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Abstract
The globe is currently confronting a global fight against the deadliest cancer sickness. Chemotherapy, hormonal therapy, 
surgery, and radiation therapy are among cancer treatment options. Still, these treatments can induce patient side effects, 
including recurrence, multidrug resistance, fever, and weakness. As a result, the scientific community is always working on 
natural phytochemical substances. Numerous phytochemical compounds, including taxol analogues, vinca alkaloids such 
as vincristine and vinblastine, and podophyllotoxin analogues, are currently undergoing testing and have shown promis-
ing results against a number of the deadliest diseases, as well as considerable advantages due to their safety and low cost. 
According to research, secondary plant metabolites such as myricetin, a flavonoid in berries, herbs, and walnuts, have 
emerged as valuable bio-agents for cancer prevention. Myricetin and its derivatives have antiinflammatory, anticancer, 
apoptosis-inducing, and anticarcinogenic properties and can prevent cancer cell proliferation. Multiple studies have found 
that myricetin has anticancer characteristics in various malignancies, including colon, breast, prostate, bladder, and pancre-
atic cancers. Current knowledge of the anticancer effects of myricetin reveals its promise as a potentially bioactive chemical 
produced from plants for the prevention and treatment of cancer. This review aimed to study the numerous bioactivities, 
mode of action, and modification of several cellular processes that myricetin possesses to impede the spread of cancer cells. 
This review also addresses the challenges and future prospects of using myricetin as a anticancer drug.
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Abbreviations
PAL	� Phenylalanine ammonia-lyase
4CL	� 4-Coumaryl-CoA ligase
CHS	� Chalcone synthase
CHI	� Chalconeisomerase
F3H	� Flavanone-3-hydroxylase
F3′H	� Flavonoid-3′-hydroxylase
FLS	� Flavonol synthase

Introduction

Since the dawn of civilisation, people have used a variety 
of natural substances and their derivatives to treat terrible 
ailments. The use of secondary metabolites derived from 
plants to treat cancer is becoming more and more popu-
lar. Numerous studies have demonstrated the significance 
of phytochemicals in preventing this condition (Goyal et al. 
2022; Khatoon et al. 2020; Shuaib et al. 2021). Therefore, 
the research community has identified an extensive range of 
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phytochemicals and their mechanism of anticancer activity 
(Abadi et al. 2021; Yeshi et al. 2022). To understand how 
phytochemicals can help fight cancer, we need to study how 
they interact with cellular targets. An effective cancer treat-
ment strategy also requires studying the pharmacokinetics of 
these compounds. This involves determining the appropriate 
dose and course of treatment, assessing their acceptability 
and efficacy in physiological conditions. Additionally, we 
need to study the remedial index to understand the poten-
tial benefits and risks of using these compounds. Finally, 
it is important to investigate the metabolic mechanism of 
plant-derived molecules against cancer to develop effective 
treatments. Among the potent anticancer natural compounds 
isolated from plant parts, the phytochemical compound 
myricetin and its derivatives are some of the most promis-
ing molecules utilised against various cancer cells (Jan et al. 
2022; Siddiqui et al. 2022; Khan et al. 2022). The majority 
of researchers have found that myricetin promotes apoptosis, 
the start of ROS-mediated stress, metastatic activity, and 
DNA damage in various cancer cell lines and animal mod-
els. In addition, it controls the expression of inflammatory 
factors, triggers autophagy, initiates cell cycle arrest, and 
prevents cell invasion and metastasis (Han et al. 2022a, b,  
; Ji et al. 2022). Myricetin is a widely distributed flavonol 
obtained from various family members of the plants such as 
Myricaceae, Anacardiaceae, Polygonaceae, Pinaceae, and 
Primulaceae. Tea, berries, vegetables, fruits, and medici-
nal plants are all excellent sources of myricetin (Hou et al. 
2018; Qu et al. 2020; Gervasi et al. 2022; Chua et al. 2011). 
Myricetin and its derivatives have shown unique therapeutic 
effects in vivo and in vitro conditions, including anticancer, 
antiphotoaging activity, antioxidant activity, antiallergic 
and analgesic activities, immunomodulatory activity, anti-
hypertensive activity, and cardio-protective and neuro-pro-
tective activities (Sharma et al. 2021; Semwal et al. 2016; 
Hagenacker et al. 2010; Jung et al. 2010; Li et al. 2022a, b). 
Myricetin causes cancer cell apoptosis that is Bcl-2 family-
dependent intrinsically and DR5-dependent extrinsically 
(Huang et al. 2015; Anwar et al. 2022). Previous research 
has suggested myricetin’s role in inhibiting cell prolifera-
tion by regulating the S6 kinase 2 (RSK2) that increases the 
expression of Mad-1 and causes cell cycle arrest through 
ROS-dependent mitochondria-mediated mortality in the can-
cer cell (Rajendran et al. 2021; Feng et al. 2015). Myricetin 
increases BAX/BCL-2 and BAK caspase cascade expres-
sion in colon cancer, which leads to the induction of apop-
tosis (Rajabi et al. 2021; Xie et al. 2020; Kim et al. 2014). 
Myricetin plays a big part in deterring many pathways from 
occurring, such as PI3K/Akt/mTOR signalling, Akt/mTOR 
signalling pathway, and suppressing TGF-β1/Smad signal-
ling, and also inhibits human breast cancer cell viability by 
controlling the PAK1/ ERK/MEK//GSK3β/Bax-caspase-
3/β-catenin/cyclin D1/PCNA/surviving signalling (Sharma 

et al. 2022, Jiao and Zhang 2016). Myricetin reduces breast 
cancer MMP/2/9 and ST6GALNAC5 mRNA levels (Ci et al. 
2018). Myricetin may also be able to block UVB-induced 
angiogenesis in SKH-1 hairless mouse skin by dramatically 
decreasing the expression of vascular endothelial growth 
factor, matrix metalloproteinase (MMP)-9, and MMP-13 and 
suppressing factor-1α expression and phosphatidylinositol-3 
(PI-3) kinase activity (Jung et al. 2012).

