rats considerably reduces serum hypertriglyceridemia 
via decreased triglyceride synthesis by the liver or suppres-
sion of triglyceride release from the liver (Rajasekar and 
Anuradha 2007).

NEOs exert their neurotoxic insecticidal action by bind-
ing to and activating nAchRs on the postsynaptic membrane 
of nerve cells (Duzguner and Erdogan 2012). They imitate 
the effect of Ach by opening ion channels, allowing cations 
such as Na+ and Ca+2 to enter and cause excitatory neu-
rotransmission in the central nervous system (Rose 2012). 
The current results showed that the levels of those cations 
were dramatically reduced in TMX-treated rats; however, 
treatment with LC ameliorated these levels. The following 
mechanisms may be proposed based on the findings of these 

Fig. 4   Effect of l-carnitine (LC) on the levels of (A) nuclear factor 
kappa B (NF-κB), (B) interleukin-1β (IL-1β), (C) tumor necrosis 
factor-α (TNF-α), and (D) interleukin-6 (IL-6) in the brain of rats 
treated with thiamethoxam (TMX). Values are presented as mean ± 

S.E.; n = 5 animals; different superscripts on the columns are signifi-
cantly different at P < 0.05. a, P < 0.05 vs. control. b, P < 0.05 vs. 
LC. c, P < 0.05 vs. TMX. d, P < 0.05 vs. LC + TMX
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Fig. 5   Effect of l-carnitine (LC) on the activities of (A) acetylcho-
linesterase (AchE) and (B) monoamine oxidase (MAO) as well as the 
levels of (C) acetylcholine (Ach), (D) dopamine (DA), and (E) sero-
tonin (5-HT) in the brain of rats treated with thiamethoxam (TMX). 

Values are presented as mean ± S.E.; n = 5 animals; different super-
scripts on the columns are significantly different at P < 0.05. a, P < 
0.05 vs. control. b, P < 0.05 vs. LC. c, P < 0.05 vs. TMX. d, P < 
0.05 vs. LC + TMX
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diverse studies. A first hypothesis is that by attaching this 
insecticide to the agonist binding site, the nAChRs confor-
mation is altered, blocking the open channel of the receptor 
and thus reducing the influence of Na+ and Ca+2 ions on 
the nerve cell. A second hypothesis is that this pesticide 
reduces the conductance of open channels by binding to a 
site within the channel pore, preventing Na+ and Ca+2 ions 
from entering the nerve cell. A third hypothesis is that after 
this pesticide binds, different nAChRs subunits are activated, 
resulting in varying channel conductance levels (Akbas et al. 
2014). Further investigations of channel characteristics, par-
ticularly the dose and voltage dependency of TMX effects, 
are required to confirm whether these hypotheses are cor-
rect. Another hypothesis is that NEOs may cause endocrine 
disruption in vertebrates (Habotta et al. 2021). Moreover, 
hyperglycemia and hyperlipemia in rats moved water out 
of the cells via hyperosmolarity and, as a result, dilutional 
hyponatremia (lower blood sodium level) (Khattab et al. 
2020).

The administration of LC with antioxidant and/or free 
radical scavenging properties resulted in a considerable 
improvement in serum ionic electrolyte levels via renal glo-
meruli regeneration, which improved the kidney filtration 
process (Alabi et al. 2018). Furthermore, acetyl l-carnitine 
(ALC) inhibits lipofuscin formation and modulates mem-
brane fluidity, potentially treating hyperglycemia and insulin 
insufficiency (Masoumi-Ardakani et al. 2020).

Oxidative stress caused by the overproduction of ROS and 
reactive nitrogen species, as well as changes in antioxidant 
enzyme activities, is implicated in NEO-induced injury to 

cellular molecules such as lipids, DNA, and proteins (Wang 
et al. 2018; Abdel-Razik et al. 2022). In the present study, 
brain oxidative damage was induced in TMX-exposed rats, 
as demonstrated by high levels of TBARS and significant 
inhibition of antioxidant enzymes. Similar findings of TMX-
induced oxidative damage and free radical induction in male 
rat tissues have been reported (Habotta et al. 2021; Abd-
Allah et al. 2022). Reduced levels of GSH were observed in 
this study due to its use in the conjugation process and/or 
its antioxidant activity in scavenging free radical products 
(Katić et al. 2021). Furthermore, the decrease in SOD and 
CAT activity suggests that TMX may considerably deplete 
the endogenous antioxidant system in the metabolic deg-
radation of superoxide radicals and H2O2 due to increased 
oxidative stress (Katić et al. 2021; Habotta et al. 2021).

