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Abstract
Aging is known as a main risk factor in the development of cardiovascular diseases. Naringin (NRG) is a flavonoid compound 
derived from citrus fruits. It possesses a wide spectrum of pharmacological properties, including antioxidant anti-inflam-
matory, and cardioprotective. This investigation aimed to assess the cardioprotective effect of NRG against the ischemia/
reperfusion (I/R) injury in aged rats. In this study, D-galactose (D-GAL) at the dose of 150 mg/kg/day for 8 weeks was used 
to induce aging in rats. Rats were orally gavaged with NRG (40 or 100 mg/kg/day), in co-treatment with D-GAL, for 8 weeks. 
The Langendorff isolated heart was used to evaluate the effect of NRG on I/R injury in aged rats. NRG treatment diminished 
myocardial hypertrophy and maximum contracture level in aged animals. During the pre-ischemic phase, reduced heart 
rate was normalized by NRG. The effects of D-GAL on the left ventricular end diastolic pressure (LVDP), the rate pressure 
product (RPP), and the minimum and maximum rate of left ventricular pressure (±dp/dt) improved by NRG treatment in the 
perfusion period. NRG also enhanced post-ischemic recovery of cardiac functional parameters (± dp/dt, and RPP) in isolated 
hearts. An increase in serum levels of the lactate dehydrogenase (LDH), the creatine kinase-MB (CK-MB), and the tumor 
necrosis factor-alpha (TNF-α) were reversed by NRG in aged rats. It also normalized the D-GAL-decreased the superoxide 
dismutase (SOD) activity in the heart tissue. NRG treatment alleviated cardiac injury in aged hearts under conditions of I/R. 
NRG may improve aging-induced cardiac dysfunction through anti-oxidative and anti-inflammatory mechanisms.
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NaHCO3	� Sodium bicarbonate
NOAEL	� No-observed-adverse-effect level
Nrf2	� Nuclear factor erythroid 2-related factor 2
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PBS	� Phosphate buffer saline
ROS	� Reactive oxygen species
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SD	� Standard deviation
SEM	� Standard error of measurement
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TNF-α	� Tumor necrosis factor-alpha
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Introduction

Aging is known as a prominent risk factor in the develop-
ment of multiple chronic diseases, such as diabetes, can-
cer, cardiovascular diseases (CVDs), dementia, and chronic 
obstructive pulmonary disease (Franceschi et al. 2018). 
Organismal aging is characterized as a progressive decline 
in physiological functions (Aman et al. 2021). Aging in 
cardiovascular system refers to an increase in ventricular 
wall thickness, diastole prolongation, myocardial fibrosis, 
fibrocalcification, arterial stiffness, loss of compliance in the 
coronary vasculature, and endothelial dysfunction (Wu et al. 
2019; de Almeida et al. 2020). In particular, cardiovascular 
aging is one of the main determinants of various disorders 
including hypertension, atherosclerosis, heart failure, myo-
cardial infarction (MI), and stroke (Liberale et al. 2020). 
Experimental and clinical studies have shown that aging 
markedly reduces the adaptive response during ischemic pre- 
and postconditioning (Randhawa et al. 2018; Kleinbongard 
et al. 2020). Aging induces excessive ROS generation and 
decreases antioxidant gene expression during precondition-
ing (Randhawa et al. 2018; Kleinbongard et al. 2020). Oxi-
dative stress and inflammation are the major mechanisms 
involved in the pathophysiology of aging-related CVDs (de 
Almeida et al. 2020). Mitochondrial dysfunction-induced 
excess reactive oxygen species (ROS) generation is rec-
ognized as a major mechanism of cardiac oxidative stress 
related to aging (Papaconstantinou 2019). During aging, 
the accumulation of damaged proteins and organelles due 
to impairments in the autophagy pathways (an intracellu-
lar cleanup system) causes the activation of inflammatory 
responses (de Almeida et al. 2020). Low-grade and persis-
tent inflammation (inflammageing) has been reported that 
participates pivotally in the development of hypertension 
and arteriosclerosis (Ferrucci and Fabbri 2018). It also has 
been suggested that elevated levels of proinflammatory 
cytokines are related to a diversity change in the gut micro-
biota in older adults (Sanchez-Morate et al. 2020).

