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Abstract
Coronary artery diseases are principal sources of mortality and disability in global human population. Progressively, rivar-
oxaban is being evaluated for the prevention of atherosclerotic thrombi, particularly with anti-platelet agents. Hence, the 
current report aimed to investigate the cardioprotective effect of rivaroxaban on isoproterenol (ISO)-induced cardiac injury 
model in rats and the possible synergistic effect when combined with aspirin. Male Wistar rats were randomly assigned into 
five different groups. Cardiac injury was induced by subcutaneous injection of ISO (85 mg/kg) for 2 consecutive days. Rat 
tail bleeding time was performed prior to sacrifice. Cardiac enzymes, platelet activity, inflammatory, and oxidative stress 
biomarkers levels were measured using enzyme-linked immunoassay (ELISA). Pre-administration of rivaroxaban alone and 
on combination with aspirin prevented ISO-induced increase in cardiac thiobarbituric acid reactive substances (TBARS), 
interleukin 6 (IL-6), and thromboxane B2 (TXB2) levels. Moreover, a significant prolongation of bleeding time was dem-
onstrated among aspirin, rivaroxaban, and aspirin plus rivaroxaban treated groups. On the other hand, the combination 
treatment of aspirin plus rivaroxaban showed no marked difference in these biomarkers and bleeding time relative to either 
drug administered separately. However, a prominent decrease of cardiac 6-keto prostaglandin F1α (6-Keto-PGF1α) level was 
displayed in the combination treatment when compared with ISO and rivaroxaban-treated groups, whereas no significant 
improvement was seen in cardiac glycoprotein V (GPV) levels except in aspirin-treated group. The study results demon-
strated that rivaroxaban decreases cardiac oxidative stress, inflammation, and platelets reactivity. However, the addition of 
rivaroxaban to aspirin did not seem to show synergistic antioxidant, anti-inflammatory, or antiplatelet effect.
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Introduction

Despite the ongoing movement in the prevention and treat-
ment of cardiovascular diseases (CVDs), CVDs are still 
considered the foremost prevalent sources of mortality and 
disability for most racial and ethnic groups (Roth et al. 2018; 
Kyu et al. 2018). In 2017, CVDs have accounted for 17.8 
million deaths (Jagannathan et al. 2019) and still expanding 
to extend more than 23.6 million deaths by the year 2030 

(Benjamin et al. 2018). Atherosclerosis is considered the 
pathological foundation of CVDs, most importantly coro-
nary artery disease (Soehnlein and Libby 2021). As a part 
of entangled chronic inflammatory process, early athero-
sclerotic plaque is shaped by the buildup of circulating low 
density lipoproteins (LDL) and inflammatory components 
in the tunica intima of the coronary arteries walls (Kobiy-
ama and Ley 2018). The deposited LDL is oxidized under 
the influence of oxidative stress which is generated by vari-
ous pathological risk factors, resulting in the expression 
of multiple adhesion molecules (Badimon et  al. 2012). 
Undoubtedly, an interplay of oxidative stress, inflammation, 
and immune response are all joined for the growth of ath-
erosclerotic lesion (Wolf and Ley 2019; Bakogiannis et al. 
2019; Fuentes et al. 2019). Gradually, smooth muscle cells 
proliferate and migrate to tunica intima, contributing in the 
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formation of a fibrous cap coating the atherosclerotic plaque 
(Milutinović et al. 2020). Over time, a progressive thinning 
of the fibrous cap is mediated by releasing photolytic pro-
teins such as matrix metalloproteinases (MMPs) and plasmi-
nogen activators (Bentzon et al. 2014). Once the mature ath-
erosclerotic lesion ruptures, subendothelial collagen fibrils 
leach and disclose to the circulating platelets mediating their 
adherence to the injured endothelium through platelet mem-
brane receptors glycoprotein (GP)IIb/IIIa and GPIb-V-IX 
(Lordan et al. 2021). Platelet activation fosters the emission 
of platelet-derived vasoactive substances, including throm-
boxane A2 (TXA2) and adenosine diphosphate (ADP), to 
potentiate ambient platelets activation and vasoconstriction 
(Alyavi et al. 2021). Concurrently, coagulation pathway is 
activated, and thrombin burst is generated attributing in 
the forming of fibrin-stabilized clot occluding the coro-
nary artery and depriving the cardiac tissues from oxygen 
(Badimon and Vilahur 2014). During ischemic/reperfusion 
injury in myocardial infarction, cardiac oxygen starvation 
triggers a dynamic orchestrated process, which involves the 
recruitment of innate and adaptive inflammatory response 
(Abbate et al. 2020), generation of reactive oxygen species, 
and suppression of scavenging system (Carretero et al. 2020; 
Shahzad et al. 2018).

Isoproterenol (ISO) is a synthetic catecholamine that 
belongs to the pharmacological family of nonselective 
β-adrenergic receptor agonist (Allawadhi et al. 2018; Baris-
ione et al. 2010). ISO has been considered a widely utilized 
compound in experimental animal models inducing a spec-
trum of cardiac abnormalities (Zhang et al. 2008; Grant et al. 
2020). Studies showed that over-activation of β-adrenergic 
receptors mediates cardiac oxidative stress generation, pro-
inflammatory cytokine release, signaling cascades altera-
tions, and thrombi formation (Garlie et al. 2011; Corbi et al. 
2013; Xiao et al. 2018). Clearly, the experimental approach 
of applying the ISO model mimics the same array of struc-
tural and functional pathological composites in myocar-
dial infarction (MI), making it a successful approach for 
the embodiment of MI in rats (Dhalla et al. 2010). Indeed, 
employing ISO at supramaximal doses has been associated 
with mitochondrial dysfunction, producing cytotoxic free 
radicals, suppressing levels of antioxidant enzymes, promot-
ing lipid peroxidation, and triggering inflammation (Rathore 
et al. 1998; Mukherjee et al. 2015; Forte et al. 2021).

