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Abstract
Genistein, a commonly occurring isoflavone, has recently gained popularity owing to its ever-expanding spectrum of 
pharmacological benefits. In addition to health benefits such as improved bone health and reduced postmenopausal 
complications owing to its phytoestrogen properties, it has been widely evaluated for its anti-cancer potential. Several 
studies have established the potential for its usage in the management of breast, lung, and prostate cancers, and its 
usage has significantly evolved from early applications in traditional systems of medicine. This review offers an insight 
into its current status of usage, the chemistry, and pharmacokinetics of the molecule, an exploration of its apoptotic 
mechanisms in cancer management, and opportunities for synergism to improve therapeutic outcomes. In addition to 
this, the authors have presented an overview of recent clinical trials, to offer an understanding of contemporary stud-
ies and explore prospects for a greater number of focused trials, moving forward. Advancements in the application of 
nanotechnology as a strategy to improve safety and efficacy have also been highlighted, with a brief discussion of results 
from safety and toxicology studies.
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Introduction

Genistein is a widely abundant isoflavone that commonly 
exists in a variety of soy-based products. Popular in Chinese 
and Ayurvedic traditional systems of medicine, it is widely 
consumed in Asian diets and is slowly gaining popularity 
worldwide (Smeriglio et al. 2019). Its benefits have been 
studied in different diseases including diabetes, cardiovas-
cular, and obesity-related conditions as well as age-related 
disorders, chiefly menopausal complications for women and 
prostate cancer for men (Islam et al. 2020). As the incidence 
of cancer continues to increase globally, there is a need to 
explore alternative treatment strategies (Hazafa and Rehman 
K-U-, Jahan N, Jabeen Z. 2020). Owing to the rising rates of 
cancer, there is an increased pressure on the healthcare sys-
tem and a substantial decrease in the overall quality of life 
of patients. This has directed focus to phytoconstituents such 
as isoflavones, possessing a broad spectrum of therapeutic 

benefits. Soy isoflavones have been widely studied for their 
potential in regulating bone health and improved respira-
tory and cardiac functioning, as well as neurological actions 
(Kim et al. 2021). Regular supplementation has been linked 
with the exertion of a protective effect, and as research con-
tinues to grow, a variety of cancers and signaling pathways 
have been targeted using genistein.

Genistein has found extensive applications in the man-
agement of breast and prostate cancer and has been dubbed 
as one of the “big five” chemicals targeting stem cells 
(Naujokat and McKee 2021). This has been attributed to 
its ability to target various signaling cascades and control 
the expression of numerous biomarkers and genes, as dis-
cussed further in the review. Genistein has been observed 
to chiefly inhibit the expression of inflammation-promoting 
markers and reactive oxygen species (ROS) (Obinu et al. 
2021), which are linked with oxidative damage and tumor 
proliferation (Křížová et al. 2019). By inducing apoptosis 
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and controlling the migration and spread of neoplasms, 
it has found applications as a popular chemopreventive 
agent (Kim 2021). In addition to its clinical potential in 
isolation, genistein has been evaluated for its synergistic 
effects with a variety of natural and synthetic anti-cancer 
agents. The results from these studies have been prom-
ising, indicating opportunities for further research and 
expansion of the conditions that may be managed by its 
usage (Abdulridha et al. 2020). Another growing avenue 
is the usage of nanotechnological interventions to get rid 
of the issues involved with the delivery of phytoconstitu-
ents, such as poor aqueous solubility and propensity for 
metabolism, thereby reducing beneficial outcomes. Various 
nanoformulations of genistein, including nanosuspensions, 
liposomes, nanoparticles, and structured nanovesicles have 
been evaluated (Dutta et al. 2018). Besides the clinical effi-
cacy of this agent, it is also essential to discuss its safety 
and toxicology profile, to determine optimum dosing and 
develop an understanding of adverse effects associated with 
its usage, if any. This review offers a holistic overview of 
the chemistry of this molecule, the key pathways targeted 
for cancer management, and recent updates on clinical tri-
als and nanotechnological interventions, as well as future 
perspectives.

Chemistry and pharmacokinetics 
of genistein

Chemistry of genistein

Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-
one), a well-studied isoflavone, has its place in the class of 
aglycones. Soy products contain this isoflavone, which is a 
metabolite of soybeans. Also known by its chemical name, 
4′,5,7-trihydroxyisoflavone, genistein was first isolated in 
1899 from plants belonging to the family Fabaceae and rep-
resents 60% of the total soy isoflavone content (Tuli et al. 
2019). It is a secondary metabolite consisting of 2 aromatic 
benzene rings and one non-aromatic heterocyclic pyran ring 
(Garbiec et al. 2022). Genistein’s basic carbon skeleton also 
consists of a C2–C3 double bond and an oxo group at the 
C4 position of the C ring. Figure 1 showcases the skeleton 
structure of genistein, with the three cyclic rings (A, B, C) 
highlighted. In addition to this, it shows the presence of 
three OH groups at the C5, C7, and C4′ positions of rings 
A and B, respectively. Isoflavones in their natural sources 
exist in glycosylated forms, but they become physiologically 
active only in aglycone form. In mammals, isoflavones may 
show effects similar to estrogen. Genistein too potentiates an 
estrogen-like effect owing to C4 and C7 on the phenol ring 
that is comparable functionally and structurally to the phenol 
groups in E2, allowing both estrogen receptor isoforms to 

bind with equal potential (Sharifi-Rad et al. 2021). Several 
derivatives of genistein are being made to improve its anti-
cancerous potential such as 2-alkyl substituted fluorinated 
genistein derivatives are developed to selectively inhibit 
breast cancer cells, whereas genistein-1,3,5-triazine analogs 
have shown anti-proliferative activities against various can-
cer cell lines including breast, cervical, prostate, and liver 
(Zhu et al. 2022; Zou et al. 2023).

Pharmacokinetic profile

Genistein shows poor aqueous solubility; hence, a study 
has suggested that increasing the dose has no significant 
effect on its bioavailability. Genistein is cleaved by phlorizin 
hydrolase in the brush border cells or by enteric microflora 
into its biologically active aglycone form. Its oral bioavail-
ability is roughly 10%, has a low absorption potential, and is 
therefore transported passively through the intestinal mem-
brane, undergoing post-absorption metabolism. (Yu et al. 
2021) Retinal distribution was observed to be higher in dia-
betic rats, due to increased blood–retinal barrier permeabil-
ity (Hakami et al. 2021). Owing to its poor bioavailability, 
an array of advanced nano-based drug carriers are being 
explored to improve its water solubility and stability and 
make its bioavailability more efficient (Rasheed et al. 2022). 
An example of this is the formulation of solid lipid nano-
suspensions, aiding the bypassing of the first-pass metabo-
lism and preferentially reaching the lymphatic system of the 
intestine, thereby improving bioavailability (Obinu et al. 
2021). Genistein is observed to undergo phase II biotransfor-
mation reactions, encompassing methylation, glycosylation, 
glucuronidation, acetylation, and sulphonation reactions 
in rats. The main metabolic products observed in human 
plasma following ingestion were genistein-7-glucuronide, 
4′-glucuronide, 7-sulfate, 4′-sulfate, 4′,7-diglucuronide, and 
7-glucuronide-4′-sulfate. The malonyl glucoside conjugation 
pathway is a conserved pathway for isoflavones. Malonyl 
genistein is also a metabolic product observed wherein the 
malonyl group replaces the hydroxy group; however, it is 
not a major metabolic pathway. Genistein is also reported 
to undergo enterohepatic circulation (Yang and Tsai 2019). 