LC, a quaternary amine with strong antioxidant proper-
ties, has been employed to treat toxin-induced tissue damage 
(Edres et al. 2018). Because of its excellent free radical scav-
enging activity, its possible neuroprotective function against 
the progression of neurodegenerative diseases has gained 
much attention (Salama and Elgohary 2021). In our study, 
coadministration of LC and TMX significantly enhanced 
antioxidant status in the brain. The results are similar to 
previous findings that dietary supplementation with LC 
reduced malondialdehyde levels while increasing antioxi-
dant enzymes such as CAT, SOD, and GSH (Li et al. 2014; 
Salama and Elgohary 2021). Aziz et al. (2018) found that 
LC decreases oxidative stress by interfering with arachidonic 
acid incorporation into phospholipids and the nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase pathway 

Fig. 6   Effect of l-carnitine (LC) on the mRNA expression level of 
(A) caspase-3 and (B) glial fibrillary acidic protein (GFAP) in the 
brain of rats treated with thiamethoxam (TMX). The mRNA expres-
sion levels were normalized to the housekeeping gene (β-actin) and 

expressed as fold change (2−ΔΔCT). Values are presented as mean ± 
S.E.; n = 5 animals; different superscripts on the columns are signifi-
cantly different at P < 0.05. a, P < 0.05 vs. control. b, P < 0.05 vs. 
LC. c, P < 0.05 vs. TMX. d, P < 0.05 vs. LC + TMX
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mediated by protein kinase C. It is also hypothesized that 
LC has antioxidant properties by removing harmful acetyl-
CoA from the intracellular environment. Four alternative 
mechanisms might be used to explain how LC reduced 
TMX-induced brain injury: (1) LC directly removed ROS, 
suppressed brain cell lipid peroxidation, protected the cell 
membrane from oxidative stress, and maintained normal cell 
structure and functions; (2) LC indirectly scavenged free 
radicals by activating antioxidant enzyme systems in brain 
tissues to alleviate TMX-induced oxidative injury; (3) LC 
improved energy metabolism by suppressing the release of 
free electrons from the mitochondrial electron transport sys-
tem, a prerequisite reaction for the generation of free radicals 
(Zaitone et al. 2012); and (4) LC chelated with metal ions by 
forming complexes with lysine and methionine amino acids, 
which are precursors for the first biosynthetic step of LC, 
while metal ions directly affect LC transfer via inhibition of 
carnitine acetyltransferase enzymatic activity (mitochondria) 
or indirectly by mediating organic cation transporter 2 activ-
ity (gut absorption) (Tjale et al. 2022).

Neuroinflammation is primarily caused by astrocyte 
and microglial activation and proliferation, activation, and 
translocation of transcription factors such as NF-κB, and 
increased production of cytotoxic cytokines such as TNF-α 
and IL-1β (Afshin-Majd et al. 2017; Pajares et al. 2020). 
The overproduction of free radicals in the brains of rats 
may be linked to TMX-mediated neuroinflammation, which 
activates the NF-κB signaling pathway. NF-κB increases 
the expression of inducible nitric oxide synthase (iNOS), 
proinflammatory cytokines (TNF-α and IL-6), and oxida-
tive stress indicators (Al-Brakati et al. 2021). Habotta et al. 
(2023) found a significant increase in inflammatory cytokine 
levels as well as mRNA expression of IL-6, IL-1β, TNF-α, 
iNOS, and NF-κB in rat brain tissue exposed to TMX.

Controlling the degree of inflammatory reactions after 
brain damage may be useful because it has been linked to 
poor outcomes. In the present study, rats treated with LC 
exhibited considerably lower levels of these proinflamma-
tory cytokines in the brain than TMX-treated rats. Support-
ing these findings, it has been demonstrated that LC can 
reduce inflammatory processes caused by the neurotoxic 
effects of 6-hydroxydopamine (6-OHDA), aspartame, and 
potassium dichromate by lowering the levels of NF-κB, 
TNF-α, and IL-6 (Afshin-Majd et al. 2017; Di Stefano et al. 
2019; Salama and Elgohary 2021).

Neurotransmission is disrupted by NEO insecticides; 
hence, the cholinergic neurotransmitter system is antici-
pated to be the most injured in mammals. This system is 
critical for cognitive function control, and its malfunc-
tion has been associated with the onset of a variety of 
neurodegenerative disorders (Hampel et al. 2018; Abdel-
Razik et al. 2022). Based on our findings, it is reasonable 
to speculate that TMX (or its metabolites) functions as a 

nicotinic agonist, activating nAChRs and changing cholin-
ergic transmission to restore normal activity (Khaldoun-
Oularbi et al. 2017). The current findings are consistent 
with those of Abdel-Razik et al. (2022), who revealed a 
significant increase in plasma AchE as a result of TMX 
treatment. Monoamine concentrations were also observed 
to be significantly lower in thiacloprid-exposed embryos. 
These changes may suggest a nervous system functioning 
deficit. These altered functions caused by TMX may be 
due to the identified oxidative damage, and they are most 
likely linked to neuronal dysfunction, as previously sug-
gested by Farag et al. (2022). According to Saied and Has-
san (2014), BPA (endocrine disruptor) such as TMX can 
disrupt dopaminergic transmission by altering various pro-
cesses such as DA synthesis, release, and turnover, as well 
as the expression of both DA transporters and receptors. 
Decreased DA levels in the brain may impair metabolic 
activities carried out by catechol-O-methyltransferase 
(COMT) and MAO (Meiser et al. 2013). Changes in MAO 
activity can lead to altered biogenic amine concentrations, 
which can help individuals overcome stress (Abd Elkader 
et al. 2021).