Up to the present time, prevention and treatment of ath-
erosclerotic thrombosis have been concentrating on tar-
geting platelets as being the prevailing element in arterial 
thrombi (Montalescot et al. 2013). Aspirin has been used 
as a primary and secondary prevention of atherosclerotic 
diseases by halting the conversion of arachidonic acid to 
eicosanoids (prostaglandin E2, TXA2, and prostacyclin), 
thus promoting long-term antiplatelet effect (Tarantino et al. 
2016). However, aspirin therapy is circumscribed by its side 

effects such gastrointestinal bleeding (Barbarawi et al. 2019) 
and the conflicting data regarding efficacy and safety, more 
specifically in elderly cohorts (Ujjawal et al. 2021). In addi-
tion, recent research is emphasizing poor response to aspirin, 
especially among diabetes mellitus patients (Santilli et al. 
2015). However, recent evidence suggests more cumulative 
role of coagulation proteins early in atherosclerotic events 
(Rocha et al. 2021). Studies showed an evidence of coagula-
tion component in early stable atherosclerotic lesions com-
pared to advanced ones, suggesting an underlying process 
for exerting plaque thrombogenicity (Borissoff et al. 2010, 
2009; Spronk et al. 2004). Moreover, factor Xa has been 
shown to be incorporated in inflammation, tissue fibrosis, 
vascular remodeling, and atherosclerotic plaque progression 
(Busch et al. 2005; Spronk et al. 2014; Tantry et al. 2020). 
Therefore, the rational of using anticoagulant; that targets 
factor Xa, as a preventive component in atherosclerotic 
events, is sensible.

Rivaroxaban is the first developed member of the novel 
direct factor Xa inhibitors with immense potency and 
selectivity (Perzborn et al. 2011). The drug discovery has 
been revolutionary in the area of oral anticoagulation after 
decades of vitamin K antagonists (VKAs) occupying the 
foreground (Sindet-Pedersen et al. 2017). Unlike VKAs, 
rivaroxaban shows comparable efficacy and superior safety 
with predictable pharmacokinetic and pharmacodynamic 
profile, hence allowing fixed daily dosing with halting 
the need for periodic monitoring (Sindet-Pedersen et al. 
2017; Tellor et al. 2015). Interestingly, rivaroxaban has 
been described for possessing a pleiotropic effect that is 
very similar to that of statins (Posma and Sluimer 2021). 
Recently, studies showed that rivaroxaban’s activity is not 
only confined in coagulation pathway, but also in inflam-
mation, oxidative stress, and platelet activation (Liu et al. 
2019; Graff et al. 2007; Özbudak et al. 2019). As with 
inflammation, an animal study showed that rivaroxaban 
succeeded in reversing the antioxidant activity of cardiac 
glutathione and glutathione reductase in sunitinib-induced 
cardiotoxicity model (Imam et al. 2020). On the other 
hand, an in vitro study conducted in 2016 showed that 
rivaroxaban displayed an inhibitory effect on TF derived 
platelet activation (Wan et al. 2016). Importantly, recent 
evidence showed that rivaroxaban could have a possi-
ble synergistic effect when combined with antiplatelet 
agents (Coppens et al. 2019). Indeed, an in vitro study 
that investigated rivaroxaban effect on platelet activation 
alone or with ticagrelor demonstrated that the combination 
therapy resulted in a synergistic increase in the inhibi-
tory effect on platelet aggregation (Perzborn et al. 2015). 
The COMPASS trial, which is a large multicenter rand-
omized clinical trial, showed that the addition of innova-
tive reduced dose or rivaroxaban (2.5 mg twice daily) to 
aspirin (100 mg once daily) as a dual pathway therapy in 
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patients with chronic vascular disease has been associ-
ated with lower cardiovascular events and a lower mortal-
ity when compared with either drugs alone (rivaroxaban 
5 mg twice daily; aspirin 100 mg once daily) (Eikelboom 
et al. 2017). However, the underlying mechanisms of the 
latter benefit have not been clearly demonstrated in the 
literature. Hence, the present study aimed to evaluate the 
protective effect of rivaroxaban in ISO-induced cardiac 
injury and to investigate its possible synergistic effect 
when co-administered with aspirin.

Materials and methods

Chemicals and reagents

Rivaroxaban was purchased from Megafine Pharma 
(P) Ltd. Company® (Lot No. RB1907004) (Maharashi 
Karve Road, Marine Lines, Mumbai-400002, Maharash-
tra, India). Isoproterenol hydrochloride (N-isopropyl-L-
noradrenaline hydrochloride) was purchased from Sigma-
Aldrich Company® (Lot No. BCBW7995) (St. Louis, 
MO, USA). Aspirin was obtained from the River Jordan 
Pharmaceutical company quality control department (ID 
NO.WS/21/019/01). The cell culture reagent, dimethyl sul-
foxide (DMSO) ChemCruz®, was purchased from Santa 
Cruz Biotechnology® (Lot No. A2418) (Santa Cruz, CA, 
USA). Deionized water was obtained from Jordan Uni-
versity of Science and Technology (JUST, Irbid, Jordan) 
laboratories.