Hence, the review article has emphasised exploring the 
mechanism of action of myricetin bioactive compound that 
helps us understand the biology of neoplastic diseases and 
their regulation and cellular progression. Furthermore, it 
provides a detailed study of the molecules in cancer treat-
ment, their chemical structure, chemopreventive properties, 
antioxidant and antiinflammatory activities, inhibitory role 
in angiogenesis and metastasis, and interactions of myricetin 
with other drugs. There has been discussion over the formu-
lation of myricetin to include a comprehensive strategy for 
myricetin as a potential medicinal molecule.

Chemistry of myricetin

Myricetin is a naturally occurring flavone in fruits, vegeta-
bles, teas, and plant wines. Both the free and glycosidic bond 
forms of myricetin exist with hexahydroxyl substitutions 
at the 3,3′, 4′,5, 5′, and 7 positions (Zhou et al. 2022; Sun 
et al. 2012). It is less soluble in water but readily dissolves 
in organic solvents such as acetone, dimethylformamide, 
dimethylacetamide, tetrahydrofuran, and several primary 
aqueous media. The degradation of the compound is pH 
and temperature-dependent, and it is highly stable at pH2 
(Yan et al. 2021; De Leo et al. 2006; Kong et al. 2014). 
The researchers initially isolated myricetin in light yellow 
crystal form from the bark of the plant Myrica nagi Thunb. 
(Myricaceae) hundreds of years ago in India. It was also 
isolated from the aerial part of the Polygonumbellardii All. 
Strawberry, spinach, Euphorbia tirucalli L., Cyperusro-
tundus L. rhizomes, and Trigonella foenum-graecum seed 
extract had the most amazing myricetin content among 
the Polygonaceae in methanol extract (Sultana and Anwar 
2008; Yang et al. 2021; Jahan et al. 2013). It contains pyro-
gallol B-ring and hydroxylated structure, which is highly 
responsible for its various biological activities compared 
to other flavonols (Sato et al. 2013; Mendes et al. 2015; 
Kenouche et al. 2022; ONO et al. 1990). Myricetin has a 
linkage structurally to several phenolic chemicals, includ-
ing quercetin, morin, kaempferol, and fisetin, and some-
times it is also called hydroxyquercetin due to its structural 
similarity with quercetin molecule (Lin 2012; Parvez et al. 
2020). The dietary consumption of myricetin decreases the 
risk of cancer because of its numerous antitumour proper-
ties like antiproliferative, proapoptotic, and antimetastatic 

2180 Naunyn-Schmiedeberg's Archives of Pharmacology (2023) 396:2179–2196



1 3

activities in various cancers (Micek et al. 2021; Geybels 
et al. 2013; Marrero et al. 2022). The hexane/ethyl acetate/
methanol/water extract of Davillaelliptica St. Hill. (Dilleni-
aceae) analysed by column chromatography and thin layer 
chromatography resulted in the isolation of myricetin and 
quercetin-3-O-a-L-rhamnopyranosid (Rinaldo et al. 2006). 
In another study, the initial extraction of myricetin com-
pound comprises column chromatography over Sephadex 
LH-20 using a methanol fraction of Davillaelliptica St.-Hil. 
and finally characterised by preparative RP-HPLC (Campos 
et al. 2013). In one approach, a low-cost extraction process 
for myricetin, quercetin, luteolin, and kaemferol has been 
developed through a complex cap espresso machine using 
ethanol and water, and liquid chromatography determined 
chemical compounds (Corell et al. 2018) (Fig. 1).

Biosynthesis of myricetin

In myricetin biosynthesis, the plant typically follows the 
phenylpropanoid biosynthetic mechanism. The mechanism 
begins with converting phenylalanine to cinnamic acid, 
catalysed by the phenylalanine ammonia-lyase (PAL). The 
cinnamic acid was further catalysed by an enzyme cinna-
mate 4-hydroxylase (C4H) to generate p-coumaric acid and 
then 4-coumaroly-CoA. Natural phenylpropanoids, such as 
cumarins, stilbenes, and flavonoids, are formed by condens-
ing three molecules of malonyl-CoA and one molecule of 
p-coumaroyl CoA that further changed into naringenin chal-
cone with the help of chalcone synthase (CHS). This enzyme 
is regarded as the initial enzyme in flavonoid biosynthesis. 
The chalcone isomerase (CHI) enzyme further converts the 
intermediate molecule, naringenin in chalcone, into narin-
genin. In the next step of myricetin biosynthesis, the enzyme 
flavone 3-hydroxylase (F3H) converts naringenin to pentahy-
droxyflavanone and dihydromyricetin. In the last stage of the 
biosynthesis of this compound, the flavonol synthase (FLS), 
an enzyme, finally transformed the dihydromyricetin into 
myricetin (Martens et al. 2010; Fogelman et al. 2015; Javed 
et al. 2022; Arafah et al. 2022) (Fig. 2).

Chemical synthesis of myricetin

For the chemical synthesis of myricetin, the first step was 
taken in 1925 by Dean and Nierenstein (Kalff and Robin-
son 1925) by using Kostanecki and Auwer’s approach but 
failed to gain any success. However, one of Kalff and Rob-
inson’s other research groups synthesised myricetin from 
ω-methoxyphloroacetophenone that same year. The first 
stage of this process involves heating the starting material 
with trimethylgallic anhydride and sodium trimethylgallate, 
following the product’s hydrolysis results in the formation 
of an intermediate known as 5,7-dihydroxy-3,31,41,51-
tetramethoxyflavone, and following the demethylation of the 
intermediate, which results in the formation of myricetin. 
A series of myricetin analogues having a 1,3,4-thiadiazole 
scaffold was also synthesised chemically and observed the 
antibacterial activity against Xoo and Rs and the antiviral 
activity against the TMV (Zhong et al. 2017) (Fig. 3).