Fig. 1   Structure of genistein
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Genistein is known to be excreted into breast milk in very 
minute quantities and not in significant amounts. It is 
excreted by urine within 1 day of intake (Yu et al. 2021). 
Developing an understanding of the pharmacokinetic profile 
of phytoconstituents is essential, as it enables the detection 
of any potential interactions, as well as aids the designing of 
suitable carriers for optimal delivery.

Apoptotic mechanisms of genistein in cancer

The Fas‑FasL pathway

The apoptotic effect in the cells is generated via the cross-
talk between the intrinsic and extrinsic apoptotic pathways 
as depicted in Fig. 2 (Petak and Houghton 2001; Slee et al. 
1999). The intrinsic apoptotic pathways are associated with 
intracellular cysteine protease or caspases (CASP) (Yeh 
et al. 2007) such as mitochondria-dependent pathways regu-
lated by CASP-9. CASP-9 is activated by the conjugation of 
apoptotic protease-activating factor 1 (Apaf-1), an adaptor 
molecule with cytochrome c and procaspase-9 in the pres-
ence of ATP (Fig. 2) (Chen and Wang 2002; Budihardjo 
et al. 1999). Alternatively, the extrinsic apoptotic pathways 

are commenced by CASP-8 and regulated via death recep-
tors (DR) like tumor necrosis factor (TNF)-related apopto-
sis-inducing ligand (TRAIL) and Fas ligand (FasL) (Fig. 2) 
(Petak and Houghton 2001; Chen and Wang 2002; Budi-
hardjo et al. 1999). In an experiment performed by Yeh et al. 
(Yeh et al. 2007), it was shown that genistein moderately 
increased the levels of procaspase-9 in human hepatocellular 
carcinoma (Hep3B cells). However, no apoptosis via extrin-
sic or intrinsic pathways was observed in Hep3B cells when 
the cells were exposed to 100 µM genistein for 24 h as there 
was no change in the expression of death receptors like DR4, 
DR5, and Fas and their associated ligands: Apo-2L/TRAIL, 
and FasL. Further, genistein-treated cells for 48 h altered the 
levels of various proteins including Bad and Mcl-1, leading 
to cell death. The apoptotic mechanisms of genistein in dif-
ferent cancers are described in detail in Table 1.

The TRAIL‑DR pathway

TRAIL is a cytokine that specifically prompts cell death 
of tumor cells over healthy counterparts through interact-
ing with DR4 and DR5 (Oishi et al. 2013; Dai et al. 2015). 
TRAIL belongs to the TNF family, and it can exist in both 
soluble form and on cytotoxic T-lymphocytes/natural killer 

Fig. 2   The effect of genistein on both extrinsic and intrinsic apoptotic pathways



2896	 Naunyn-Schmiedeberg's Archives of Pharmacology (2023) 396:2893–2910

1 3

Ta
bl

e 
1  

A
po

pt
ot

ic
 (a

nt
i-c

an
ce

r)
 a

ct
iv

iti
es

 o
f g

en
ist

ei
n 

ba
se

d 
on

 in
 v

itr
o 

ex
pe

rim
en

ts

Ty
pe

 o
f c

an
ce

r
C

el
l l

in
es

M
ec

ha
ni

sm
s

C
on

ce
nt

ra
tio

n
Re

fe
re

nc
es

Le
uk

em
ia

H
L-

60
↑ 

as
pa

ra
gi

na
se

 a
ct

iv
ity

, ↓
 v

ia
bi

lit
y 

of
 c

an
ce

r c
el

ls
, ↑

 G
2/

M
 

ph
as

e 
se

iz
e,

 ↑
 D

N
A

 d
am

ag
e,

 ↑
 d

is
ru

pt
io

n 
of

 th
e 

m
ito

-
ch

on
dr

ia
l m

em
br

an
e 

po
te

nt
ia

l, 
↓ 

B
cl

-2
, ↑

 B
ax

,↑
 B

ak
, ↑

 
CA

SP
-3

A
sp

 (0
.3

 o
r 0

.5
 U

/m
l),

 G
EN

 (3
0 

or
 4

0 
μM

)
H

si
ao

 e
t a

l. 
20

21
)

H
L-

60
↑ 

G
2/

M
 p

ha
se

 se
iz

e,
 ↓

 C
el

ls
 v

ia
bi

lit
y,

 ↑
 D

N
A

 d
es

tru
ct

io
n 

an
d 

fr
ag

m
en

ta
tio

n,
 ↑

 R
O

S,
 ↑

 C
a2+

, ↓
 Δ

Ψ
 m

, ↑
 IR

E-
1α

, ↑
 

G
R

P7
8,

 ↑
C

al
pa

in
 1

, ↑
CA

SP
-7

, ↑
G

A
D

D
15

3,
 ↑

CA
SP

-4
, ↓

 
B

id
, ↑

 A
TF

-6
α,

 ↑
 C

A
SP

-9
 a

nd
 3

,↑
 B

ax
, ↓

 B
cl

-2
, ↑

 P
A

R
P 

cl
ea

va
ge

0,
 2

0,
 3

0,
 4

0,
 a

nd
 5

0 
μM

H
si

ao
 e

t a
l. 

20
19

)

Sq
ua

m
ou

s c
el

l
SK

-M
EL

-2
8

↑ 
fr

ag
m

en
te

d 
D

N
A

 (c
om

et
-s

ha
pe

d)
, ↓

 c
el

l m
ig

ra
tio

n 
an

d 
ce

ll 
in

va
si

on
, ↓

 M
M

P-
9,

 ↓
 p

-M
EK

, ↓
 p

-E
R

K
, ↓

 p
-J

N
K

0,
 1

2.
5,

 2
5,

 a
nd

 5
0 

μM
Li

 e
t a

l. 
20

20
)

H
ea

d 
an

d 
ne

ck
H

N
C

-T
IC

s
↓ 

th
e 

pr
ol

ife
ra

tio
n 

of
 c

an
ce

r c
el

ls
, ↓

 E
M

T,
 ↑

 c
yt

ot
ox

ic
ity

 
m

ed
ia

te
d 

by
 th

re
e 

ch
em

ot
he

ra
pe

ut
ic

 a
ge

nt
s (

ci
sp

la
tin

, 
do

xo
ru

bi
ci

n,
 a

nd
 5

-F
U

), 
↑ 

RO
S 

pr
od

uc
tio

n,
 ↑

 m
iR

-3
4a

, 
↓ 

A
LD

H
1 +

 an
d 

C
D

44
 +

 , ↓
 S

na
il,

 ↓
 Z

EB
1,

 ↓
 S

lu
g,

 ↓
 

vi
m

en
tin

, ↑
 E

-c
ad

he
rin

0,
 2

0,
 a

nd
 4

0 
μM

H
si

eh
 e

t a
l. 