All treatment agents were weighted, freshly prepared, 
and administered instantly based on body weight. Aspirin 
and rivaroxaban treatment solutions were prepared by dis-
solving each in DMSO to produce solutions with a con-
centration of 13 mg/ml and 6.7 mg/ml, respectively (Maity 
et al. 2015; Gosselin et al. 2016). ISO treatment solution 
was prepared by dissolving ISO powder in deionized water 
to yield a solution with a concentration of 30 mg/ml ready 
for use (Rababa’h and Alzoubi 2021).

Experimental animals

Adult male Wistar rats (215–285 g), aged 10–12 weeks, were 
maintained in steel cages (10 rats/cage) under controlled 
room temperature (24 ± 1 °C) with 50 ± 5% relative humid-
ity and 12:12 h light–dark cycle. Rats were allowed free 
access for standard rodent chow diet and tap water available 
ad libitum. All animals were kept for 10 days acclimation 
before manipulation, which took a place in the animal house 
at Jordan University of Science and Technology (JUST). 
Body weights for all rats were obtained initially, prior to 
treatment phase and prior to cardiac injury induction phase. 
All experimental procedures were performed in congruency 
with the regulations of the Animal Care and Use Commit-
tee (ACUC; ACUC approval No. 412–2021) at JUST and 
in accordance with the concepts of laboratory animal care 
and use as involved in the European Community guidelines.

Animal groups, treatment, and induction phases

Following acclimation (day 11), rats were randomly assigned 
into 5 different groups (n = 15 rats per group) based on the 
received treatment as follows: groups 1 and 2 received no 
treatment (only DMSO), whereas groups 3–5 received treat-
ment with either aspirin alone (10 mg/kg/day; group 3), 
rivaroxaban alone (5 mg/kg/day; group 4), or as a combina-
tion (group 5) via oral gavage daily for 7 days. Both doses 
and duration of treatments were based on previous literature 
(Jia et al. 2018; Jiang et al. 2020; Daci et al. 2020; Kono 
et al. 2014). Table 1 summarizes different treatment groups.

Following treatment phase (on day 18), groups 2–5 were 
induced with cardiac injury by subcutaneously injecting 
rats with ISO preparation every 24 h for 2 subsequent days 
(days 18 and 19). ISO was administered at a dose of 85 mg/
kg/day via subcutaneous injection (Rababa’h and Alzoubi 
2021; Verma et al. 2019). Treatment preparations pertaining 
for each group were also administered during cardiac injury 
induction phase 1.5 h prior to ISO administration. Fig. 1 
represents an illustration of the experiment timeframe.

Table 1  Animal groups based on treatment and cardiac injury induction

ISO, isoproterenol; DMSO, dimethyl sulfoxide; SC, subcutaneous

Group number Treatment phase (7 days) Cardiac injury induction phase (2 days)

Group 1 0.2 ml of DMSO by oral gavage No ISO induction
Group 2 0.2 ml of DMSO by oral gavage 0.2 ml of DMSO by oral gavage + 85 mg/kg ISO by SC injection
Group 3 10 mg/kg aspirin by oral gavage 10 mg/kg aspirin by oral gavage + 85 mg/kg ISO by SC injection
Group 4 5 mg/kg rivaroxaban by oral gavage 5 mg/kg rivaroxaban by oral gavage + 85 mg/kg ISO by SC injection
Group 5 10 mg/kg aspirin + 5 mg/kg rivaroxaban by 

oral gavag
10 mg/kg aspirin + 5 mg/kg rivaroxaban by oral gavage + 85 mg/kg 

ISO by SC injection
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Bleeding time procedure

Bleeding time was conducted using tail transection model 
with minor modifications (Dejana et al. 1979; Ambler et al. 
1985; Song et al. 2012). Bleeding time procedure was per-
formed on the second day of ISO induction prior to rat sacri-
fice. The non-anesthetized rats were trapped using restraints 
and placed horizontally over disposable incontinence surgi-
cal under-pad. Subsequently, a distal 2-mm segment of the 
tail tip was totally transected using a disposable surgical 
blade. The tail was immediately immersed in a 15-ml plas-
tic tube containing a pre-warmed isotonic saline (37 °C). 
The tail tip was positioned vertically 2 mm below the body 
horizon. Using a stopwatch, bleeding time was tracked for 
each animal for a maximum cut-off time of 20 min. The 
time needed to reach a 30-s period of bleeding cessation is 
then defined. When bleeding time extended for more than 
the intended cut-off time, tracking was stopped, and bleed-
ing time was documented as 20 min for statistical analysis. 
Bleeding time prolongation for 50 percent or more compared 
to the control group was considered significant.