Naringin (NRG) is a flavonoid isolated from citrus 
fruits such as orange, grapefruit, and lemons (Heidary 
Moghaddam et al. 2020). It is well known in the treat-
ment or prevention of diabetes, metabolic syndrome, can-
cer, and cardiac diseases (Heidary Moghaddam et al. 2020; 
Ghanbari-Movahed et al. 2021). NRG plays a protective 
role in pathophysiology conditions through anti-oxidative, 
anti-apoptotic, and anti-inflammatory properties (Heidary 
Moghaddam et al. 2020; Ghanbari-Movahed et al. 2021; 
AKİN et al. 2022). NRG has poor bioavailability because 
of its hydrophobic nature (Bhia et al. 2021). Therefore, 
a wide range of nanocarriers have been used as delivery 
systems for NRG, including liposomes, micelles, nanosus-
pensions, and nanoemulsions (Bhia et al. 2021). One of 
the main strategies for reducing drug dose and toxicity is 
to increase bioavailability (Alotaibi 2023). NRG has been 
found to inhibit the cytochrome P450, which is the main 
catalyst involved in drug metabolism (Fuhr and Kummert 
1995). NRG is well-known for improving the bioavailabil-
ity of various medications such as diltiazem, verapamil, 
and ranolazine by inhibiting cytochrome P450-mediated 
metabolism (Alotaibi 2023). The therapeutic potential of 
NRG on CVDs have been investigated in several stud-
ies in vitro and in vivo (Moghaddam et al. 2020). NRG 
treatment also has provided protection against fructose-
induced cardiomyocyte apoptosis (Park et al. 2018). NRG 
also attenuated cardiac oxidative stress and apoptosis in 
myocardial ischemia reperfusion injury in rats (Li et al. 
2021). In a study, the NRG protected cardiomyocytes 
from anoxia/reoxygenation injury by the activation of the 
nuclear factor erythroid 2-related factor 2 (Nrf2) transcrip-
tion factor (Chen et al. 2015). Various antioxidant enzymes 
genes, including glutamate cysteine ligase (GCL), super-
oxide dismutase (SOD), heme oxygenase-1 (HO-1), and 
glutathione peroxidase (GPx) are upregulated by Nrf2 (He 
et al. 2020). According to this background information, the 
aim of the current study was to evaluate the cardioprotec-
tive effect of NRG against ischemia/reperfusion injury in 
aged rats.

Materials and methods

Compounds

NRG (Cat#10236-47-2, > 90% purity), D-GAL (Cat#59-23-
4, > 99% purity), and Sodium pentobarbital (Cat#57-33-0) 
were purchased from Merck Company, Germany. Sodium 
chloride (NaCl), potassium chloride (KCl), sodium bicar-
bonate (NaHCO3), monopotassium phosphate (KH2PO4), 
magnesium sulfate (MgSO4), glucose, calcium chloride 
(CaCl2) were bought from the Merck Company, Germany.



1211Naunyn-Schmiedeberg's Archives of Pharmacology (2024) 397:1209–1218	

1 3

Animals and experimental design

Forty-two Wistar male rats (300 ± 20 g) were obtained from 
the School of pharmacy, Kermanshah University of Medi-
cal Sciences, Kermanshah, Iran. Animals were housed in a 
temperature (25 °C ± 2 °C) and relative humidity of 50% 
controlled room under a 12:12 light/dark cycle with free 
access to pelleted rat chow (Behparvar®, Tehran, Iran) and 
water. Aging causes a significant reduction in female estro-
gen levels (Korzick and Lancaster 2013). Aging has been 
reported to decrease ischemic tolerance in heart, resulting 
from a reduction in estrogen levels in females (Korzick and 
Lancaster 2013). In line with this, estrogen has been sug-
gested as a confounding factor in the effectiveness of cardio-
protective agents against I/R injury in rodents (Korzick and 
Lancaster 2013). Therefore, only male rats were used in this 
study. This study was approved by the Animal Ethics Com-
mittee of Kermanshah University of Medical sciences (Eth-
ics Committee permission No. IR.KUMS.REC.1397.902).