20
20

)

N
as

op
ha

ry
ng

ea
l

C
N

E2
 a

nd
 H

O
N

E1
↓ 

si
ze

 a
nd

 n
um

be
r t

um
or

sp
he

re
s, 
↓ 

Ep
CA

M
 +

 ce
lls

, ↓
 

C
D

44
, ↓

 A
LD

H
1,

 ↓
O

C
T‐

4,
 ↓

 N
A

N
O

G
, ↓

 c
el

l p
ro

lif
er

a-
tio

n,
 ↓

 C
yc

lin
 D

1,
 ↓

 c
‐M

Y
C

, ↓
 P

C
N

A
, ↑

B
ax

, ↑
 C

A
SP

-8
, 

↑ 
cl

ea
ve

d 
CA

SP
-9

, ↑
 c

le
av

ed
 C

A
SP

-3

0,
 5

0,
 7

5,
 &

 1
00

 μ
M

Zh
an

g 
et

 a
l. 

20
19

a)

La
ry

ng
ea

l
TU

21
2 

an
d 

H
ep

2
↑ 

m
iR

-1
46

9,
 ↑

 B
cl

-2
 a

nd
 M

cl
1 

do
w

nr
eg

ul
at

io
n,

 ↑
 p

53
10

0 
µM

M
a 

et
 a

l. 
20

18
)

Es
op

ha
ge

al
C

aE
S-

17
, E

C
97

06
, H

et
-1

A
, a

nd
 

Ec
a-

10
9

↓ 
C

yc
lin

 D
1,

 ↓
 E

sC
 c

el
l p

ro
lif

er
at

io
n,

 ↑
 B

id
, ↑

 a
po

pt
os

is
 

fr
eq

ue
nc

y,
 ↓

 C
D

K
6,

 ↑
 G

0/
G

1 
ph

as
e 

ar
re

st,
 ↑

 B
ax

, ↑
 

cl
ea

ve
d 

PA
R

P,
 ↑

 c
le

av
ed

 C
A

SP
-3

, ↓
 C

D
K

4,
 ↓

 B
cl

-X
l, 

↑ 
P5

3,
 ↓

 B
cl

-2
, ↓

 m
ito

ch
on

dr
ia

l m
em

br
an

e 
po

te
nt

ia
l, 
↑ 

RO
S,

 ↓
 p

- S
TA

T3
, ↓

 p
-J

A
K

1,
 ↓

 p
-J

A
K

2

0,
 5

, 1
0,

 2
0,

 4
0,

 &
 8

0 
μM

G
ao

 e
t a

l. 
20

20
)

C
ol

on
H

T2
9 

an
d 

SW
62

0
↓ 

ce
ll 

vi
ab

ili
ty

, ↑
 G

2/
M

 a
rr

es
t, 
↑ 

H
2O

2, 
↑ 

ca
nc

er
 c

el
l 

de
at

h,
 ↑

 st
re

ss
 fi

be
rs

, ↓
 P

PA
RG

C
1a

, ↑
 S

O
D

2 
an

d 
SO

D
1,

 
↓ 

ES
R

R
A

, ↑
 fi

lo
po

di
a,

 ↓
 C

X
C

L8
, ↓

 T
FA

M
, ↑

IL
10

, ↑
 

IL
1B

, ↑
 S

SB
P1

, ↑
 C

X
C

R
2,

 ↑
 T

N
F,

 ↑
 H

PS
E

1,
 5

, 5
0,

 a
nd

 1
00

 µ
M

A
lo

rd
a-

C
la

ra
 e

t a
l. 

20
22

)

H
T-

29
↓ 

ce
ll 

m
ig

ra
tio

n,
 ↑

 E
-c

ad
he

rin
, ↓

 N
-c

ad
he

rin
, ↓

 S
na

il2
/

sl
ug

, ↓
 Z

EB
1,

 ↓
ZE

B
2,

 ↑
 B

ax
/B

cl
-2

, ↓
 F

O
X

C
1,

 ↓
 

FO
X

C
2,
↓ 

TW
IS

T1
, ↓

 n
ot

ch
-1

, ↓
p-

N
F-

κB
, ↑

 C
A

SP
-3

0,
 2

5,
 5

0,
 1

00
, 2

00
, a

nd
 4

00
 μ

M
Zh

ou
 e

t a
l. 

20
17

)

H
T2

9
↓ 

vi
ab

ili
ty

, p
ro

lif
er

at
io

n 
an

d 
m

ig
ra

tio
n 

of
 H

T2
9 

ce
lls

, ↑
 

ca
sp

as
e-

3,
 ↓

 p
38

 M
A

PK
, ↓

 M
M

P-
2

0,
 1

0,
 3

0,
 5

0,
 7

0,
 a

nd
 9

0 
µM

Sh
afi

ee
 e

t a
l. 

20
16

)



2897Naunyn-Schmiedeberg's Archives of Pharmacology (2023) 396:2893–2910	

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ty
pe

 o
f c

an
ce

r
C

el
l l

in
es

M
ec

ha
ni

sm
s

C
on

ce
nt

ra
tio

n
Re

fe
re

nc
es

B
re

as
t

M
D

A
-M

B
-2

31
, M

C
F-

4T
1,

 M
C

F-
10

A
, a

nd
 M

C
F-

7
↑ 

G
2/

M
 c

el
l c

yc
le

 p
ha

se
 a

rr
es

t, 
↓ 

B
cl

-2
, ↑

 c
le

av
ag

e 
of

 
CA

SP
-3

/7
 &

 9
 a

nd
 P

A
R

P,
 ↓

 p
PI

3K
/ N

F-
κB

/A
kt

, ↓
 c

yc
lin

 
B

1,
 ↑

 B
ax

, ↑
 p

ho
sp

ho
-c

dc
2 

ex
pr

es
si

on
, ↑

 c
hr

om
at

in
 c

on
-

de
ns

at
io

n,
 ↑

 m
ito

ch
on

dr
ia

l s
tru

ct
ur

al
 in

te
gr

ity
 d

is
ru

p-
tio

n,
 ↑

 n
uc

le
ol

i l
os

s, 
↑ 

RO
S 

ge
ne

ra
tio

n

10
 µ

M
 c

en
tc

hr
om

an
 a

nd
 5

0 
µM

 g
en

ist
ei

n
K

au
sh

ik
 e

t a
l. 

20
19

)

M
C

F-
7

↓ 
M

C
F-

7 
ce

lls
 p

ro
lif

er
at

io
n,

 ↑
 n

uc
le

ar
 c

on
de

ns
at

io
n,

 a
nd

 
fr

ag
m

en
ta

tio
n,

 ↑
 e

ar
ly

 a
po

pt
ot

ic
 c

el
ls

, ↑
 B

ax
, ↓

 IG
F-

1R
 

&
 p

-A
kt

, ↓
 B

cl
-2

0,
 5

, 1
0,

 2
0,

 3
0,

 4
0,

 6
0,

 8
0,

 a
nd

 1
00

 μ
M

C
he

n 
et

 a
l. 