Blood collection, heart dissection, and tissue 
homogenization

Once treatment and induction phases terminated, animals 
were sacrificed by cervical decapitation using rodent’s guil-
lotine. Fresh blood for each animal was promptly withdrawn 
into micronized silica coated yellow topped clot activator 
tubes. All blood samples were centrifuged at 4500 rpm for 
15 min. Serum samples were eluted and collected into pre-
labeled Eppendorf tubes. Serum was subsequently stored 

at − 80 °C to be utilized in the biochemical analysis. Hearts 
were promptly excised, rinsed with ice-cold Dulbecco’s 
phosphate-buffered saline (PBS), dried, and weighted. 
Then, hearts were cut into equal halves, tightly wrapped 
with aluminum foil, and cryopreserved in liquid nitro-
gen before transferring for storage at − 80 °C until tissue 
homogenization.

For heart tissue homogenization, protease inhibitor 
cocktail solution was prepared by completely dissolving 
one tablet of SIGMAFAST™ protease inhibitor (Sigma 
Aldrich Corp, MI, USA) in 100 ml cold iced PBS (− 8 °C). 
In a 10-ml tube, two milliliters of the cocktail preparation 
were added to each halved rat heart and homogenized until 
completely soluble using handheld tissue homogenizer. 
Immediately, homogenates were incubated in ice for 15 min, 
followed by cold centrifugation (− 4 °C) at 16,000 rpm for 
another 15 min. The resultant homogenates were divided 
into several aliquots and were subsequently stored at − 80 °C.

Biochemical analysis

Serum levels of aspartate aminotransferase (AST) and ala-
nine aminotransferase (ALT) were quantitatively determined 
with kinetic ultraviolet (UV) test using the DXC 700 Beck-
man Coulter AU analyzer. Heart homogenates levels of cre-
atine kinase (CK) and serum levels of lactate dehydrogenase 
(LDH) were quantitatively determined with UV test using 
the Roche/Hitachi Cobas® c303 analyzer.

Enzyme-linked immunoassays were utilized to quantita-
tively measure heart tissue homogenates levels of inflam-
matory biomarkers including tumor necrosis alpha (TNF-α; 
cat No. ab236712, Abcam Company, Cambridge, UK) and 

Fig. 1  Illustration of the experiment timeline. Following 10  days 
acclimation, administration of rivaroxaban alone and in combination 
with aspirin was initiated daily for 7  days via oral gavage. Starting 
from day 18, animals were subcutaneously injected with ISO daily for 

2 days along with treatment administration to induce cardiac injury. 
Animals were decapitated on day 19. Group 2, isoproterenol-treated 
group; group 3, aspirin-treated group; group 4, rivaroxaban-treated 
group; group 5, rivaroxaban-aspirin-treated group; ISO, isoproterenol

340 Naunyn-Schmiedeberg's Archives of Pharmacology (2023) 396:337–351



1 3

interleukin-6 (IL-6; cat No. BMS625, Thermo Fisher Scien-
tific, MA, USA), oxidative stress biomarkers including nitric 
oxide (NO; cat No. ab272517, Abcam Company, Cambridge, 
UK), superoxide dismutase (SOD; cat No. MBS2707324, 
MyBioSource Inc., San Diego, USA), and thiobarbituric 
acid-reactive substances (TBARS; cat No. MBS1600368, 
MyBioSource Inc., San Diego, USA) and platelet reac-
tivity biomarkers including thromboxane B2 (TXB2; cat 
No. MBS2601763, MyBioSource Inc., San Diego, USA), 
6-Keto-prostaglandin F1 alpha (6-Keto-PGF1α; cat No. 
MBS705437, MyBioSource Inc., San Diego, USA), and 
glycoprotein V (GPV; cat No. MBS2505264, MyBioSource 
Inc., San Diego, USA).

Statistical analysis

All data were analyzed using GraphPad Prism (7.0) “Graph-
Pad Software, La Jolla California USA, www. graph pad. 
com.” Results were expressed as mean ± SD. Data analysis 
was performed using one way ANOVA test. Tukey’s multi-
ple comparisons test was used as a post hoc analysis for all 
the comparisons. For all statistical analysis, P value of < 0.05 
was considered to test statistical significance.

Results

Heart weight to body weight and bleeding time

Figure 2A represents heart weight to body weight (Hwt/
Bwt) ratios of all experimental groups. Relative to control 

group, Hwt/Bwt ratio in ISO-treated group was significantly 
elevated (P value < 0.0001). However, pre-administration of 
rivaroxaban and the combination of rivaroxaban and aspirin 
were associated with non-significant increment in Hwt/Bwt 
ratios compared to control. Moreover, Fig. 2B demonstrates 
bleeding time for each studied group. Relative to control 
and ISO groups, bleeding time of aspirin, rivaroxaban, and 
aspirin + rivaroxaban groups were significantly prolonged 
(P value < 0.0001).

Cardiac enzymes, aspartate transaminase, 
and alanine transaminase levels

Administration of ISO was associated with significant 
increase in AST, LDH, and CK levels compared to the con-
trol group (P value < 0.05; Table 2). Interestingly, groups 
treated with aspirin, rivaroxaban and their combination were 
associated with significant increase in the levels of AST and 
ALT enzymes compared to the control group. Contradicto-
rily, pre-administration of aspirin was associated with signif-
icant reduction in LDH enzymes compared with ISO-treated 
group (aspirin 4606 ± 526.9 U/L vs. ISO 6534 ± 1398 U/L; 
P value < 0.0001), Moreover, a pre-administration of aspi-
rin or rivaroxaban was associated with marked protective 
effect against ISO-induced elevation of CK enzyme levels 
(Table 2).