After seven days of acclimatization, rats were randomly 
divided into following groups (n = 6-7 in each group): 
control, D-GAL, D-Gal + NRG40, D-GAL + NRG100, 
NRG40, and NRG100. The control group received 0.9% 
normal saline (1 mL/kg/day, intraperitoneally). Group 2 
rats received D-GAL (150 mg/kg, intraperitoneally) for eight 
weeks (Maharajan and Cho 2021). Group 3 received D-GAL 
(150 mg/kg/day, intraperitoneally) and NRG (40 mg/kg/day, 
via oral gavage) for eight weeks. Group 4 received D-GAL 
(150 mg/kg/day, intraperitoneally) and NRG (100 mg/kg/
day, via oral gavage). Group 5 received NRG (40 mg/kg/
day, via oral gavage) for eight weeks. Group 6 received NRG 
(100 mg/kg/day, via oral gavage) for eight weeks. D-GAL 
and NRG was prepared by dissolving in 0.9% normal saline.

At the end of experimental period, blood (4–5 mL) was 
immediately collected from the abdominal aorta in rats 
anesthetized with sodium pentobarbital (60 mg/kg of body 
weight, intraperitoneally). Then serum (1.5–2 mL) was sepa-
rated through centrifugation at 4000 rpm for 10 min and 
stored at −20 ºC until used for biochemical analysis.

Langendorff isolated heart experiments

The Langendorff isolated heart model was used to evaluate 
the effect of NRG on myocardial injury in ischemic-aged 
rats. Animals were anesthetized with sodium pentobarbital 
and their hearts were rapidly separated. After aortic cannula-
tion, the hearts were mounted on a Langendorff apparatus 
and were retrograde perfused with Krebs solution (118 mM 
NaCl, 25 mM NaHCO3, 4.7 mM KCl, 1.2 mM KH2PO4, 
1.2 mM MgSO4, 11 mM glucose, and 1.2 mM CaCl2, pH 
7.4) at a constant hydrostatic pressure of 60 mm Hg (95% 
oxygen and 5% carbon dioxide at 37 ºC). Isolated hearts 
were equilibrated for 15 min (Shackebaei et al. 2022).

The left ventricle function was measured using an intra-
ventricular water-filled balloon connected to a pressure 
transducer (MLT 844; AD Instruments, New South Wales, 
Australia). Left ventricular end diastolic pressure (LVEDP) 
was adjusted by nearly 5–10 mmHg by the volume of the 
balloon. Cardiac function parameters, including heart 
rate (HR, beats/minute), left ventricular systolic pressure 
(LVSP), left ventricular developed pressure (LVDP = LVSP 
– LVEDP, mm Hg), rate pressure product (RPP = LVDP × 
HR), and as well as minimum and maximum rate of left ven-
tricular pressure (± dp/dt) were recorded and documented 
by the Power Lab system and Lab Chart 5 software (AD 
Instruments, Australia). Coronary effluent was collected 
per minute during the experiment for the measurement of 
coronary flow (CF). Isolated rat hearts were subjected to 
40 min no-flow global normothermic ischemia (via efflu-
ent clamping) followed by 45 min of reperfusion, according 
to previous studies (Shackebaei et al. 2022). The level of 
maximum contracture (MC), as a maximum rise in LVEDP, 
was detected after the onset of ischemia in heart of aged 
rats. The recovery percentage of cardiac function (± dp/dt 
ratio and RPP ratio) was recorded at the 45th minute of rep-
erfusion to the 15th minute of baseline (Fig. 1). Finally, the 
heart was removed and weighed. Cardiac hypertrophy was 
regarded as the heart weight (HW, g)/body weight (BW, g) 
ratio. Heart tissue was stored at −20 °C until used for SOD 
activity analysis (Zarei et al. 2023).