20
15

)

M
C

F-
7 

an
d 

M
D

A
-M

B
-2

31
↑ 

D
N

A
 d

am
ag

es
, ↑

 G
2/

M
 p

ha
se

 se
iz

e,
 ↓

 R
ad

51
 fo

ci
 

ge
ne

ra
tio

n,
 ↑

 c
el

l d
ea

th
, ↓

 h
om

ol
og

ou
s r

ec
om

bi
na

tio
n 

re
pa

ir,
 ↑

 p
A

TM
, C

dc
2,

 C
dc

25
c,

 a
nd

 C
hk

2,
 ↑

 B
ax

, ↑
 p

73
, 

↓ 
B

cl
-2

5–
20

 μ
M

Li
u 

et
 a

l. 
20

13
)

M
D

A
-M

B
-2

31
↓ 

tu
m

or
 c

el
ls

 p
ro

lif
er

at
io

n,
 ↓

 B
cl

-2
, ↓

 p
ro

CA
SP

-3
, ↓

 c
le

av
-

ag
e 

of
 C

A
SP

-3
, ↓

 M
EK

5,
 ↑

 B
ax

, ↓
 E

R
K

5,
 ↓

 p
ho

sp
ho

-
ER

K
5,

 ↓
 N

F-
κB

/p
65

0,
 5

, 1
0,

 o
r 2

0 
µM

Li
 e

t a
l. 

20
08

)

Lu
ng

A
54

9
↓ 

ca
nc

er
 c

el
ls

 v
ia

bi
lit

y,
 ↑

 a
po

pt
os

is
 ra

te
 ↑

cl
ea

ve
d 

CA
SP

-3
, 

↑ 
cl

ea
ve

d 
CA

SP
-9

, ↓
 C

A
SP

-3
, ↓

 C
A

SP
-9

, ↓
 IM

PD
H

2
0,

 2
0,

 4
0,

 8
0 

μM
X

u 
et

 a
l. 

20
22

)

A
54

9 
an

d 
95

D
↓ 

ce
ll 

vi
ab

ili
ty

, ↑
 c

el
lu

la
r s

hr
in

ka
ge

 a
nd

 ro
un

di
ng

, ↓
 c

ol
-

on
y-

fo
rm

in
g 

ab
ili

ty
, ↑

 D
A

PI
, a

nd
 T

U
N

EL
 fl

uo
re

sc
en

ce
, 

↑ 
le

ve
ls

 o
f c

yt
oc

hr
om

e 
c,

 ↑
 B

ax
, ↓

 B
cl

-2
, ↑

 in
tra

ce
llu

la
r 

RO
S 

fo
rm

at
io

n,
 ↓

 m
ito

ch
on

dr
ia

l a
ct

iv
ity

, ↓
 m

ito
ch

on
-

dr
ia

l m
em

br
an

e 
po

te
nt

ia
l, 
↑ 

FO
X

O
3a

, a
nd

 P
U

M
A

0,
 2

5,
 5

0,
 1

00
, 1

50
, 2

00
, a

nd
 2

50
 µ

M
C

ha
n 

et
 a

l. 
20

22
)

A
54

9
↑ 

in
hi

bi
tio

n 
of

 A
54

9 
ce

lls
 g

ro
w

th
, ↑

 a
po

pt
os

is
, ↑

 
CA

SP
3/

9,
 ↑

 m
ic

ro
R

N
A

27
a,

 ↓
M

ET
0,

 1
0,

 2
5,

 5
0,

 1
00

, a
nd

 2
00

 µ
M

Ya
ng

 e
t a

l. 
20

16
a)

C
ho

la
ng

io
ca

rc
in

om
a

K
K

U
05

5 
(J

C
R

B
15

51
), 

K
K

U
10

0 
(J

C
R

B
15

68
), 

an
d 

K
K

U
21

3A
 

(J
C

R
B

15
57

)

↑ 
C

CA
 c

el
ls

 su
sc

ep
tib

ili
ty

 to
 n

at
ur

al
 k

ill
er

 (N
K

-9
2)

 c
el

ls
, 

↓p
ro

ca
sp

as
e-

8 
an

d 
-3

, ↓
 c

-F
LI

P,
 ↑

 d
ea

th
 re

ce
pt

or
s, 
↑ 

Fa
s, 

↑ 
TR

A
IL

, ↓
 B

cl
-2

0–
40

0 
µM

C
hi

aw
pa

ni
t e

t a
l. 

20
22

)

H
ep

at
oc

el
lu

la
r

H
uh

-7
, H

ep
3B

 a
nd

 H
ep

 G
2

↑ 
ra

di
os

en
si

tiv
ity

, ↑
 D

N
A

 d
am

ag
e,

 ↑
 c

hr
om

os
om

al
 a

be
r-

ra
tio

ns
, ↑

 G
2/

 M
 p

ha
se

 a
rr

es
t, 
↓ 

ph
os

ph
o-

B
ad

 (S
er

13
6)

, 
↑p

ho
sp

ho
C

hk
2 

(T
hr

68
), 
↑ 

ph
os

ph
o-

A
TM

 (S
er

19
81

), 
↑ 

c-
H

2A
X

, ↓
 P

O
U

6F
 ↓

 C
C

N
E2

 e
xp

re
ss

io
n,

 ↑
 F

B
X

O
32

, ↑
 

cy
cl

in
 B

1 
ex

pr
es

si
on

0,
 2

.5
, 5

, 1
0,

 2
0,

 a
nd

 4
0 +

 8 
G

y 
X

-r
ay

Ya
n 

et
 a

l. 
20

20
)

H
ep

G
2

↓ 
su

rv
iv

al
 o

f H
ep

G
2 

tu
m

or
 c

el
ls

, ↓
 c

ol
on

y-
fo

rm
in

g 
po

te
n-

tia
l, 
↑ 

B
ax

, ↑
 G

2/
M

 se
iz

e,
 ↑

 R
O

S 
ge

ne
ra

tio
n,

 ↑
 C

yt
 c

, 
↑c

le
av

ed
 C

A
SP

-3
 &

 9
, ↓

 B
cl

-2

0,
 6

.2
, 1

2.
5,

 2
5,

 5
0,

 a
nd

 1
00

 μ
M

Zh
an

g 
et

 a
l. 

20
19

b)

H
ep

3B
↑ 

ph
os

ph
o-

A
M

PK
α,

 ↑
C

le
av

ed
 P

A
R

P,
 ↑

 c
le

av
ed

 C
as

-3
 ↑

 
B

ax
, ↓

 B
cl

-2
, -
↓ 

M
dm

2
0,

 2
5,

 5
0,

 a
nd

 1
00

 μ
M

Le
e 

et
 a

l. 
20

19
b)

H
ep

3B
 a

nd
 H

ep
G

2
↑ 

ER
 st

re
ss

 m
ed

ia
tin

g 
re

gu
la

to
rs

, ↑
 C

A
SP

-1
2,

 ↑
 

G
A

D
D

15
3,

 ↑
 G

R
P7

8,
 ↑

 m
-c

al
pa

in
, ↑

 C
A

SP
-2

0,
 2

0,
 4

0,
 6

0,
 8

0,
 a

nd
 1

00
 µ

M
(2

2)



2898	 Naunyn-Schmiedeberg's Archives of Pharmacology (2023) 396:2893–2910

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Ty
pe

 o
f c

an
ce

r
C

el
l l

in
es

M
ec

ha
ni

sm
s

C
on

ce
nt

ra
tio

n
Re

fe
re

nc
es

B
la

dd
er

 c
an

ce
r

T2
4

↑ 
G

2/
M

 se
iz

e,
 ↑

 C
A

SP
-3

, C
A

SP
-8

, a
nd

 C
A

SP
-9

, ↓
 c

yc
lin

 
A

, ↑
 P

A
R

P 
cl

ea
va

ge
, ↓

 c
yc

lin
 B

1,
 ↑

 p
21

W
A

F1
/C

IP
1,

 ↑
 

C
yt

 c
, ↑

 d
es

tru
ct

io
n 

of
 m

ito
ch

on
dr

ia
 in

te
gr

ity
, ↑

 B
ax

/
B

cl
-2

 ra
tio

, ↑
 R

O
S 

ac
cu

m
ul

at
io

n

0,
 4

0,
 8

0,
 1

20
, 1

60
, a

nd
 2

00
 μ

M
Pa

rk
 e

t a
l. 