In a different method, myricetin was synthesised from 
quercetin by Rao and Seshadri (Rao and Seshadri 1948) by 
an ortho-oxidation reaction that transformed 3,5,7,3′-tetra-
O-methylquercetin into 5′-aldehyde. In the next phase, 
5′-aldehyde is transformed into 3,5,7,31-tetra-O-methyl-
myricetin, which yields 5-methoxykanugin followed by 
cyclisation at 41 and 51 positions. The subsequent methyla-
tion of 5-methoxykanugin produced hexamethylmyricetin 
that, after demethylation, failed myricetin (Tranchimand 
et al. 2006). One study designed a variety of myricetin 
analogues with a quinazolinone moiety and found the com-
pound’s in vitro antibacterial and in vivo antiviral activities 
(Liu et al. 2021).

Derivatives of myricetin

The derivatives of myricetin are also widely synthesised, 
designed, extracted, and tested for their anticancer prop-
erties against various cancer cell lines. In one study, dif-
ferent types of myricetin derivatives were synthesised by 
altering the original compounds’ structures and observing 
their antitumour activity against human non-small cell lung 

Fig. 1   Chemical structure of 
myricetin
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cancer (NSCLC) A549 cells (Li et al. 2021). One of the 
myriceitn derivatives known as S4-2–2 (5,7-dimethoxy-3-(4-
(methyl(1-(naphthalen-2-ylsulfonyl)piperidin-4-yl)amino)
butoxy)-2-(3,4,5-trimethoxyphenyl)-4H- chromen-4-one) 
has strongly inhibited the migration and invasion but induced 
the apoptosis in of non-small cell lung cancer A549 (Zhou 
et al. 2023). From all of the myricetin derivatives, the S4-10 
has shown the maximum activity in cell migration, prolif-
eration, invasion, induced apoptosis, and cell cycle arrest in 
A549 Cells. Myricetin derivatives, such as 2-(2′,6′-dimethyl-
3′,4′,5′-alkyl or hydroxy alkyl substituted phenyl)-3-oxy-
(alkyl or hydoxy alkyl)-5,7-dihydroxy-chromen-4-one, were 
isolated and characterised from the Mimosa pudica plant. 
These derivatives were tested for in vitro anticancer activ-
ity against human lung adenocarcinoma cell lines (A549) 
and human erythroleukaemic cells (K562). The tests utilised 
3-(4,5-dimethylthiazol-2-yl)MTT assay-2,5-diphenyl tetra-
zolium bromide (Jose et al. 2016; Xianghui et al. 2018). Oral 
treatment of one of myricetin derivatives, M10, inhibited 
ulcerative colitis (UC) and colorectal tumours in the murine 
azoxymethane/dextran sodium sulfate model. The treatment 
was administered at 50–100 mg/kg daily for 12 weeks. The 
study discovered that M10 myricetin derivatives enhanced 
CD8 + T and CD4 + T cells in colorectal tissues while atten-
uating chronic inflammation and inhibiting the invasion of 
myeloid-derived suppressor cells. The M10 derivative of 

myricetin significantly decreased the pro-inflammatory fac-
tors IL-6, TNF-, and granulocyte–macrophage colony-stimu-
lating factor, as well as the NF-B/IL-6/STAT3 pathways and 
colorectal carcinogenesis. (Wang et al. 2018). Two myrice-
tin derivatives, 3,7,4,5-tetramethyl ether of myricetin and 
3,5-diacetyl derivative, were also cytotoxic against human 
leukaemic cell lines when isolated from Cistus monspelien-
sis in hexane extract (Dimas et al. 2000).

Pharmacological utilisation of myricetin

Anticancer properties of myricetin

One of the crucial dietary components present in foods and 
beverages is the bioactive substance myricetin. Myricetin 
has potential antioxidant, antiinflammatory, and anticancer 
effects, according to numerous studies, as shown in Fig. 4. 
According to myricetin’s biological characteristics, it is 
highly effective against many cancer cell lines, including 
those found in the liver, skin, bladder, pancreas, breast, 
and colon. It is also known to inhibit the activity of sev-
eral molecular enzymes, such as DNA polymerases, RNA 
polymerases, reverse transcriptases, telomerase, kinases, and 
helicases (Awadelkareem et al. 2022; Jain et al. 2021). Myri-
cetin and dihydromyricetin inhibited fibroblast proliferation 

Fig. 2   The mechanism of phenylpropanoid biosynthetic pathway for 
myricetin. PAL, phenylalanine ammonia-lyase; 4CL, 4-coumaryl-
CoA ligase; CHS, chalcone synthase; CHI, chalconeisomerase; F3H, 

flavanone-3-hydroxylase; F3′H, flavonoid-3′-hydroxylase; FLS, fla-
vonol synthase
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in lung and breast cancer (MCF-7 and A549) via inducing 
apoptosis, inhibiting cell proliferation, and downregulating 
PDGFRβ signalling pathway and extracellular signal-regu-
lated kinase (Erk) 1/2 and Akt expression (Fan et al. 2017). 
Myricetin inhibited the expression of MMP-2 and MMP-9 
proteins in cancer cells. It also inhibited the phosphoryla-
tion of the FAK (focal adhesion kinase) signalling pathway 
and changed the F-actin/G-actin ratio in A549-IR cells 
(Kang et al. 2020). Another report involving the inhibition 
of cytokine-induced invasion and migration of KKU-100 
cells treated with myricetin consists of the downregulation 
of STAT3, matrix metalloproteinase-9, inducible nitric oxide 
synthase, intercellular adhesion molecule-1, and cyclooxyge-
nase 2 (COX-2). Similarly, treating myricetin on mouse skin 
epidermal JB6 P + cells indicated the role of UVB-induced 