Colorimetric assay

Cardiac damage was assessed using the determination of 
lactate dehydrogenase (LDH) and creatine kinase (CK-MB) 
levels in serum. The serum level of LDH and CK-MB was 
detected by specific LDH and CK-MB kits (Pars Azmoon, 
Tehran, Iran). They were determined by mixing the rea-
gents and serum samples, incubating at 37 C for 5 min, 
and measuring the absorbance at 340 nm with an ELISA 
reader following the protocol of the manufacturer. Levels 
were expressed in units per liter of sample (U/L) (Zarei et al. 
2023).

Heart samples were homogenized with ice-cold phos-
phate buffer saline (PBS) (pH 7.4) for the determination of 
SOD activity by a colorimetric method (Kiazist SOD kit, 
Kiazist, Iran) at 570 nm according to the instruction of the 
manufacture. A unit of SOD activity was calculated as the 
amount of SOD that reduced the resazurin production by 
50%. Data were presented as unit per milligram of tissue (U/
mg tissue) (Yarmohammadi et al. 2023).

Enzyme‑linked immunosorbent assay (ELISA)

The tumor necrosis factor-alpha (TNF-α) was measured 
to indicate the levels of intracellular inflammation by a 
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commercial ELISA kit (Karmania Pars Gene, Kerman, Iran), 
following the instruction of the manufacture (Shackebaei 
et al. 2022).

Statistical analysis

Experimental data were analyzed with the SPSS software 
version 16.0 (SPSS Inc., Chicago, IL, USA) and expressed 
as the mean ± standard deviation (SD). The statistical differ-
ences between groups were compared with one-way analy-
sis of variance (ANOVA) followed with Tukey-Kramer post 
hoc test. Moreover, p < 0.05 was statistically considered as 
significant.

Results

Effect of NRG on cardiac hypertrophy

Cardiac hypertrophy was significantly increased in D-GAL 
group compared to control group (p <0.05). NRG signifi-
cantly (p < 0.01) decreased myocardial hypertrophy in com-
parison to the D-GAL group but only at the low-dose of 40 
mg/kg (Fig. 2).

Effect of NRG on the level of maximum contracture

The level of MC in heart of aged rats was recorded during 
the global ischemia period at 37 °C. D-GAL-exposed rats 
showed a significant increase in MC level as compared to 
the control group (p < 0.05). NRG 40 and 100 mg/kg sig-
nificantly decreased the MC level compared to the D-GAL 
group (p < 0.05 and p < 0.01, respectively) (Fig. 3).

Effect of NRG on hemodynamic parameters

Baseline period  Values of cardiac function variables 
obtained during the pre-ischemic phase were summarized 
in Table 1. Exposure to the D-GAL resulted in a significant 
reduction in HR compared to the control group (p < 0.01), 
whereas no significant alterations were revealed in the other 
parameters, including LVDP, CF, ± dp/dt and RPP. Co-treat-
ment of NRG at 40 and 100 mg/kg and D-GAL raised HR, 
however, the improvement was not significant compared 
with the D-GAL group. NRG treatment at 100 mg/kg in the 
D-GAL group significantly increased RPP compared to the 
D-GAL group.