20
19

)

K
id

ne
y

CA
K

I-
1,

 7
69

-P
, C

A
K

I-
2,

 7
86

-O
, 

H
K

-2
, a

nd
 H

EK
29

3
↓c

el
l p

ro
lif

er
at

io
n,

 ↑
 C

D
K

N
2a

, ↓
 C

D
K

N
2a

 m
et

hy
la

tio
n

0,
 2

5,
 5

0,
 1

00
 µ

M
Ji 

et
 a

l. 
20

20
)

Pa
nc

re
at

ic
M

ia
-P

aC
a2

 a
nd

 P
A

N
C

-1
↓ 

ca
nc

er
 c

el
l v

ia
bi

lit
y,

 ↑
 G

0/
G

1 
ph

as
e,

 ↑
 R

O
S 

ac
cu

m
ul

a-
tio

n,
 ↓

 M
M

P-
2 

an
d 

9,
 ↑

 C
yt

 c
, ↑

 c
le

av
ed

 C
A

SP
-3

 a
nd

 9
, 

↑ 
B

ax
, ↓

 B
cl

-2
, ↓

 su
rv

iv
in

, ↓
 c

yc
lin

 D
1,

 ↓
 A

LD
H

1A
1

0,
 1

0,
 2

0,
 a

nd
 4

0 
μM

B
i e

t a
l. 

20
18

)

Pr
os

ta
te

PC
3

↓c
el

l p
ro

lif
er

at
io

n,
 ↓

 m
ig

ra
tio

n,
 a

nd
 m

et
as

ta
si

s, 
↓ 

M
M

P-
2,

 
↓ 

p3
8M

A
PK

, ↑
 c

as
pa

se
-3

,
0,

 1
0,

 3
0,

 5
0,

 7
0,

 o
r 9

0 
m

M
Sh

afi
ee

 e
t a

l. 
20

22
)

PC
-3

 a
nd

 L
N

C
aP

↑ 
ce

ll 
de

at
h 

of
 tu

m
or

 c
el

ls
, ↓

 c
el

lu
la

r G
SH

 c
on

ce
nt

ra
tio

n,
 

↑ 
RO

S 
fo

rm
at

io
n,

 ↓
G

lu
t-1

 re
ce

pt
or

s, 
↓ 

CO
X

-2
 fo

rm
at

io
n

A
 li

po
so

m
al

 sy
ste

m
 c

on
ta

in
in

g 
ce

le
co

xi
b 

an
d 

G
EN

 (1
00

 μ
M

 c
el

ec
ox

ib
 a

nd
 1

0 
μM

 G
EN

)
Ti

an
 e

t a
l. 

20
19

)

C
ol

or
ec

ta
l

SW
48

0 
an

d 
SW

62
0

↓ 
ce

ll 
vi

ab
ili

ty
, ↑

 R
O

S,
 ↑

 o
xi

da
tiv

e 
str

es
s, 
↑ 

p5
3,

 ↑
 D

N
A

 
fr

ag
m

en
ta

tio
n,

 ↑
 P

A
R

P 
cl

ea
va

ge
, ↑

 C
A

SP
-3

, ↑
 C

yt
 c

, ↑
 

cy
to

ki
ne

s (
G

M
-C

SF
, I

L-
1B

, I
L-

1B
-2

, I
L-

1B
-4

, I
L-

1B
-5

, 
IL

-1
B

-1
0,

 IL
-1

B
-1

7A
, I

L-
1B

-1
8,

 a
nd

 IL
-1

B
-2

7)

5.
52

 m
g 

ge
ni

ste
in

/1
 g

 b
ac

te
ria

l n
an

oc
el

lu
lo

se
 

ca
ps

ul
es

)
Re

nd
ón

 e
t a

l. 
20

22
)

H
C

T-
11

6 
an

d 
Lo

Vo
↑ 

ap
op

to
tic

 c
el

ls
, ↑

 B
ax

, ↑
 p

- A
kt

0,
 2

5,
 5

0,
 a

nd
 1

00
 µ

M
Q

in
 e

t a
l. 

20
16

)
O

va
ria

n
H

O
-8

91
0

↑ 
D

N
A

 d
es

tru
ct

io
n,

 ↑
 G

2/
M

 se
iz

e,
 ↑

 c
el

l d
ea

th
, ↑

 p
A

TM
, 

↑p
- C

hk
1,

 ↑
 p

A
TR

, ↑
 p

53
, a

nd
 ↑

 p
-C

hk
2,

 ↓
 p

ho
sp

ha
ta

se
s 

C
dc

25
C

 a
nd

 C
dc

25
A

, ↓
 B

cl
-2

/B
ax

, a
nd

 B
cl

-x
L/

B
ax

 
ra

tio
, ↓

 p
- A

kt

0,
 1

, 5
, 1

0,
 2

5,
 5

0,
 a

nd
 1

00
 µ

M
O

uy
an

g 
et

 a
l. 

20
09

)

C
er

vi
ca

l
H

eL
a

↓ 
m

ig
ra

tio
n 

ra
te

, ↓
 in

va
si

on
 o

f t
um

or
 c

el
ls

, ↓
 in

va
si

ve
 

ce
lls

, ↓
 p

- F
A

K
,↓

 p
ax

ill
in

, ↓
 p

38
 a

nd
 ↓

 p
42

/4
4,

 ↓
 S

na
il,

 
↓ 

tw
ist

0,
 1

2.
5,

 2
5,

 5
0,

 a
nd

 1
00

 µ
M

C
he

n 
et

 a
l. 

20
20

)

H
eL

a
↓ 

vi
ab

ili
ty

 o
f H

eL
a 

ce
lls

, ↑
 E

R
 st

re
ss

, ↑
 G

R
P7

8 
↑ 

C
H

O
P 

ex
pr

es
si

on
, ↑

cl
ea

ve
d 

CA
SP

-3
, ↑

 c
le

av
ed

 P
A

R
P

0,
 2

5,
 5

0,
 a

nd
 1

00
 μ

M
Ya

ng
 e

t a
l. 

20
16

b)



2899Naunyn-Schmiedeberg's Archives of Pharmacology (2023) 396:2893–2910	

1 3

(NK) cells, thereby provoking immune surveillance against 
tumor cells (Yang et al. 2019; Girisa et al. 2019). The inter-
action between TRAIL on the NK cells and DR on the target 
cells initiates the activation of cascade of proteins ultimately 
leading to the cleavage of CASP-8. Further, CASP-8 acti-
vates CASP-3 and Bid to commit the cell to apoptosis. Gen-
istein has been known to potentiate the cytotoxic effects of 
TRAIL in various types of human malignancies. Szliszka 
and colleagues demonstrated that cervical tumor cells are 
resistant to TRAIL-associated cytotoxicity, whereas the 
combination of genistein and TRAIL showed additive cyto-
toxicity indicating that genistein may potentiate the cytotoxic 
effects of apoptosis-inducing agents (Szliszka et al. 2008). 
Similarly, the combinational treatment of indole-3-carbinol, 
genistein, and TRAIL upregulated the level of DR4 and DR5 
and thereby significantly promoted cell death of endometrial 
tumor cells (Parajuli et al. 2013). The combination of gen-
istein and TRAIL substantially regressed cancerous growth 
in orthotopic pancreatic mice models with caspase-3 acti-
vation (Nozawa et al. 2004). Interestingly, dexamethasone 
was found to potentiate cell death of pancreatic β-cells by 
upregulating the levels of TRAIL and DR5, whereas the 
combination of dexamethasone and genistein decreased 
the levels of TRAIL and DR5 and rescued the β-cells from 
undergoing apoptosis indicating that genistein can serve as 
a cytoprotective agent in normal cells (Suksri et al. 2022).