cyclooxygenase (COX-2) expression (Senggunprai et al. 
2018). Myricetin strongly suppressed UVB-induced start of 
activator protein-1, NF-κβ and Fyn kinase activity, MEK1 
kinase activity, and transformation of JB6 P + mouse epider-
mal cells, as reported by the author (Jung et al. 2008). The 
combination of myricetin (MYR), methyl eugenol (MEG), 
and cisplatin (CP) significantly inhibited cancer cell growth, 
induction of cell apoptosis, loss of mitochondrial potential, 
and upregulation of caspase-3 activity, as well as increased 
the number of cells in the Go/G1 phase in human cervical 
cancer (Yi et al. 2015). One study reported that the myrice-
tin induced apoptosis by serum deprivation in PCL-12 cell 
dose-dependently by expressing the tumour suppressor gene 
p53 and proapoptotic and antiapoptotic Bcl-2 family proteins 
Bax and Bcl-2 and induced the expression of caspase 3 and 

Fig. 3   Chemical synthesis of 
myricetin as proposed by Kalff 
and Robinson

+ +

5,7-Dihydroxy-3,3',4',5'-tetramethoxyflavone

Heat hydrolysis

Methoxypfloroacetophenone Sodium trimethylgallate Trimethylgallic acid

Myricetin

Demethylation

Fig. 4   Proposed mechanism of synthesis of myricetin by Route Rao and Seshadri
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caspase 9 cascades (Tan et al. 2018). Mitogen-activated pro-
tein kinase (MAPK) and PI3/AKT signalling pathways are 
crucial for myricetin’s ability to inhibit cell proliferation, 
regulate the cell cycle, and invade and promote angiogen-
esis [68]. Myricetin has also responsible for the initiation of 
apoptosis in breast cancer SK-BR3 cells via upregulation 
of PARP, Bax protein, expression of phosphorylated c-Jun 
N-terminal kinase (p-JNK) and phosphorylated mitogen-
activated protein kinases (p-p38), and downregulation of 
Bcl2 and phosphorylated extracellular-regulated kinase 
(p-ERK) (Han et al. 2022a, b,  ). Another study found that 
myricetin caused breast cancer cells to undergo apoptosis 
through both intrinsic and extrinsic pathways, most nota-
bly the BRCA1-GADD45 pathway, which increased the 
expression of caspase-3, caspase-8 and caspase-9 as well 
as the proportion of BAX/Bcl-2, P53, BRCA1, GADD45, 
and annexin (Soleimani and Sajedi 2020). Myricetin caused 
apoptotic cell death in A431 human cancer cells in a dose-
dependent manner by increasing the rate of reactive oxygen 
species (ROS) that leads to the disruption of outer mito-
chondria potential caused by discharged apoptotic triggering 
proteins and is also responsible for the alteration of Bcl and 
Bax expressions (Sun et al. 2018). Another study found that 
myricetin inhibits HCC cell growth by causing cell cycle 
arrest and autophagy by downregulating MARCH 1 mRNA 
but upregulating MARCH 1 mRNA in Hep3B cells. Fur-
thermore, it suppressed p38 MAPK and Stat3 signalling by 
reducing MARCH 1 to suppress HCC proliferation in vitro 
and in vivo (Yang et al. 2021).

Myricetin’s proapoptotic activities in human hepatocarci-
noma HepG2 cells are enhanced by reduced mitochondrial 
fragmentation and transmembrane potential. Furthermore, 
the author proposed that myricetin promoted apoptosis in 

HepG2 cells via the mitochondrial apoptotic route and the 
Akt/p70s6k1/Bad signalling pathways, which resulted in 
the production of proapoptotic proteins Bax and Bad in the 
mitochondria and the downregulation of Bcl-2 expression. 
Furthermore, the study discovered that myricetin boosted 
caspase-3 proteolytic activation and PARP protein deg-
radation, which was followed by cytochrome C release in 
the cytoplasm (ZHAO et al. 2012). Similar to this report, 
another research reported that the induction of ERK1/2 and 
JNK signalling pathways supported the generation of ROS, 
increased apoptotic DNA fragmentation, lipid peroxidation, 
phosphorylation of AKT, p70S6K, and depolarisation of 
MMP in D-17 and DSN canine osteosarcoma cells (Li et al. 
2019). Myricetin administration increased apoptosis-related 
genes caspase-3, caspase-8, and caspase-9, and the BAX/
Bcl-2 ratio, as well as p53, BRCA1, and GADD45 in MCF-7 
breast cancer cells (Park et al. 2018) (Fig. 5).

Myricetin affects the invasion and migration of radiore-
sistant lung cancer cell A549IR. Similarly, dose- and time-
dependent inhibitions of adhesion, migration, and invasion 
by matrix metalloproteinase-2 and urokinase plasminogen 
activator properties in A549 cells were also seen in spe-
cific investigations with myricetin. Myricetin-treated A549 
cells inhibited nuclear factor kappa B c-Fos and c-Jun acti-
vation and phosphorylated extracellular signal-regulated 1 
and 2 (Shih et al. 2009). Moreover, myricetin reduced the 
expression of Yes-associated protein (YAP) by promoting its 
phosphorylation and subsequent degradation via stimulat-
ing the LATS1/2 pathway that induced apoptosis and cell 
proliferation inhibition in hepatocellular carcinoma HepG2 
and Huh-7 cells (Li et al. 2019).

Another study discovered that myricetin’s role in the 
breakdown of mitochondrial membrane potential leads 

Fig. 5   Expression of an apop-
totic gene by myricetin
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to the release of cytochrome-C in the cytosol, which 
increases the proteolytic activation of caspase-3 and the 
degradation of PARP protein. The author hypothesised 
that myricetin caused the inactivation of Bcl-2 expres-
sion, the activation of proapoptotic protein Bad, and the 
translocation of Bax-induced death in HepG2 cells via the 
mitochondrial apoptotic route and the Akt/p70s6k1/Bad 
signalling pathway (Knickle et al. 2018).