Cardiac oxidative stress biomarkers

Oxidative stress biomarkers including SOD, TBARS, and 
NO were measured and evaluated at the end of the study 

Fig. 2  Heart weight to body weight ratio (A) and bleeding time (B) 
among different study groups. ISO, isoproterenol; ASA, aspirin; Riva, 
rivaroxaban; Hwt/Bwt, heart weight to body weight ratio. Each point 

represents the mean ± SD. One-way ANOVA followed by Tukey’s 
multiple comparisons test was used. *Significant difference from the 
control group. Level of significance was detected when P < 0.05
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in rat's heart homogenates (Fig. 3). A significant decrease 
in the SOD enzyme levels was induced by ISO administra-
tion. Among experimental groups, aspirin-treated group was 
the sole treatment group that showed a marked increase in 
the SOD enzyme levels compared with ISO-treated group 
(0.3169 ± 0.063 and 0.2158 ± 0.042  ng/ml/mg protein, 
respectively; P value = 0.0159).

ISO-treated group demonstrated a significant eleva-
tion in the TBARS levels compared to control group 

(0.1429 ± 0.092 and 0.071 ± 0.017  nmole/ml/mg pro-
tein, respectively; P value = 0.02). Interestingly, TBARS 
levels were significantly decreased in all treatment 
groups when compared with ISO-treated group. Remark-
ably, only aspirin administration caused significant 
elevation of NO compared with the ISO-treated group 
(0.089 ± 0.036 and 0.052 ± 0.012 µml/mg protein, respec-
tively; P value = 0.0165) and rivaroxaban-treated group 
(0.050 ± 0.013 µml/mg protein; P value = 0.016). Notably, 

Table 2  The effect of treatments administration on different enzymes among the study groups

* Significant difference from the control group (P value < 0.05). #Significant difference from ISO-treated group (P < 0.05). Each point represents 
the mean ± SD

Groups/enzyme Control ISO Aspirin Rivaroxaban Rivaroxaban + aspirin ANOVA P value

Aspartate transaminase (AST) (U/L) 376.6 ± 77.2 853.3 ±  377* 1129 ± 413.2* 1051 ±  327* 1046 ± 235.6*  < 0.0001
Alanine transaminase (ALT) (U/L) 95.14 ± 15.6 140.3 ± 32.4 163.9 ± 51.5* 179.3 ± 67.5* 173.8 ± 28.2* 0.0002
Lactate dehydrogenase (LDH) (U/L) 2420 ± 495.5 6534 ±  1398* 4606 ± 526.9*# 5197 ± 1032* 5949 ± 707.3*  < 0.0001
Creatine kinase (CK) (U/L) 11,070 ± 4066 22,733 ±  4680* 12,903 ±  5806# 13,983 ±  4262# 17,487 ± 6447 0.005

Fig. 3  Levels of oxidative stress biomarkers among the study groups. 
A Superoxide dismutase, B thiobarbituric acid reactive substances, 
and C nitric oxide levels at the end of the study. Each point is the 
mean ± SD. SOD, superoxide dismutase; TBARS, thiobarbituric 

acid-reactive substances. One-way ANOVA followed by Tukey’s 
multiple comparisons test. Level of significance was detected when 
P value < 0.05
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NO levels were comparable between ISO-treated group and 
the combination therapy of aspirin and rivaroxaban,and were 
unremarkably blunted in the combination therapy when 
compared with aspirin-treated group.

Cardiac inflammatory biomarkers

Heart tissue homogenates were used to evaluate the inflam-
matory biomarkers including TNF-α and IL-6 (Fig. 4). 
Compared with control group, ISO-treated group was asso-
ciated with significant increase in the serum TNF-α and non-
significant increase in IL-6 levels. However, a remarkable 
decrease in the IL-6 was associated with the administration 
of aspirin alone (P value = 0.009), rivaroxaban alone (P 
value < 0.0001), and their combination (P value < 0.0001) 
when compared with ISO-treated group. In addition, both 
rivaroxaban-treated and rivaroxaban-aspirin-treated groups 
were able to normalize IL-6 levels significantly when com-
pared with the control group. However, all three treatment 
groups did not significantly prevent the elevation of TNF-α 
levels induced by ISO administration.

Platelet and coagulation biomarker levels

No marked increase in the 6-Keto-PGF1α levels was asso-
ciated with ISO induction when compared with the control 
group. A significant decrease in 6-Keto-PGF1α levels was 
found in aspirin-rivaroxaban group when compared with 
rivaroxaban-only treated group (P = 0.00165), ISO-treated 

group (P value < 0.0001), and control group (P = 0.0102). 
ISO-treated group demonstrated a significant decrease in 
GPV levels compared to the control group (P = 0.0001). 
Interestingly, only aspirin group was associated with marked 
increase in the GPV levels when compared with ISO group 
(P = 0.0035) and rivaroxaban group (P = 0.0035). Addition-
ally, a significant decrease in GPV levels was shown in rivar-
oxaban (P < 0.0001) and rivaroxaban-aspirin treated groups 
(P = 0.0063) when compared with control. Rebelliously, no 
marked effect was seen for rivaroxaban and the combination 
therapy groups when compared with ISO group. Instead, 
ISO induction produced insignificant elevation in TXB2 
when compared to the control. On the other hand, a sig-
nificant decrease in TXB2 levels was witnessed in all treat-
ment groups: aspirin (P = 0.002), rivaroxaban (P = 0.043), 
and rivaroxaban plus aspirin (P = 0.006). Interestingly, D2D 
levels showed non-significant difference among all experi-
mental groups (Fig. 5).