Activation of anti-apoptotic mechanisms is the primary 
means by which cancer cells escape from cell death, and 
therefore, reversal of anti-apoptosis is crucial to promote 
cell death of tumor cells. Interestingly, pre-treatment of 
cholangiocarcinoma cells with genistein led to a substantial 
elevation in the ability of NK cells to induce apoptosis which 
was evidenced by upregulation in the level of FasR, DR4, 
and DR5 in cholangiocarcinoma cells upon treatment with 
genistein (Chiawpanit et al. 2022). Genistein also sensitized 
hepatocellular carcinoma (HCC) cells to TRAIL, promoted 
the cleavage of Bid, and reverted resistance to TRAIL (Jin 
et al. 2009a). Genistein enhanced TRAIL-driven cell death 
of advanced glioma cells by promoting the proteasomal deg-
radation of the short isoform of c-FLIP (FLICE (FADD-
like IL-1β-converting enzyme)-inhibitory protein) without 
affecting the viability of normal astrocytes (Siegelin et al. 
2009). C-FLIP is a prominent apoptosis-inhibiting protein 
offering resistance against drug/cytokine-driven apopto-
sis in cancer cells (Safa 2013). The p38-MAPK pathway 
drives cell proliferation and anti-apoptosis, and inhibition 
of p38-MAPK could be a good strategy to counteract cell 
proliferation and induce apoptosis. Genistein inhibited 
the p38-MAPK pathway in HCC cells and upregulated 
the TRAIL-driven apoptosis (Jin et al. 2009b). Similarly, 
TRAIL-mediated apoptosis potentiating effects of genistein 
were found in diverse cancerous cell lines, including HCC, 

lung cancer, and gastric cancer cells (Jin et al. 2011, 2007; 
Nazim and Park 2015).

The TNF‑α‑TNFR1 pathway

There is no doubt that cancer causes inflammation of the 
cells (Tuli et al. 2019). Genistein is known to induce inflam-
mation inhibitory effect by reducing the release of IL-8, 
IL-6, and IL-1β from MH7A cells elicited by TNF-α. It also 
inhibited the cell viability and proliferation by suppressing 
the TNF-α-induced AMPK inhibition, phosphorylation 
of IκB kinase-α/β and IκBα, and translocation of TNF-α-
induced NF-κB into the nucleus (Fig. 3) (Li et al. 2014). 
Further, genistein inhibited the levels of TNF-α and IL-1β 
in lipopolysaccharide-stimulated BV2 microglia by inacti-
vating toll-like receptor-4 and NF-κB (Jeong et al. 2014). 
In another study, 1.04 or 1.3 mg/day of genistein abrogated 
inflammation by lowering the level of IL-6 and TNF-α in a 
murine model of peritoneal endometriosis (Sutrisno et al. 
2018). The anti-cancer and inflammation inhibitory effects 
have been also reported in diethylnitrosamine-mediated 
HCC in mice when they were treated with genistein for 
longer periods (Lee et al. 2019a).

Modulating Bcl2‑Bax pathway

The apoptotic activity of genistein in oral squamous cell 
carcinoma (OSCC) was demonstrated in a study using 
genistein-loaded lactalbumin nanoparticles (GLNPs). 
The GLNPs destroyed the mitochondrial membrane in 
OSCC by the accumulation of ROS making it permeable 
to proapoptotic proteins, such as Bcl2-Bax and CASP-3. 
The increased expression of these proapoptotic proteins 
causes cytochrome c translocation to the cytosol from 
the mitochondria leading to apoptosis (Fig. 3) (Dev et al. 
2021). Similar results were seen in different studies where 
genistein was administered orally for the in vitro treat-
ment of colorectal cancer on SW620 and SW480 cell lines 
(Rendón et al. 2022) and HT29 and LoVo colon cancer cell 
lines (Luo et al. 2014). Another study found that 50 µM of 
genistein causes ER-α-dependent cell death in MCF-7 BC 
cells by increased of Bcl2–Bax ratio and cyclin D1 down-
regulation (Jiang et al. 2018). Genistein (0.01–100 µM) 
changes the antioxidant enzyme expression to impede 
oxidative stress and increase the Bcl2–Bax ratio, promot-
ing autophagy-dependent apoptosis in MCF-7 breast can-
cerous cells (Lavigne et al. 2008). In other studies, gen-
istein potentiated cell death in tumor cells by reducing the 
Bcl2–Bax ratio and increasing the ATM phosphorylation 
and expression of tumor suppressor gene p73 (Xu and Loo 
2001) and upregulating the p53 and poly-(ADP-ribose)-
polymerase (Shim et al. 2007; Sohel et al. 2022).
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Targeting PI3K‑Akt‑mTOR pathway

The PI3K-Akt-mTOR signaling mechanism is a crucial 
signaling pathway of tumor proliferation, dissemination, 
and angiogenesis and is considered a significant therapeu-
tic target for treating human cancers, and new medica-
tions are in development to inhibit specific components 
of this signaling pathway (Ahmad et al. 2013; Joshi et al. 
2023; Tuli et al. 2023). As the name suggests, this sign-
aling pathway contains three main components PI3K 
(phosphoinositide-3-kinase), Akt (protein kinase B), and 
mTOR (mammalian target of rapamycin); inactivation of 
these targets induces apoptosis and reduces cell survival as 
illustrated in Fig. 3. Suppression of Akt phosphorylation 
by genistein causing impaired PI3K-Akt-mTOR signal-
ing cascade promotes G2/M cell cycle seize and increased 
expression of p21 which led to suppression of cancerous 
growth and potentiates cell death in various tumor cell 
lines, including breast cancer, NSCLC, human esopha-
geal squamous carcinoma, and prostate cancer (Akimoto 
et al. 2001; Lian et al. 1998, 1999; Li et al. 1999a, 1999b). 
Genistein exerted its effects through the inhibition of Akt 
stimulation induced by epidermal growth factor (EGF) and 

inhibition of Akt-induced NF-κB activation via disrupting 
the cross-talk between Akt and NF-κB in prostate cancer, 
breast cancer, and myeloma (Li and Sarkar 2002; Gong 
et al. 2003; He et al. 2009). In a mechanistic study of gen-
istein, it was revealed that Akt inhibition causes decreased 
telomerase enzyme activity as well as an elevated level 
of cell cycle progression inhibitor (i.e., p27) leading to 
apoptosis activation in breast cancer (Chinni et al. 2003). 
Similarly, genistein inactivates Akt protein in colon can-
cer cells via stimulation of the Foxo3 transcription factor 
that finally increased the p27 expression levels (Qi et al. 
2011). Recently, genistein plus centchroman inhibited the 
phosphorylation of PI3K, NF-κB, and Akt which subse-
quently promoted apoptosis in breast adenocarcinoma by 
following events such as PARP cleavage, elevated Bax/
Bcl2 ratio, and stimulation of caspases 3 and 9 (Kaushik 
et al. 2019). Another synergistic study indicates that gen-
istein combined with isoprenoid perillyl alcohol has a 
more potent inhibitory activity for PI3K-Akt-mTOR sign-
aling cascade compared to individual PI3K and mTOR 
inhibitors in prostate and colon carcinoma (Peffley et al. 
2007). Taken together, it was concluded that genistein 
alone or in combination with other inhibitors abrogates the 

Fig. 3   The anti-cancer effect of genistein on several downstream mechanistic pathways
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PI3K-Akt-mTOR signaling mechanism which successively 
potentiates the apoptosis in multiple tumor cell lines.