Fig. 1   Protocol of experimental procedure in vivo and ex vivo (Langendorff). D-GAL, D-galactose; min, minute; NRG, naringin

Fig. 2   Effect of NRG on cardiac hypertrophy. Data were analyzed 
with one-way ANOVA followed with Tukey-Kramer post hoc test and 
expressed as the mean ± SD (n = 6-7). *p < 0.05 compared with con-
trol group. #p < 0.05 and ##p < 0.01 compared with D-GAL group. 
D-GAL, D-galactose; NRG, naringin
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Reperfusion period  As shown in Table 1, LVDP (p < 
0.05), ± dp/dt (p < 0.05), and RPP (p < 0.05) changed fol-
lowing D-GAL exposure at the end of reperfusion. NRG at 
40 mg/kg exhibited a significantly decrease in LVDP (p < 
0.05) compared to the D-GAL group. Furthermore, NRG 
treatment at 100 mg/kg significantly modulated the LVDP 

(p < 0.01), dp/dt Max (p < 0.01), and RPP (p < 0.05) values 
in comparison to the D-GAL group.

Effect of NRG on cardiac function recovery 
percentage

In the D-GAL group, the percentage of recovery of 
dP/dt Max (p < 0.001), dP/dt Min (p < 0.05), and RPP (p 
< 0.05) were low compared to the control group. NRG 
treatment at 40 and 100 mg/kg significantly enhanced 
post-ischemic recovery of cardiac functional parame-
ters in isolated hearts. This enhancement by NRG 100 
mg/kg was especially manifested by increased recov-
ery of dP/dt Max (p < 0.05), dP/dt Min (p < 0.05), and 
RPP (p < 0.05) compared with D-GAL group (Figs. 4, 
5, and 6). In comparison, no change was observed at 
the low dose of NRG (40 mg/kg).

Effect of NRG on the serum level of LDH

LDH, as a non-specific marker for myocardial injury 
(Dumea et al. 2022), was evaluated in the current study. 
As shown in Fig. 7, elevated serum LDH observed in the 
D-GAL group (p < 0.05) was decreased by NRG at 40 mg/
kg (p < 0.01) and NRG at 100 mg/kg (p < 0.01).

Fig. 3   Effect of NRG on the level of maximum contracture. Data 
were analyzed with one-way ANOVA followed with Tukey-Kramer 
post hoc test and expressed as the mean ± SD (n = 6-7). *p < 0.05 
compared with control group. #p < 0.05 and ##p < 0.01 compared 
with D-GAL group. D-GAL, D-galactose; NRG, naringin

Table 1   Effect of NRG on hemodynamic parameters

Data were analyzed with one-way ANOVA followed with Tukey-Kramer post hoc test and expressed as the mean ± SD (n = 6-7). *p < 0.05 and 
**p < 0.01 compared with control group. #p < 0.05 and ##p < 0.01 compared with D-GAL group. bpm, beats per minute; CF, coronary flow; 
D-GAL, D-galactose; +dp/dt, the maximum rate of left ventricular pressure; -dp/dt, the minimum rate of left ventricular pressure; HR, heart rate; 
LVDP, left ventricular developed pressure; NRG, naringin; RPP, rate pressure product

Group HR
(bpm)

LVDP (mmHg) CF (mL/min) dP/dt Max
(mmHg/sec)

dP/dt Min
(mmHg/sec)

RPP
(LVDP*HR)Base-
line values (10th 
min)

Baseline values (10th min)
  Control 297.5±104 89±9.3 12.3±2.25 2688±131 -1942±200 25469±6059
  D-GAL 179.5±38** 108±37 14.25±2.23 2474.5±210 -1485.7±300 19633±1031
  D-GAL+NRG40 240±34 92.4±18.13 13.7±2.9 2232±368 -1749±363 21937±3575
  D-GAL+NRG100 229.4±23 117±20.55 14.4±1.01 2843±187 -1773±192 26476±2516
  NRG40 273.7±18 93.7±8.9 14.8±1.47 2843±157 -1727±181 25733±3030
  NRG100 224.3±31 98.2±12.58 14±17 2452±304 -1825±358 21967±3444