Discussion

In the current study, we aimed to investigate the impact 
of rivaroxaban solely and as a dual therapy with aspirin in 
ISO-induced cardiac injury animal model. ISO has been fre-
quently utilized for the embodiment of cardiac injuries in 
rats (Song et al. 2020). The synthetic compound produces 
infarct-like detriments in the most vulnerable regions of 
the heart (Sagor et al. 2015). ISO induces cardiac injury by 

Fig. 4  Inflammatory biomarkers among the study groups. A Inter-
leukin-6 and B tumor necrosis factor alpha levels at the end of the 
study. Each point is the mean ± SD. IL-6, interleukin 6; TNF-α, tumor 

necrosis factor alpha. One-way ANOVA followed by Tukey’s mul-
tiple comparisons test. Level of significance was detected when P 
value < 0.05
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commencing a spectrum of complex biochemical alterations 
including triggering oxidative stress, platelet aggregation, 
and infiltration of inflammatory cells, as well as a spectrum 
of structural damage including changes in membrane per-
meability and cardiac hypertrophy (Raish et al. 2019; Wong 
et al. 2017). In the current study, subcutaneous injections of 
ISO, at a supratherapeutic dose, had successfully induced 
structural alterations by the significant increase of Hwt/Bwt 
ratio in ISO-treated group relative to control group. This 
goes in line with many experimental studies which dem-
onstrated increase in the heart weight in ISO-treated model 

which is considered a landmark for ISO-induced cardiotox-
icity (Jain et al. 2018; Lim et al. 2013). For the most part, 
this is attributed to the increment in the intravascular edema-
tous space and the elevation of water and protein constitute 
(Hussain Shaik et al. 2012). However, pre-administration of 
rivaroxaban, solely or as a dual therapy with aspirin, did not 
manage to maintain heart weights at normal levels. Moreo-
ver, current observation showed significant prolongation of 
bleeding time in rivaroxaban-treated group compared with 
ISO-treated group. In addition, the present study showed 
significant prolongation in bleeding time for the combination 

Fig. 5  Platelets and coagulation biomarkers among the study groups. 
A 6-Keto-prostaglandin F1 alpha, B glycoprotein V, C thromboxane 
B2, and D D-dimer levels at the end of the study. Each point is the 
mean ± SD. 6-Keto, 6-Keto-prostaglandin F1 alpha; GPV, glycopro-

tein V; ISO, isoproterenol; ASA, aspirin; Riva, rivaroxaban. One-way 
ANOVA followed by Tukey’s multiple comparisons test. Level of sig-
nificance was detected when P < 0.05
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therapy of aspirin with rivaroxaban when compared to ISO-
treated group, but with no synergism when compared with 
the latter treatments solely.

Alterations in cytosolic cardiac enzymes such as LDH 
and total CK and elevation in AST levels are contemplated 
as an index to appraise the severity of necrotic injury to 
the myocardium (Bodor 2016). Elevated cardiac enzymes in 
the present study are consistent with previous experimental 
evidence, in which rats administered with ISO experienced 
a pronounced elevation in cardiac enzymes levels (Lalitha 
et al. 2013; Liu et al. 2018). Surprisingly, pretreatment of 
animals with rivaroxaban alone or in combination with aspi-
rin have failed to normalize AST level and even produced 
higher levels than in the ISO-treated group. On the other 
hand, a decrease in total CK and LDH levels were evident 
after pre-treatment of rivaroxaban. This can be related to 
the non-cardiac nature of these enzymes (Bodor 2016), in 
addition to the fact that both aspirin and rivaroxaban are 
liver metabolized and can provoke liver enzymes alterations 
(Licata et al. 2018; Rafeeq et al. 2016). Thereby, conduct-
ing future experimental studies investigating more selective 
cardiac biomarkers is beneficial.

An oxidative stress-based pathway is considered one 
of the shared mechanisms in MI pathogenesis (Kurian 
et al. 2016). As a result of oxidative stress, distorted lipid 
metabolism is considered a leading inducer of a range of 
pathological alterations relevant to atherogenesis (Swapna 
et al. 2019). Lipid peroxides with their highly reactive and 
cytotoxic characteristics are involved in endothelial activa-
tion, platelet aggregation, and disruption of cell membrane 
permeability causing cardiac insult (Swapna et al. 2019; 
Park et al. 2015). Previous research pointed out that ISO 
administration was associated with impaired lipid metabo-
lism (Sangeethadevi et al. 2021). In the current study, this 
was demonstrated as pretreatment with ISO was associated 
with significant elevation in TBARS. TBARS is considered a 
reliable estimator of lipid peroxidation, and its elevated level 
is extrapolated to indicate severe oxidative stress (Dayana 
and Manasa 2019). Among the suggestive mechanisms for 
ISO is the involvement in free radicals-mediated process. 
Clearly, ISO exhibits auto-oxidation which yields highly 
reactive quinines free radicals (Pullaiah et al. 2021). The 
resultant free radicals are involved in the peroxidation of 
membrane phospholipids, thus threatening the integrity 
of myocardial membranes, altering their permeability and 
eventually causing permanent damage (Sagor et al. 2015). 
It is generally perceived that a scavenging system involving 
endogenous antioxidant enzymes such as SOD, catalase, 
and glutathione peroxidase are incorporated in neutralizing 
free radicals formation and mitigating several pathologies 
(Rababa’h et al. 2018). However, overproduction of free 
radicals at the site of injury attenuates the activity of anti-
oxidant enzymes (Hussein 2015). The data obtained from 