Targeting the JAK‑STAT3 signal pathway

Signal transducer and activator of transcription (STAT3) is 
a transcription factor that is involved in relaying signals for 
cell proliferation, prosurvival, anti-apoptosis, angiogenesis, 
invasion, migration, and metastasis (Mohan et al. 2022, 
2021a; Lee et al. 2020a). STAT3 undergoes activation upon 
receiving extracellular stimulus from upstream cytokines 
(IL-6 family cytokines) and growth factors (EGF), and the 
signal is mediated through Janus kinases (JAKs), epider-
mal growth factor receptor (EGFR), oncostatin M recep-
tor, and other related cytokine receptors as represented in 
Fig. 3 (Mohan et al. 2021b; Sajith et al. 2021; Arora et al. 
2021). Persistent activation of STAT3 is seen in different 
human cancers which contributes to cancerous growth and 
progression (Lee et al. 2020b, 2019b; Malojirao et al. 2020). 
Abrogation of the STAT3 signaling cascade has been iden-
tified as a good strategy to induce cytotoxicity in STAT3-
positive tumor cells (Lee et al. 2019c; Baburajeev et al. 
2016; Mohan et al. 2014). Genistein was found to display 
differential action against STAT3 activity, and the majority 
of studies have presented genistein to have inhibitory action 
towards the STAT3 signaling pathway. Gao and colleagues 
demonstrated that genistein suppresses JAK/STAT3 axis 
by downregulating the expression of EGFR in esophageal 
carcinoma cells and abrogating tumor growth in the xeno-
graft mice model (Gao et al. 2020). Genistein was reported 
to inhibit the constitutive stimulation of the STAT3 signal-
ing cascade in pancreatic tumor cells (Lian et al. 2004). In 
another study, it was found to impart anti-cancer function 
by activating STAT3 and increasing the levels of ROS in 
pancreatic tumor cells, whereas the treatment with ascor-
bic acid (a good antioxidant) reverted the genistein-induced 
generation of ROS (Bi et al. 2018). Sharma and colleagues 
performed molecular dynamic simulations and indicated that 
genistein displays excellent interaction with the IL-6/IL-6Rα 
to suppress the STAT3 pathway (Sharma et al. 2022). Pinski 
and coworkers demonstrated that genistein induces neuroen-
docrine differentiation of prostate cancer cells which was 
associated with the elevation of MAPK and STAT3 signal-
ing cascades (Pinski et al. 2006). The normal prostate tissue 
comprises only < 1% of neuroendocrine cells, and the num-
ber of these cells significantly increases in prostate cancer. 
Neuroendocrine differentiation is correlated with disease 
progression and prognosis in individuals with prostate can-
cer (Hu et al. 2015). On the other hand, some studies have 
indicated that genistein can activate the STAT3 pathway. 
Zhen and coworkers demonstrated that genistein triggers the 
phosphorylation of STAT3 and increases the interaction of 
STAT3 with the hepcidin promoter in human hepatocytes 

(Zhen et al. 2013). Hepcidin is a peptide hormone and a 
critical regulator of iron metabolism whose expression is 
elevated in some types of human cancers (Fan et al. 2021; 
Julián-Serrano et al. 2021). Additionally, numerous experi-
ments have targeted on the modulation of STAT3 signal-
ing in different disease conditions including liver fibrosis, 
leiomyoma, epilepsy-induced brain injury, and rheumatoid 
arthritis (Xu et al. 2021; Shushan et al. 2007; Hu et al. 2021; 
Cheng et al. 2020).

Synergism of genistein

The synergism of genistein in combination with various 
therapeutic agents has been studied. This section offers 
insight into a few significant studies, as well as the potential 
for further research. A key advantage offered by therapeu-
tic synergism is the improved cells’ susceptibility to radio-
therapy. Tang et al. explored the synergism of genistein and 
AG1024, a tyrosine kinase inhibitor, intending to improve 
treatment outcomes. These agents were observed to trig-
ger cellular apoptosis and improved the radiosensitivity of 
cells, offering a significant advantage over monotherapy 
(Tang et al. 2018). The effects of the co-administration of 
genistein and sulforaphane have been evaluated as well, and 
these compounds have been observed to decrease cellular 
proliferation and trigger cell death. In vitro evaluation indi-
cated the downregulation of biomarkers such as histone dea-
cetylase (HDAC), chiefly HDAC2 and HDAC3, along with 
human telomerase reverse transcriptase (hTERT) levels. 
These results were further strengthened by in vivo testing 
in transgenic mice, and a marked reduction in tumor size and 
volume was observed (Paul et al. 2018). Concerning ovar-
ian cancer, the cytotoxic effects of genistein in synergy with 
centchroman, a selective estrogen receptor modulator, have 
been evaluated. These agents have been observed to down-
regulate Bax and Bcl2 levels, as well as inflammatory mark-
ers such as caspases. Following a comparative in vivo analy-
sis in a mouse breast cancer model, it was concluded that 
combined usage of these agents was more effective than sin-
gular delivery (Kaushik et al. 2019). In a study undertaken 
by Lee et al., genistein was seen to exert an antiadipogenic 
effect, in combination with atorvastatin. The combination 
was observed to lower the levels of key adipogenic markers, 
such as mitogen-activated protein kinases (MAPKs), and 
peroxisome proliferator-activated receptor γ (PPARγ). This 
positive outcome offers potential for the usage of genistein 
in the management of metabolic disorders, chiefly in meno-
pausal women (Lee et al. 2021).

The therapeutic potentials of the analogs of genistein have 
been explored as well. A study by Mesmar et al. explored 
the benefits of AXP107-11, a genistein analog, in improving 
the sensitivity of cells to chemotherapy. An in vivo study 
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indicated an enhancement in cellular sensitivity to gemcit-
abine, following treatment with genistein. This indicates an 
interesting avenue for synergistic therapy of genistein, in 
combination with conventional chemotherapeutic agents 
(Mesmar et al. 2019). Administration of genistein along-
side doxorubicin has been evaluated as well, and key ben-
efits include improved chemosensitivity in various cancers, 
such as lymphomas (Mohammad et al. 2003), as well as a 
marked reduction in the toxicity of synthetic chemothera-
peutic agents (Chen et al. 2019a). Moving forward, there 
is a need to investigate the combinatorial effects of various 
natural and synthetic agents in combination with genistein, 
to assess adverse effects, synergistic mechanisms, and poten-
tials for repurposing and improving the overall survival time 
and quality of life of patients.