Reperfusion values (45th min)
  Control 212.9±59 50.13±7.67 5.8±1.17 1274.3±379 -873 ± 245 10654.4 ±3706
  D-GAL 188±112 12.5±17.4* 6.8±1.91 326.18±340* -433±482 3655±5605*
  D-GAL+NRG40 154.5±49 43.6±26.5# 5±1.38 977±620 -617±466 6791±4873
  D-GAL+NRG100 195±44 57.2±24## 6.3±1.52 1501±701## -917±312 10796±3610#
  NRG40 208.8±57 50.4±8.88 7.5±2.02 1171±358 -812±225 10683±3750
  NRG100 187±29 71.7±17 7.4±2.33 1724±491 -1076±212 13753±4094
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Effect of NRG on the serum level of CK‑MB

Our findings indicated that CK-MB level enhanced dramati-
cally in the D-GAL rats compared to the control group (p 
< 0.05). Treatment with NRG at 40 and 100 mg/kg signifi-
cantly reduced CK-MB level in rats treated by D-GAL (p < 
0.01, Fig. 8).

Effect of NRG on the serum level of TNF‑α

TNF-α is mainly secreted by macrophages and used for 
the studies of aging (Zhong et al. 2020). The serum level 
of TNF-α in animals treated by D-GAL was significantly 
increased compared with the control rats (p < 0.01). An 
increase in the level of TNF-α was reversed significantly by 
NRG 40 mg/kg (p < 0.05) and NRG 100 mg/kg (p < 0.001) 
(Fig. 9).

Fig. 4   Effect of NRG on dP/dt Max recovery percentage. Data were 
analyzed with one-way ANOVA followed with Tukey-Kramer post 
hoc test and expressed as the mean ± SD (n = 6-7). ***p < 0.001 
compared with control group. #p < 0.05 compared with D-GAL 
group. D-GAL, D-galactose; dP/dt Max, the maximum rate of left ven-
tricular pressure; NRG, naringin

Fig. 5   Effect of NRG on dP/dt Min recovery percentage. Data were 
analyzed with one-way ANOVA followed with Tukey-Kramer post 
hoc test and expressed as the mean ± SD (n = 6-7). *p < 0.05 com-
pared with control group. #p< 0.05 compared with D-GAL group. 
D-GAL, D-galactose; dp/dt Min, minimum rate of left ventricular pres-
sure; NRG, naringin

Fig. 6   Effect of NRG on RPP recovery percentage. Data were ana-
lyzed with one-way ANOVA followed with Tukey-Kramer post hoc 
test and expressed as the mean ± SD (n = 6-7). *p < 0.05 compared 
with control group. #p < 0.05 compared with D-GAL group. D-GAL, 
D-galactose; NRG, naringin; RPP, rate pressure product

Fig. 7   Effect of NRG on serum level of LDH. Data were analyzed 
with one-way ANOVA followed with Tukey-Kramer post hoc test 
and expressed as the mean ± SD (n = 6-7). *p < 0.05 compared with 
control group. ##p < 0.01 compared with D-GAL group. D-GAL, 
D-galactose; LDH, lactate dehydrogenase; NRG, naringin
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Effect of NRG on the SOD activity

The SOD activity was assessed to illustrate the antioxi-
dant effect of NRG in heart injury. SOD activity was sig-
nificantly (p < 0.01) reduced by D-GAL exposure com-
pared to the control group. NRG, however, significantly 
improved the D-GAL-reduced SOD activity at dose of 40 
mg/kg (p < 0.01) (Fig. 10).