Myricetin treatment of PC-3 and DU 145 prostate cancer 
cells reduced tumour potential by upregulating caspase-3 and 
caspase-9 activities and decreasing phosphorylation of ERK1/2 
and Akt (Ma et al. 2019; Ye et al. 2018). Researchers evalu-
ated myricetin’s toxicity on a non-tumour cell and observed its 
effects on the growth, migration, and invasion of the SKVO3 
cancer cell in one study. The data revealed that myricetin con-
centration from 0 to 40 μM increases apoptosis that inhibits 
oxidative stress reduces ROS levels and suppresses cancer 
cell growth by activating the p38/Sapla signalling mechanism 
(Li et al. 2022a, b). Myricetin has also induced apoptosis 
and autophagy in human colon cancer cells such asHT-29, 
HCT116, SW480, and SW620 by inhibiting the PI3K/Akt/
mTOR signalling pathway (Zhu et al. 2020) (Fig. 6).

Myricetin has also been observed for its cytotoxicity, 
cell cycle inhibition, and DNA damage through a dose-
dependent way in human papillary thyroid cancer (HPTC) 
cells by upregulating the caspase cascade and Bax/Bcl2 
ratio and also initiated the apoptosis-inducing factor by 
changing the potential of mitochondria membrane (Ha 
et al. 2017). Apart from the above anticancer activities, 
the bio-molecules have diverse anticancer effects on the 
cell line as given in Table 1.

Antiinflammatory and antioxidant activities 
of myricetin

Myricetin, a natural bioactive component, controls numerous 
molecules involved in inflammatory reactions, such as cytokines and 
enzymes. The scientific community has done several investigations 
and observations to discover myricetin’s antiinflammatory action. 
It can obstruct the production of pro-inflammatory mediators by 
initiating Nrf2 mediated HO-1 expression and suppressing the 
NF-κB and STAT1 in LPS-stimulated RAW264.7 macrophages 
(Oh et al. 2020; Gupta et al. 2020).

In one study, myricetin decreased the synthesis of inter-
leukin-12 via lowering the macrophase’s binding capabilities 
to nuclear kappa-B and preventing interleukin-1 (IL-β1) pro-
duction in SW982 human synovial sarcoma cells (Lee and 
Choi 2010; Kang et al. 2005). By altering the gut microbiota 
associated with faecal butyric acid and preserving the integ-
rity of the gut barrier, myricetin also aids in the reduction of 
hepatic lipid production and inflammation (Sun et al. 2021). 
Treating rat wounds with myricetin helps elevate the pro-
inflammatory factors such as cytokines, IL-1β, TNF-α, and 
macrophage CD68, which are essential in promoting lesion 
healing (Elshamy et al. 2020).

Similarly, in TNF-α-activated ECV304 cells, the 
myricetin molecule inhibited the expression of TNF-α-
mediated NF-κB by downregulating the inhibitor-κB 
kinase (IKK) (Tsai 1999). Myricetin treatment of HepG2 
cells results in the downregulation of several inflamma-
tory molecules such asiNOS, COX-2, IL-2 and IL-6, TNF-
α, and IFN-γ in a dose-dependent manner (Zhou et al. 
2019). In vivo research using mice treated with myricetin 

Fig. 6   Anticancer properties of myricetin against various cancers
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revealed that the severity of inflammatory lesions and 
tumourigenesis, which were accountable for tumour inhi-
bition in various ways, were less severe (Zhang et al. 2017). 
Myricetin suppresses acute and chronic inflammation in vivo 
in models of xylene-induced ear oedema, acetic acid–induced 
vascular permeability, carrageenan-induced paw oedema, and 
cotton pellet granuloma. Myricetin has dramatically elevated 
the serum level of SOD, decreased the serum level of MDA leu-
kocyte count, and inhibited the formation of antiinflammatory 
granuloma tissue (Wang et al. 2010a, b). Myricetin can inhibit 
oxidative stress by enhancing the activities of SOD, glutathione 
peroxidase GPX, CAT, malondialdehyde, GSH, and hydrogen 
peroxide enzymes, reducing inflammation. Similarly, myrice-
tin also decreases inflammation by regulating the production 
of oxidase-dependent ROS, NADPH, by inhibiting the JAK/
STAT1 and NOX2/p47(phox) mechanism (Mao and Huang 
2018; Hassan et al. 2017; Qi et al. 2017). Myricetin adminis-
tration in lipopolysaccharide-stimulated RAW 264.7 cells and a 
lipopolysaccharide-induced lung damage model resulted in the 
downregulation of NF-κB p65 and the elevation of NF-κB path-
way, JNK, p-ERK, and p38 in MAPK signalling pathway (Bai 
et al. 2021). Therefore, the initial results suggest that myricetin 
has the potential as an antiinflammatory chemical and could be 
employed as a medication in future in vivo trials.

Regarding antioxidant characteristics, the low concentration 
of myricetin inhibits the synthesis of reactive oxygen species and 
shields cells from the cytotoxic action of peroxide molecules. 
(Barzegar 2016; Taheri et al. 2020). In a dose-dependent man-
ner, myricetin suppressed the activity of XOD up to 50% at a 
concentration of (8.66 ± 0.03) × 10–6 molL-1 showed that myrice-
tin could inhibit the synthesis of superoxide anion (Zhang et al. 
2017). Myricetin can also control hydrogen peroxide-induced 
DNA damage at a concentration of 100 µM in human lympho-
cytes (Duthie et al. 1997). Myricetin also inhibits oxidative 
stress-induced apoptosis via modulating PI3K/Akt and MAPK 
signalling pathways. It also increases the production of SOD, 
catalase (CAT), and glutathione peroxidase (GPx), which are 
all lowered by H2O2 treatment (Wang et al. 2010b). Myricetin 
treatment caused triple-negative breast cancer (TNBC) cells to 
undergo early and late apoptosis and necrosis caused by oxida-
tive stress. H2O2 and myricetin autooxidation produce oxidative 
stress. In human colonocyte Caco-2 cells, myricetin also pre-
vented the oxidative effect of H2O2 and protected DNA strand 
breaks (Duthie and Dobson 1999) (Fig. 7).