the current study was consistent with previous evidence as 
it shows marked reduced levels of SOD after treatment with 
ISO (Shackebaei et al. 2022; Xie et al. 2020). In the current 
data, rivaroxaban displayed antioxidant effect by improving 
SOD activity and significantly reducing TBARS levels. An 
animal study of experimental colitis was consistent with the 
current study findings as rivaroxaban managed to decrease 
accumulation of lipid peroxidation and restored SOD activ-
ity (Utku et al. 2015). However, one study showed that rivar-
oxaban antioxidant effect could be dose-dependent and was 
only seen at high doses (Samiei et al. 2019).

Moreover, in the present study, we investigated the level 
of cardiac NO. Our data shows that induction with ISO treat-
ment was associated with insignificantly reduced levels of 
NO. Previously, Zhou and colleagues reported a decreased 
level of NO after the induction with ISO treatment (Zhou 
et al. 2017). Another experimental study of ISO-induced 
heart failure showed that ISO was associated with significant 
decrease in cardiac NO (Moursi et al. 2019). Data from the 
present study showed similar values of NO levels in animal 
groups treated with rivaroxaban solely or as a combination. 
This goes in line with an animal study of ischemia–reper-
fusion model, in which pre-treatment with rivaroxaban or 
clopidogrel was found to be associated with significant 
decrease in NO levels (Özbudak et al. 2019), but contra-
dictory to another experimental study that proposed a NO-
mediated vasorelaxant effect of direct oral anticoagulants 
(Mabley et al. 2019). In particular, the current data demon-
strates a repressing effect of rivaroxaban on the NO-medi-
ated action of aspirin when utilized in combination showed 
by lower NO levels in the combination therapy compared 
to aspirin therapy. Interestingly, rivaroxaban decreased lev-
els of NO was speculated in a previous study as being an 
underlying mechanism of action for rivaroxaban to exert its 
antioxidant effect by increased usage of antioxidants includ-
ing NO (Özbudak et al. 2019). However, conducting more 
research is in need to investigate the effect of rivaroxaban in 
NO signaling pathway as a dual therapy with aspirin.

Another mechanism involved in ISO-induced cardiac 
injury is the exacerbation of cardiac inflammatory process. 
Previous evidence addressed the crosstalk between cardiac 
injury induced by ISO in relation to the expression of inflam-
matory cytokines and MMPs (Viswanadha et al. 2020). 
One experimental study showed that isoproterenol-induced 
β-adrenergic receptors overstimulation contributes in MMP-
13 mediated transactivation of PAR-1 in both cardiomyo-
cytes and cardiac fibroblasts, which suggests a non-ischemic 
pathway for the activation of PAR-1, yielding in cardiac 
remodeling and inflammation as a pathological consequence 
(Jaffré et al. 2012). The current findings were consistent with 
previous results as ISO administration resulted in the eleva-
tion of TNF-α levels. Undoubtedly, the relationship between 
inflammation and coagulation has been well described in the 
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literature. Indeed, previous evidence suggests the incorpora-
tion of both factor Xa and thrombin in inflammatory pro-
cesses (Katoh et al. 2017). Interestingly, thrombin has been 
described as an inducer of platelet aggregation and throm-
boxane synthesis by multiple thrombin-platelet interactions. 
Previous evidence showed that thrombin activates platelets 
by cleaving PAR-1 and PAR-4 (Jennings 2009). TXB2 is 
considered a stable inactive predominant arachidonic acid 
derivative of human platelet cyclooxygenase (COX) 1 
pathway. Assessment of TXB2 is considered an index of 
platelet COX-1 activity (Patrono and Rocca 2019). Further-
more, thromboxane plays a substantial role in MI, in which 
it elicits platelet aggregation, inflammation, blood vessel 
constriction, and coronary spasticity (Szczuko et al. 2021). 
On the other hand, 6-Keto-PGF1α is a stable metabolite of 
prostacyclin, which is another arachidonic acid derivative 
that is involved in preventing platelet aggregation and per-
taining vasodilatory effect (Harding and Murray 2011). In 
the current study, a significant decrease in TXB2 was shown 
upon the administration of aspirin alone, rivaroxaban alone, 
and in combination. However, no superiority of rivaroxa-
ban alone or as in combination with aspirin was evidenced 
when compared with aspirin only-treated group. Thus, find-
ings in current study may suggest a comparable decrease 
in the platelet COX enzymes activity and platelet reactiv-
ity between aspirin and rivaroxaban with no additive influ-
ence of the combination therapy on COX enzyme activity. 
Moreover, the current study showed significant decrease in 
TXB2 in rivaroxaban-treated group when compared to ISO-
treated group. This was inconsistent with a report suggesting 
in vivo increase in platelet reactivity by elevated production 
and release of TXA2 in patients receiving rivaroxaban and 
extrapolated a justification for the superiority of rivaroxaban 
in combination with aspirin based on the findings (Murphy 
et al. 2019). However, the latter study involved a very small 
sample size; thus, further research is warranted. In addition, 
the present data manifest a significant decrease of 6-Keto-
PGF1α level by the combination of aspirin and rivaroxaban 
when compared with ISO-treated and rivaroxaban-treated 
groups. This may suggest that the reduction in the prosta-
cyclin metabolite level is more likely influenced by aspirin 
inhibition of prostacyclin synthesis. Many studies supported 
the hypothesis of rivaroxaban working synergistically with 
antiplatelet therapy (Capodanno et al. 2018; Cammisotto 
et al. 2019), and others stood against it (Eller et al. 2014). 
Future studies investigating a potential antiplatelet effect of 
rivaroxaban synergistically with aspirin are warranted to 
explore the underlying mechanism.