Discussion

Our finding represents that NRG improved cardiac dysfunc-
tion in aged rats through anti-oxidative and anti-inflamma-
tory mechanisms. Aging is a critical risk factor that increases 
susceptibility to developing CVDs (Martín-Fernández and 
Gredilla 2016). Ischemic heart disease is one of the main 
causes of premature mortality among the elderly popula-
tion (Martín-Fernández and Gredilla 2016). NRG treatment 
may be a promising approach against aging-heart complica-
tions. Herein, elevated cardiac SOD activity by NRG sug-
gests a possible involvement of its anti-oxidative effect in 
preventing oxidative stress mediated by D-GAL. The anti-
inflammatory effect of NRG was shown with a reduction in 
the serum level of TNF-α in aged rats. The serum levels of 
LDH and CK-MB, cardiac markers for diagnosis of early 
MI, were decreased by NRG treatment. It also diminished 
cardiac hypertrophy. The most important cardiac hemody-
namic parameters, including HR, LVDP, ±dP/dt, and RPP, 
were normalized with NRG during baseline and reperfu-
sion period. Moreover, the recovery percentage of cardiac 
function in NRG-treated hearts was improved in comparison 
to aged hearts. Generally, our data demonstrated that NRG 
reduced the severity of cardiac aging by modulating oxida-
tive stress and inflammation.

Oxidative stress and inflammation are strongly associated 
with the pathogenesis of vascular aging, especially arterial 
stiffness (Mikael et al. 2017). Aging-related arterial stiff-
ness leads to different adverse hemodynamic consequences 
such as a rise in systolic blood pressure, which promotes 
left ventricular hypertrophy and dysfunction (Yucel et al. 
2015; Vatner et al. 2021; Castelli et al. 2023). An abnormal 

Fig. 8   Effect of NRG on serum level of CK-MB. Data were analyzed 
with one-way ANOVA followed with Tukey-Kramer post hoc test and 
expressed as the mean ± SD (n = 6-7). *p < 0.05 compared with con-
trol group. ##p < 0.01 compared with D-GAL group. CK-MB, cre-
atine kinase-MB; D-GAL, D-galactose; NRG, naringin

Fig. 9   Effect of NRG on serum level of TNF-α. Data were analyzed 
with one-way ANOVA followed with Tukey-Kramer post hoc test and 
expressed as the mean ± SD (n = 6-7). **p < 0.01 compared with 
control group. #p < 0.05 and ###p < 0.001 compared with D-GAL 
group. D-GAL, D-galactose; NRG, naringin; TNF-α, tumor necrosis 
factor alpha

Fig. 10   Effect of NRG on SOD activity in heart tissue. Data were 
analyzed with one-way ANOVA followed with Tukey-Kramer post 
hoc test and expressed as the mean ± SD (n = 6-7). **p < 0.01 com-
pared with control group. ##p < 0.01 compared with D-GAL group. 
D-GAL, D-galactose; NRG, naringin; SOD, superoxide dismutase
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accumulation of D-GAL, a monosaccharide sugar, in the 
body could accelerate the aging process in different organs 
such as the heart (Bo‐Htay et al. 2018). According to past 
studies, the current study used D-GAL (150 mg/kg/day for 
8 weeks) to generate a useful model to study heart aging 
(Bo‐Htay et al. 2018; Azman and Zakaria 2019). Oxidative 
and inflammation damage mediated by excessive D-GAL 
metabolism is a main factor in accelerating mechanisms that 
contribute to aging (Cheng et al. 2021; Chen et al. 2022). 
SOD has an important antioxidant effect against oxidative 
stress by detoxifying toxic O2 in cells (Montllor-Albalate 
et al. 2022). It has been documented that SOD depletion 
can result in oxidative stress (Montllor-Albalate et  al. 
2022). Here, we showed a significant decrease in cardiac 
SOD activity during D-GAL exposure, which represented 
cardiac oxidative stress. Numerous studies revealed that 
NRG ameliorated CVDs, such as diabetic cardiomyopa-
thy and ischemic heart diseases, by up-regulating antioxi-
dant pathways (Gelen and Şengül 2020; Viswanatha et al. 
2022). In this study, NRG modulated SOD activity which 
was altered by D-GAL. Oxidative stress is important for 
the development of cardiac hypertrophy in rats exposed to 
D-GAL (Bo‐Htay et al. 2018). Our findings indicated that 
pathological cardiac hypertrophy, as a result of increased 
muscle mass, was elevated in D-GAL-treated rats. Moreo-
ver, D-GAL-induced myocardial injury was reflected in this 
study by the elevation of cardiac enzymes (LDH, CK-MB) 
in the serum. Park et al. reported the protective effect of 
NRG against fructose-induced cardiac hypertrophy by sup-
pressing mitochondrial ROS generation and mitochondrial 
dysfunction (Park et al. 2018). NRG also mitigated cardiac 
hypertrophy by inhibiting oxidative stress in diabetic rats 
(Adebiyi et al. 2016). Our study has confirmed the reduction 
of cardiac hypertrophy and cardiac enzyme serum levels fol-
lowing NRG treatment, probably through increasing cardiac 
SOD activity.