Angiogenesis and metastasis effects 
of myricetin

Angiogenesis is the process by which new blood cells are 
formed from preexisting vessels, and it plays an essential 
role in cancer cell proliferation in cells and organs. There-
fore, considerable work is going on the natural bioactive Ta
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compound that can help inhibit the angiogenesis of the can-
cer cell (Huang et al. 2015; Marrero et al. 2022; Birbrair 
et al. 2014). In human umbilical vascular endothelial cells, 
myricetin activated reactive oxygen species, causing apop-
tosis and the cleavage of procaspase-3, which reduced cell 
migration, PI3K/Akt/mTOR, and tube formation (Kim 
2017). In the case of hepatocellular carcinoma cell lines 
(HCC), myricetin plays a substantial role in the reversion of 
PAR1-mediated EET that inhibited the invasion, migration, 
vasculogenic mimicry (VM) formation, and angiogenesis 
by targeting Leu258 and Thr261 of PAR1 involved in VM 
and angiogenesis (Wang et al. 2022) (Fig. 8).

In the case of SKH-1 hairless mouse skin car-
cinogenesis, myricetin is critical in suppressing UV-
induced B-angiogenesis. It inhibited the expression 
of MMP-9, MMP-13, and vascular endothelial growth 
factor and the activity of phosphatidylinositol-3 (PI-3) 
kinase (Jung et al. 2010). Similarly, myricetin down-
regulated the tumour promoter-induced cancer cell 
formation by inhibiting the direct activity of MEK, 
JAK1, Akt, and MKK4 kinases in skin carcinogen-
esis. Myricetin dramatically attenuated the ultraviolet 
B-induced COX-2 expression and skin tumour forma-
tion by controlling the Fyn (Kang et al. 2011). Myri-
cetin also helps to reduce cell proliferation in JAR and 
JEG-3 choriocarcinoma cells by increasing apoptosis 
and trophoblast cell attenuation via the MAPK and 
PI3/AKT signalling pathways. Myricetin also increases 
reactive oxygen species (ROS), lipid peroxidation, 
glutathione depletion, and mitochondrial membrane 
potential loss (Yang et al. 2021). A nucleoside diphos-
phate kinase encoded by NM23 is essential in sup-
pressing metastasis. As a result, myricetin reduced the 
expression of Bcle-2, Parp, and caspase-related pro-
teins in a human colon cancer cell line while increas-
ing the expression of nucleoside diphosphate kinase, 
PARPs, caspase-3, and caspase-9 cleavage (Attwood 
and Muimo 2017; Tan and Chang 2018). Myricetin 
also decreased the activity of the epithelial-mesenchy-
mal transition (EMT), which is essential for metasta-
sis, by increasing E-cadherin and decreasing vimentin 
(Ye et  al. 2018). In the 4T1 mouse lung metastasis 
model, myricetin molecules at 50 mg/kg concentration 
reduce the size and number of tumour nodules com-
pared to vehicles (Lee et al. 2012) (Fig. 9).

Effect of myricetin on miRNA and mRNA

Myricetin’s interaction with RNAs opens new avenues for 
targeting various cancer cells. Micro-RNAs (miRNA) play 
a wide range of roles in human biological processes, ill-
nesses, and metabolic disorders. A dysregulated miRNA 
impacts various signalling pathways (Lee et al. 2015). By 

downregulating miR-29a-3p, myricetin can provide an 
antiinflammatory impact against ox-LDL-induced HUVEC 
(Bai et al. 2021). In one study, it was observed that myrice-
tin significantly downregulated the level of IL-1β mRNA. 
However, no effect was observed in the synthesis of IL-1β 
protein in RAW 264.7 macrophages through inhibiting 
gene transcription (Blonska et al. 2003). Similarly, in one 
of the investigations, myricetin interacted with telomere 
G-quadruplex TTA​GGG​ 3 DNA in the MCF-7 human 
breast cancer cell line in a concentration-dependent way. 
It inhibited the activity of human telomerase reverse tran-
scriptase mRNA and telomerase (Mondal et al. 2016).

Effect of myricetin on autophagy

Myricetin has a significant role in the induction of apoptosis 
and autophagy in the various cancer cells alone or in adju-
vant form. In colon cancer cells, myricetin initiates apopto-
sis and autophagy by inhibiting PI3K/Akt/mTOR signalling 
pathway (Zhu et al. 2020). Similarly to the previous obser-
vation, myricetin affected autophagy-related proteins. It 
enhanced the stimulation of microtubule-associated protein 
1A/1B light chain 3 (LC 3) and Beclin 1. This stimulation 
occurred in human breast cancer SK BR 3 cells. The apop-
tosis rate increased when myricetin and 3 methyladenine (3 
MA) were administered simultaneously to cancer cells. The 
subsequent treatment of a JNK inhibitor to the cells reduced 
cell viability, triggered the expression of Bax, and decreased 
the expression of p-JNK, Bcl 2, and LC 3 II/I. Hence, these 
actions revealed that myricetin triggered and controlled 
apoptosis and autophagy in SK BR 3 cells via the MAPK 
pathway and JNK-mediated autophagy (Han et al. 2022a, 
b,  ). A research group observed the protective autophagy 
of myricetin on hepatocellular carcinoma (HCC) cells. The 
molecule directly linked the activation of endoplasmic 
reticulum stress, which boosted autophagy, as shown by 
the result indicating that it induced apoptosis. AGS gastric 
cancer cell myricetin induced apoptosis and autophagy by 
inhibiting the PI3K/Akt/mTOR pathway that leads to cell-
protective autophagy and inhibition of cancer cell prolif-
eration (Han et al. 2022a, b,  ). Researchers investigated 
myricetin's antihepatocellular carcinoma (anti-HCC) mecha-
nism in one study. The researchers observed that inhibiting 
the expression of MARCH 1 induced autophagy and cell 
cycle arrest in the G2/M phase. They utilised this effect to 
inhibit the growth of HCC cells. In Hep3B cells, myricetin 
increased MARCH1 mRNA levels, whereas, in HepG2 cells, 
it lowered them. Thus, knocking down MARCH1 by siRNAs 
(small interfering RNAs) downregulates phosphorylated p38 
MAPK (p-p38 MAPK) and Stat3 (p-Stat3). This downregu-
lation reduces the viability of HCC cells. Myricetin and the 
autophagy inhibitor bafilomycin A1 (BafA1) significantly 
reduced the development of HCC cells (Yang et al. 2021). 