LC is a necessary cofactor in lipid metabolism and, as a 
result, in the production of cellular energy. It participates in 
fatty acid β-oxidation by promoting the transport of long-chain 
fatty acids across the mitochondrial membrane (Ahmed 2012). 
The LC-protective group alleviated the activities of AchE and 
MAO as well as neurotransmitter levels. These results are sup-
ported by El-Sherbini et al. (2017). In the brain, LC and ALC 
play important roles in cerebral bioenergetics and neuroprotec-
tion via a variety of mechanisms, including antioxidant proper-
ties, modulation and promotion of synaptic neurotransmission, 
particularly cholinergic neurotransmission, and their ability to 
enhance neuronal metabolism in mitochondria (Ahmed 2012). 
Astrocytes, the brain’s immune cells, may produce enormous 
amounts of ketone bodies, which are thought to provide nearby 
neurons with easily transportable substrates for energy synthe-
sis. The rate-limiting phase in astrocyte ketogenesis is the LC 
absorption mechanism (Inazu and Matsumiya 2008). Carni-
tine and ALC are structurally similar to choline and Ach; it 
has also been demonstrated that ALC has agonistic effects on 
cholinergic receptors and is a strong inhibitor of AchE (Sarzi-
Puttini et al. 2021). ALC treatment increases DA and 5-HT 
release and receptor activity while decreasing the 5-hydrox-
yindoleacetic acid (5-HIAA)/5-HT ratio, the latter represent-
ing lower 5-HT turnover (Sarzi-Puttini et al. 2021). This 
could be due to increased mitochondrial membrane integrity, 
which could improve MAO function (Alves et al. 2009). The 
modulating effect of LC on the studied monoamines could be 
attributed to its ability to prevent neuronal loss by inhibiting 
ROS-mediated reactions via the reduction of microglial activa-
tion and the related production of oxygen intermediates and 
inflammatory factors (Essawy et al. 2022).
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Although apoptosis is necessary for the control of normal 
physiological function throughout life, it also leads to abnor-
mal cell death in pesticide-induced dementia (Ibrahim et al. 
2015). There are two major apoptotic pathways, which differ 
in how they begin: the extrinsic or death receptor pathway 
and the intrinsic or mitochondrial pathway (Michelle et al. 
2010). The current results showed that TMX-intoxicated rats 
had considerably higher caspase-3 expression levels than the 
control group. Previous studies have shown that independent 
and combined treatments with imidacloprid and esfenvaler-
ate boosted caspase-3 activity in a dose-dependent manner 
(Ibrahim et al. 2015). Similarly, Wu et al. (2015) observed 
dramatically elevated apoptotic markers caspase-1 and cas-
pase-3 in bee brains treated with imidacloprid in a time- and 
dose-dependent manner.

GFAP is an astrocyte intermediate filament protein that 
is thought to be a specific marker of astrocyte activation 
and/or injury after exposure to neurotoxic factors or other 
neurologic diseases (Yang et al. 2022; Gust et al. 2023). 
The current findings revealed substantial overexpression of 
the GFAP gene in the TMX-intoxicated group. These find-
ings are consistent with previous studies that found elevated 
GFAP expression to be a sensitive marker of neurotoxins 
such as imidacloprid and thiacloprid (Katić et al. 2021; 
Forner-Piquer et al. 2021; Abomosallam et al. 2023). These 
changes may indicate higher dopaminergic and serotoner-
gic turnover in the brain (Abd-Elhakim et al. 2018). Fur-
thermore, oxidative stress and free radical production are 
increased because astrocytes, which maintain the integrity 
of the blood˗brain barrier, are targets of oxidative damage 
(Carvajal-Flores et al. 2020; Fulton et al. 2021).

In our study, combining LC and TMX dramatically 
reduced caspase-3 and GFAP expression in the brain. In 
this study, some of the neuroprotective effects of LC were 
related to its antiapoptotic and anti-inflammatory proper-
ties. The antiapoptotic action of ALC has previously been 
described (Virmani et al. 2013, Afshin-Majd et al. 2017). 
Dundar et al. (2016) found that ALC protected against doxo-
rubicin (DOX)-induced severe myocardial caspase-3 immu-
noreactivity. Sarkar et al. (2015) previously demonstrated 
that ALC could reduce GFAP immunoreactivity in rotenone-
induced dopaminergic toxicity. Furthermore, ALC pretreat-
ment reduced GFAP expression in the striatum, which may 
be connected to its anti-inflammatory action (Afshin-Majd 
et al. 2017).

Conclusion

LC has a wide range of pharmacological actions, the major-
ity of which influence the neurological system. Our findings 
show that LC can mitigate TMX-induced brain injury in rats 
by reducing oxidative stress, modulating neurotransmission, 

and decreasing inflammation, astrogliosis, and apoptosis. 
These data support the hypothesis that LC may have pre-
ventive properties for neurological diseases.
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