Moreover, cardiac structural alteration during the aging 
process is associated with heart rate reduction (Hosseini 
et al. 2020). The relationship between oxidative stress and 
reduced HR has been proven in different diseases (Lee et al. 
2020). In the present study, NRG normalized the D-GAL-
reduced heart rate at the baseline period, which was prob-
ably by its antioxidant effect.

It has been demonstrated that long-term administration 
of D-GAL resulted in activating the inflammatory path-
ways (Azman and Zakaria 2019). The therapeutic benefits 
of NRG in various inflammatory related diseases have been 
reported (Adebiyi et al. 2016; Viswanatha et al. 2022). NRG 
attenuated the cardiac inflammation in the lipopolysaccha-
ride-induced sepsis (Xianchu et al. 2016). Volkan study has 
shown an anti-inflammatory effect of NRG on the cisplatin-
induced cardiac damage (Gelen and Şengül 2020). Our 
results revealed that level of inflammatory marker TNF-α 

was increased in aging group that was effectively reversed 
following NRG treatment.

It has been reported that aging increases susceptibility to 
myocardial I/R injury and decreases cardiac function recov-
ery after damage (Dong et al. 2023). Our findings indicated 
that D-GAL injection resulted in a cardiac I/R injury, which 
was probably through a reduction in the activity of SOD in 
the heart tissue in aged rats. Following I/R injury, cardiac 
function was improved by NRG treatment which may result 
from the elevation of the cardiac SOD activity.

Limitations

Our findings did not reveal the exact molecular mechanisms 
involved in the protective effects of NRG. Thus, in future 
studies, it would be better to determine the pathways through 
which NRG exerts its antioxidant and anti-inflammatory 
effects in aging rats. Moreover, to better understand the pro-
tective effects of NRG on heart function, we could record 
the electrocardiogram.

In sub-chronic and chronic oral toxicity studies, different 
daily doses of NRG were well-tolerated and did not cause 
toxic clinical symptoms (Li et al. 2020). However, in the 
current study, NRG at 100 mg/kg showed a statistically sig-
nificant effect on cardiac hypertrophy compared with the 
control group. This difference may be due to the low statisti-
cal power of our small sample size. In future studies, NRG at 
multiple doses should be examined further to determine its 
potential effects on the structure and function of the heart.

Conclusion

Generally, the results from this study evidence the preclini-
cal effectiveness of NRG in both ischemic and reperfusion 
phases of aged hearts. This effect may be described by the 
decreasing oxidative stress and inflammatory pathways. 
Therefore, NRG supplementation could be used as a promis-
ing treatment strategy for cardiovascular aging. Further stud-
ies, however, are required to confirm the cardioprotective 
properties of NRG. The no-observed-adverse-effect level 
(NOAEL) of NRG in rats is reported to be greater than 1250 
mg/kg, which is equal to 200 mg/kg in humans (Li et al. 
2013). In current study, rats were orally exposed to NRG 
for 8 weeks at dosages of 40 and 100 mg/kg body weight, 
both of which were lower than the NOAEL. Clinical trials 
are needed to elucidate the safety and effectiveness of NRG 
as a cardioprotective drug in aging.
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