2188 Naunyn-Schmiedeberg's Archives of Pharmacology (2023) 396:2179–2196



1 3

Cucurbitacin E (CuE) and myricetin (Myr) of Citrullus colo-
cynthis (L.) Schrad are essential in inhibiting cell prolifera-
tion and colony formation but increases apoptosis and cell 
cycle arrest in the G0/G1 phase. Moreover, the CuMy-12 
combination leads to the inhibition of autophagy and com-
mencement of the PI3K/AKT/mTOR signalling mechanism 
that was differentiated by a reduction in Beclin 1, AKT, and 
phospho-AKT, exhibiting a synergistic effect. Furthermore, 
CuMy-12 caused a decrease in Beclin 1, AKT, and phospho-
AKT proteins, indicating inhibition of autophagy and acti-
vation of the PI3K/AKT/mTOR signalling pathway (Zhang 
et al. 2023).

Synergistic effect of myricetin

Myricetin is essential in various human foods, includ-
ing vegetables, beverages, fruits, and other natural foods. 
Myricetin is well-known for its antioxidant, antiinflamma-
tory, and antitumour properties. Numerous studies have 

found that cancer cells generally resist the anticancer drug 
cisplatin, which causes degeneration. However, myrice-
tin exhibits more significant cell toxicity than cisplatin in 
cisplatin-resistant cancer cell lines, such as OVCAR-3 and 
A2780/CP70, while exhibiting minimal toxicity effects on 
the normal cell IOSE-364. Myricetin promoted intrinsic and 
extrinsic apoptosis and Bcl-2 family protein pathways in the 
standard cell line but did not initiate the cell cycle arrest. 
The combination of 5-fluorouracil and myricetin inhibited 
cell proliferation and function, initiated apoptosis, increased 
caspase-3 and P53 expression levels, and decreased survivin, 
cyclin D, and Bcl-2 expression levels, according to research 
on the chemosensitisation activity of the two drugs in the 
EC9706 cancer cell line (Wang et al. 2014).

One study found that cervical cancer cells were impacted 
by myricetin, methyl eugenol (MEG), and cisplatin (CP). 
These three medications were found to promote cell death, 
cell cycle arrest, and caspase-3 activity, all of which sup-
pressed the growth of cancer cells. Combining these 

Fig. 7   Antiinflammatory 
and antioxidant properties of 
myricetin
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chemicals also decreases mitochondrial membrane poten-
tial and increases the proportion of cells in the G0/G1 
phase of the cell cycle (Yi et al. 2015). The prophylactic 
treatment of rats with myricetin for 21 days lowered the 
markers of inflammation, apoptosis, cardiac toxicity, and 
oxidative stress in the context of 5-fluorouracil’s reduced 
cardiotoxicity. It increased the antioxidative activity (Arafah 

et al. 2022). In a previous study, through an MTT assay, 
researchers detected the apoptosis-inducing mechanisms of 
myricetin, myricitrin, and quercitrin in the human prostate 
cancer cell line PC-3. At concentrations ranging from 37.5 
to 300 mol/L, the combination of myricetin and myricitrin 
had a strong inhibitory effect on the proliferation of cancer 
cells (Xu 2013). Myricetin and temozolomide decreased the 

Fig. 8   Effect of myricetin on angiogenesis and vascularization process

Fig. 9   Myricetin inhibiting the 
main angiogenesis factors
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proliferation, migration, and invasion of U-87MG glioblas-
toma cells. However, combining myricetin and temozolo-
mide did not demonstrate any beneficial effects. Myricetin 
inhibited the development of lamellipodia, focal adhesions, 
membrane ruffles, vasculogenic mimicry, and the phospho-
rylation of the ROCK2, paxillin, cortactin, PI3K/Akt, and 
JNK signalling pathways (Zhao et al. 2018).