Importantly, this is the first study to quantitatively report 
GPV levels using ISO-induced cardiotoxicity model. Pre-
vious studies showed that GPIb-V-IX complex has bind-
ing sites for both thrombin and von Willebrand factor and 
functions in establishing platelet adhesion to the vascular 

endothelium (Nieswandt and Watson 2003). While GPIb-IX 
acts as a receptor for thrombin, GPV acts as a safety lock 
cleaved by thrombin into soluble entities, thus allowing its 
access to the receptor (Nieswandt and Watson 2003; Candia 
2012). Current data showed a significant decrease in GPV 
level after ISO induction. Low levels of GPV could be justi-
fied by the ISO-induced hypercoagulable state, which allows 
thrombin activation and cleavage of GPV. Moreover, aspirin 
showed significant increase in GPV levels, whereas a slight 
non-significant improvement in the combination group sug-
gesting aspirin-mediated action.

Undoubtedly, the emerging concept of utilizing a vas-
cular low dose of rivaroxaban portrays a promising era in 
atherothrombotic CVDs with growing evidence suggesting 
a pleiotropic-sparing action of rivaroxaban via PAR sign-
aling pathway (Barrios et al. 2018). PARs belong to the 
family of G protein-coupled receptors comprising four dif-
ferent isoforms (PAR 1–4), which are expressed in numer-
ous cell types including myocytes, platelets, endothelial 
cells, and neurons (Soh et al. 2010). Specifically, only 
PAR-1 (expressed in vascular cells and platelets) and 
PAR-2 (expressed in vascular cells only) are activated by 
FXa (Ramachandran et al. 2012). Independent of thrombin, 
FXa represents a potent platelet agonist, emitting platelet 
activation through PAR-1 which is prohibited in the pres-
ence of rivaroxaban (Hara et al. 2015). Multiple studies 
disclosed an involvement of both PAR-1 and PAR-2 in 
cardiac remodeling and hypertrophy, inflammatory sign-
aling, and platelet activation (Petzold et al. 2020). A one 
experimental study showed that overexpression of PAR-1 
participates in cardiac remodeling and structural hyper-
trophy (Ma and Dorling 2012). In a cardiac ischemic/
reperfusion mice model, PAR-2 deficiency was associated 
with reduced infarct size and suppression of inflammatory 
process (Pawlinski et al. 2007). In addition, previous evi-
dence showed that activation of PAR-1 and 2 is involved in 
inducing pro-atherogenic action on arterial vessel walls and 
subsequently propagating oxidative stress, inflammatory 
process, endothelial dysfunction, and apoptosis (Antoniak 
et al. 2010). Clearly, rivaroxaban employs its pleiotropic 
effect through suppressing the FXa-mediated activation of 
PAR (Spronk et al. 2014). Indeed, previous in vivo and 
in vitro study showed that rivaroxaban attenuated plate-
lets activation through prohibiting FXa-dependent PAR-1 
activation (Hara et al. 2015). In an animal model of hyper-
tensive mice overexpressing renin, treatment with rivar-
oxaban managed to inhibit angiotensin II-induced expres-
sion of PAR-2 and inflammatory genes, thus inhibiting 
PAR-2 mediated inflammatory process (Ichikawa et al. 
2019). Additionally, an experimental study showed that 
rivaroxaban reduced oxidative stress and prevented cardiac 
remodeling by down-regulating PAR-1, PAR-2, and NF-κB 
expression in a model of intermittent hypoxia (Mitsuishi 
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et al. 2017). Definitely, rivaroxaban pleiotropic nature jus-
tifies its atheroprotective effect as displayed in previous 
evidence (Sanmartín et al. 2019).

Among the limitations of the present report, both dose-
dependent and class-specific therapeutic effects of rivaroxa-
ban were not investigated. Therefore, future studies utilizing 
variable doses of rivaroxaban and compared with other fac-
tor Xa inhibitors are recommended for the aforementioned 
purposes. Interestingly, further analysis comprising other 
antiplatelet therapies in addressing rivaroxaban therapeutic 
effect in the setting of myocardial injury could be beneficial. 
In our experiment, bleeding time was performed to evaluate 
platelet function and bleeding risk, albeit insensitive. Moreo-
ver, histopathologic examination was not performed and is 
beneficial to be conducted in future research.

Conclusions

The current study is the first experimental study to inves-
tigate the therapeutic effect of rivaroxaban with or without 
aspirin in ISO-induced cardiac injury model. The present 
data demonstrated antioxidant and anti-inflammatory effect 
of rivaroxaban against cardiac injury, in addition to platelet 
reactivity suppression effect. However, the addition of rivar-
oxaban to aspirin did not show synergistic effect on inflam-
mation, oxidative stress, and platelet reactivity.
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