Overview of recent clinical trials

As shown in Table 2, it gives an insight into recent clinical 
trials undertaken to evaluate the efficacy and safety profile of 
genistein. A major drawback in these studies was observed 
to be the relatively small size of the patient pool and scat-
tered studies. There is a need to conduct a large number of 
multi-center clinical trials with diverse subject groups, to 
evaluate the safety and efficacy of genistein, and establish 
an optimum dosage for cancer management.

Nanodelivery of genistein

Despite the wide range of pharmacological benefits offered 
by genistein, it suffers from a variety of drawbacks com-
monly faced by phytoconstituents, such as weak water solu-
bility, and a high first-pass effect in the native form. These 
greatly reduce its bioavailability, posing a challenge to for-
mulators. Nanotechnology has been harnessed as a promis-
ing strategy to overcome these pitfalls and improve treatment 
outcomes (Joshi et al. 2019; Elmowafy et al. 2022). In addi-
tion to curative effects, genistein has also been evaluated 
for its prophylactic benefits. Landauer et al. evaluated the 
efficacy of a nanosuspension of genistein in radioprotection, 
in a mouse model. At a dosage of 150 mg/kg, in multiple 
intramuscular doses, genistein was observed to exert a pro-
tective action against exposure to full-body radiation (Lan-
dauer et al. 2019). Another study by Salem et al. evaluated 
the benefits of the administration of a genistein nanosus-
pension, through different routes. While nanotechnological 
interventions improve the bioavailability of the compound 
and offer a greater degree of radioprotection, there is a need 
to undertake further studies to establish efficacy pre- and 
post-exposure and to determine an optimal dosing and most 
suitable route of administration (Salem et al. 2022).

Other interesting advancements include the formula-
tion of genistein-encapsulated nanoparticles using solvent-
exchange methods, to improve surface characteristics to 
obtain an optimum release profile and safety (Soleimanpour 
et al. 2020). Kamel et al. explored the pulmonary delivery of 
genistein–lipid nanoparticles for lung cancer management, to 
provide a better release profile and improved uptake (Kamel 
et al. 2019). Additionally, there is potential to explore the 
delivery of genistein in combination with conventional 
chemotherapeutic agents, to reduce toxicity, overcome resist-
ance, improve selectivity, and provide a synergistic action 
(Xue et al. 2014). These outcomes may be achieved by the 
application of nanotechnological interventions.

To enhance bioavailability and aqueous solubility, gen-
istein-loaded mixed micelles have been designed. Post-
encapsulation, improved pharmacokinetic properties were 
reported, including enhanced aqueous solubility and mem-
brane permeability. In addition to this, a two-fold increase 
in oral bioavailability was reported, indicating that nanomi-
celles could be leveraged to deliver genistein (Shen et al. 
2018). Nano-structured lipid carriers, developed with the aid 
of solvent emulsification and evaporation, were also stud-
ied, and it was revealed that they showed sufficient plasma 
concentration for a longer period and better distribution in 
rat ovarian tissues (Mittal et al. 2019). In a recent study, it 
was found that signal sensing, carrier-free, and triple com-
bination nanomedicine developed provide improved drug 
loading and high permeability against NSCLC (Wang et al. 
2022). So, this approach could be used to deposit genistein 
at specific cancer sites with a specific dose to alleviate the 
toxicity problems. However, while these novel technologies 
continue to gain popularity, there is a need to address chal-
lenges associated with their scalability and toxicity. This 
may be overcome by conducting a greater number of clini-
cal studies, as well as designing technologies to facilitate 
easier translation from laboratories to a commercial scale. 
Table 3 offers a recent update of genistein nanoformulations, 
for cancer management. In addition to the composition of 
the nanoformulation, the cell line on which its action was 
evaluated and key benefits have also been documented.

Safety and toxicology studies

Isoflavones have been generally recognized to be non-toxic, 
according to the outcomes obtained from clinical experi-
ments. However, mild side effects, primarily involving the 
gastrointestinal system, have been observed. These include 
nausea, constipation, and bloating. While there have been 
negative results concerning the safety of isoflavones such as 
S-equol in animal reproductive tissues, it is safe in human 
reproductive systems (Chen et al. 2019b). In a study under-
taken by Serebrenik et al., an amorphous solid dispersion 
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of genistein was evaluated, to determine its safety profile at 
different doses. Mild- to moderate toxicities were reported, 
and no observable adverse reactions were recorded, on doses 
up to 500 mg. Based on the study results, the maximum safe 
dosage in humans was identified to be 3000 mg (Serebrenik 
et al. 2023).

An experiment designed by Godschalk et al. evalu-
ated the implication of genistein exposure during preg-
nancy in a mouse model, and it was observed that the 
offspring may be at an increased risk of oxidative stress. 
This might trigger testicular abnormalities, due to DNA 
damage, impacting reproductive health and functioning 
(Godschalk et al. 2022). Similar studies on a larger scale 
would be necessary to fully comprehend the impact of 
genistein supplementation on various organ systems, 
including the reproductive system. While there are lim-
ited studies to establish the threshold for the dosage of 
soy isoflavones, the US FDA has established a safety 
limit of 25 g/day, with no toxic effects observed upon 
consumption up to this level (Sharifi-Rad et al. 2021). 
However, more studies are needed to assess the over-
all safety profile of soy isoflavones, as well as specific 
members belonging to this class of compounds.

Conclusions and future perspectives

As a multifaceted and complex disease, cancer exhibits a 
variety of different characteristics, with the most significant 
being uncontrolled cell growth and evading apoptosis. As 
one of mankind’s most prevalent medical issues, chemo-
preventive approaches are a promising method to prevent 
the occurrence of cancer and death from it (Yang and 
Wang 2021; Liu et al. 2023). Despite having a number of 
drawbacks, such as non-specific targeting, an unfavorable 
pharmacokinetic profile of anti-cancer medications, low 
solubility and stability, sluggish metabolism, insufficient 
drug effectiveness, and inadequate biodistribution, conven-
tional therapeutic modalities are still utilized to treat cancer. 
Therefore, it is crucial to create new anti-cancer medications 
that can handle the problems mentioned above and target 
tumors specifically without seriously impairing the function-
ing of healthy tissues. Next-generation anti-cancer medica-
tions should make use of specially designed nanoparticles 
to achieve the following qualities: increased solubility and 
stability, reduced protease degradation, longer half-life in 
the systemic circulation, site-specific targeting, enhanced 
biodistribution, sustained drug release, and delivery of mul-
tiple medications to reduce drug resistance.

A thorough review of the clinical and experimental stud-
ies on the potential proapoptotic function of genistein has 
been presented here. In addition, there is a comprehen-
sive overview of its targets in the signaling transduction 

pathways. Genistein, as a natural compound, exhibits con-
siderable variation in its therapeutic effects. Several in vitro 
and in vivo experiments have been carried out, but clinical 
studies are currently being performed using these agents at 
specific therapeutic doses. In addition, it is needed to per-
form clinical and pre-clinical experiments on genistein are to 
evaluate the therapeutic potential of this molecule. Despite 
extensive data collection, further research is necessary to 
determine the effectiveness of genistein as a pharmaceutical 
agent, based on the specific carriers of genistein for different 
clinical purposes.
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