Bioavailability of myricetin

Only after evaluating their efficacy, novelty, and minimum 
detrimental effects on organisms could the vast treasury 
of natural materials be utilised as pharmaceutical medica-
tions. Therefore, the solubility of biomolecules through 
diverse physiological processes is crucial for their efficacy. 
Myricetin is less hydrophilic yet significantly soluble in 
organic solvents such as acetone, dimethylformamide, tet-
rahydrofuran, and dimethylacetyl chloride (Chang et al. 
2012). Various strategies, such as nanotechnology, are now 
being developed to enhance the bioavailability of myrice-
tin (Xia et al. 2020). In one study, rats were given myri-
cetin orally and intravenously in dose-dependent ways. It 
evaluated the bioavailability in the blood, and myricetin 
was found less orally due to inadequate absorption of the 
molecule (Dang et al. 2014). Solid lipid nanoparticles with 
about 30 µmol of myricetin were used against HT-29 cells, 
and colony formation, expression of Bax, Bcl2, and apop-
tosis-inducing factor were measured. In the HT-29 cells, 
the nano-loaded myricetin significantly boosted apoptosis, 
Bax, and AIF expression and decreased Bcl2 and MMP 
(Alidadi et al. 2022). The liposomal nanoformulation of 
myricetin not only increases the molecules’ bioavailability 
but also decreases the pro-oxidant properties. Accordingly, 
the zebrafish embryo showed an effect of nanocapsulated 
myricetin formulation, in which the chemical increased 
antioxidant activity against oxidative stressors (Agraha-
ram et al. 2021). Myricetin microemulsion (MYR-ME) 
is a mixture of myricetin, Cremphor, Tween-80, Transc-
utol, WL1349, and distilled water that improves the mol-
ecule’s bioavailability by more than 1225 times compared 
to water, allowing for greater oral efficacy. The MYR-ME 
has potentially enhanced the antioxidative and antipro-
liferative activity against HepG2 human cancer cells and 
further increased 14.43 fold oral bioavailability of myri-
cetin after oral administration of the emulsion to Sprague 
Dawley rats (Guo et al. 2016). The TPGS-modified lipo-
some nanocarriers also have the potential to deliver myri-
cetin via the oral route and increase the pharmaceutical 
efficacy of the molecules (Thant et al. 2021). Mesoporous 
silica nanoparticles treated with folic acid and filled with 
myricetin were utilised to treat non-small cell lung cancer. 
(NSCLC). Under in vitro environments, FA-conjugated 
nanocarriers improve the absorption of myricetin in lung 

cancer, thereby decreasing colony formation cell viabil-
ity, dramatically enhancing apoptosis, and upregulating 
the expression of caspase-3 and PARP (Song et al. 2020). 
Myricetin-loaded NLCs and DXT induce apoptosis in 
MDA-MBA231 breast cancer cells by decreasing survivin, 
cyclin B1, and Mcl1 antiapoptotic genes and augmenting 
Bax and Bid proapoptotic proteins (Maroufi et al. 2020).

Challenges in using myricetin as a drug

Plant metabolites have a vast contribution to the progress 
of pharmaceutical cancer drug development. However, 
most bio-products always have challenges in using as 
safe drugs and optimise their optimisation. In the case 
of the bioactive molecule myricetin, it has shown a wide 
variety of anticancer activity against several cancer cell 
lines. However, it also poses a challenge for utilisation as a 
drug due to its pleiotropic nature and variability. Myricetin 
has multiple targets in signalling pathways. These targets 
can encumber tumour progression. They can also prevent 
metastasis and induce cell cycle inhibition. Additionally, 
myricetin can have other effects. The main challenge of 
the molecules is their poor bioavailability and solubility. 
This decreases their chemotherapeutic application. This 
is particularly true for large-scale utilisation in aqueous 
solutions. Furthermore, bio-molecule sensitivity against 
various abiotic factors, such as light and heat, can lead 
to their degradation and, consequently, the loss of their 
bioactivities (Albuquerque et al. 2021). Some studies have 
also limited the use of myricetin due to its toxic nature 
towards the biological cell. One of the reports observed 
that molecules above 450 μM lead to cellular damage in 
isolated guinea pig enterocytes (Semwal et al. 2016; Can-
ada et al. 1989). Another limitation of the clinical use of 
myricetin is the lack of research on aspects of their route 
for administration, exact formulation, and doses for vari-
ous types of cancer. It combines the administration of this 
drug with other bioactive compounds (Imran et al. 2021). 
The clinical trial research on myricetin molecules is mini-
mal. However, some clinical survey suggests that the con-
sumption of these molecules assist in the low incidence 
of prostate cancer, and regular consumption of myricetin 
with other flavonoids bio-molecule by menopausal females 
helps to reduce the risk of coronary heart disease.

Future perspective

Future research on myricetin for cancer treatment could 
concentrate on addressing its current limits and downsides 
and expanding its potential therapeutic applications. Some 
possible research areas are enhancing bioavailability, tar-
geted delivery, clinical trials, combination therapy, and 
mechanisms of action. New formulations and administration 
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methods may improve myricetin’s solubility, bioavailabil-
ity, and efficacy. Researchers could investigate using tar-
geted delivery systems for myricetin to increase specific-
ity and decrease the likelihood of non-specific targeting of 
healthy cells (Afroze et al. 2020). Large-scale clinical trials 
are required to examine the safety and efficacy of myrice-
tin in people, particularly in connection to specific forms 
of cancer. Researchers could investigate the potential ben-
efits of combining myricetin with other cancer treatments, 
such as chemotherapy or radiation therapy, to improve their 
efficacy and lessen side effects (Albuquerque et al. 2021). 
Myricetin’s mechanisms of action on cancer cells, including 
its impact on specific signalling pathways and biological 
processes, require additional research.

Conclusion

Cancer is a multifaceted disease, and the genesis and 
progression of the disease involve simultaneous modulation 
of multiple biological pathways responsible for the 
growth, survival, and proliferation of cells. The treatment 
of cancer must target signalling cascades. Myricetin is a 
plant flavonoid. It is present in wine, tea, and medication. 
Myricetin affects cancer cell processes. Since it blocks 
several proteins and signalling pathways that promote cell 
proliferation and inhibit apoptosis, myricetin has been a 
promising cancer chemopreventive in numerous cancer 
models. It has remarkable antitumour efficacy since it 
also causes cell cycle arrest, prevents cell invasion and 
migration, and triggers autophagy and necroptosis. However, 
it has limited bioavailability, non-specific targeting, lack of 
clinical data, potential side effects, and interactions with 
other drugs. More research is needed to understand its safety 
and effectiveness and address its potential limitations and 
drawbacks. Future research on myricetin for cancer treatment 
could concentrate on bioavailability enhancement, targeted 
delivery, clinical trials, combination therapy, and action 
mechanisms. These investigations will aid in advancing 
knowledge of the compound’s potential and identifying 
methods for overcoming its current limits.
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