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Abstract
Renal I/R injury is a severe medical condition contributing to acute kidney injury (AKI), leading to rapid kidney dysfunction 
and high mortality rates. It is generally observed during renal transplantation, shock, trauma, and urologic and cardiovascular 
surgery, for which there is no effective treatment. Cell death and damage are commonly linked to I/R. Cell death triggered by 
iron-dependent lipid peroxidation, such as ferroptosis, has been demonstrated to have a significant detrimental effect in renal 
IRI models, making it a new type of cell death currently being researched. Ferroptosis is a nonapoptotic type of cell death 
that occurs when free iron enters the cell and is a critical component of many biological processes. In ferroptosis-induced 
renal I/R injury, iron chelators such as Deferasirox, Deferiprone, and lipophilic antioxidants are currently suppressed lipid 
peroxidation Liproxstatin-1 (Lip-1), Ferrostatin-1 along with antioxidants like vitamin and quercetin. Ferroptosis has been 
considered a potential target for pharmaceutical intervention to alleviate renal IRI-associated cell damage. Thus, this review 
emphasized the role of ferroptosis and its inhibition in renal IRI. Also, Pharmacological modulation of ferroptosis mechanism 
in renal I/R injury has been conferred.

Keywords  Renal I/R injury · Mechanism of ferroptosis · Ferroptosis inhibitors · Therapeutic targets · Pannexin signaling · 
Heme oxygenase-1 · miRNAs

Introduction

Acute ischemic renal damage is a prevalent complication 
caused by various diseases that decrease the kidneys’ abil-
ity to receive adequate arterial blood flow. Ischemic renal 
damage is exacerbated by restoring blood flow (Linkermann 
et al. 2014a, b; Wang and Bellomo 2017). Apoptosis and 
necrosis are the only two cell death processes previously rec-
ognized to have a role in renal ischemia AKI pathogenesis 
(Thapa et al. 2022). In renal I/R models, ferroptosis emerged 
as a newly identified regulated mechanism of cell death with 
deleterious effects (Yan et al. 2020). Although cell death 
is a vital clinical sign of IRI, preventing cell death caused 
by IRI could be a new therapeutic strategy. However, it has 
previously been suggested that a comprehensive understand-
ing of I/R-related cell death is essential in creating effective 

therapy options for IRI (Yarishkin et al. 2018; Sarkar et al. 
2019). Oxidative stress-induced due to lipid peroxidation 
and elevated intracellular iron levels are hallmarks of IRI 
(Saklani et al. 2022a). In the most recent literature, iron-
dependent ferroptosis has been found to cause cell damage 
and death (Thévenod and Lee 2013; Sharma et al. 2021). 
The cellular activity of iron-dependent ferroptosis can be 
blocked by iron chelation and antioxidants. In animal models 
of IRI, iron chelation is therapeutic (Rodríguez-Vargas et al. 
2019; Jiang et al. 2021). Thus, ferroptosis has been recently 
found as a therapeutic target for renal I/R damage, according 
to recent findings.

Ferroptosis mechanism of cell death

Antioxidant mechanism

Selenium is an endogenous antioxidant required for the 
activity of glutathione peroxidase 4 (GPx4) (Ighodaro and 
Akinloye 2018). Asparagine, glutamine, tryptophan, and 
selenocysteine (Sec) or cysteine form hydrogen bonds with 
nitrogen atoms in GPx4’s catalytic core, forming a tetrad 
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(Asn). One of GPx4’s unique properties is its structure, 
which makes it an excellent catalyst for cysteine residues’ 
rapid and specific oxidation (Tosatto et al. 2008). A wide 
range of substrates, comprising H2O2, tiny hydroperox-
ides, lipopeptides, and complex molecular lipids, such as 
phospholipid and cholesterol ester hydroperoxides, can be 
modified by GPx4 when injected into biomembranes or 
lipoproteins (Casañas-Sánchez et al. 2015; Saklani et al. 
2022a, b). GPx4 is a crucial regulator of anti-lipid per-
oxidation and provides resistance to ferroptosis. Inhibition 
of GPx4 activity by ferroptosis agonists is accomplished 
through either direct (RSL3) or indirect (Erastin or Fin56) 
inhibition (Jiang et al. 2021). For GPx4 to work correctly, 
it needs GSH and selenium (Ursini and Maiorino 2020). 
It had been reported in 2003 that Erastin and RSL3 cause 
RAS mutation-dependent cytotoxicity, and ferroptosis had 
been linked to glutathione-metabolizing proteins (Zhou et al. 
2020a, b). Neuronal death caused by glutamine has features 
comparable to ferroptosis, which implies that glutathione 
synthesis is involved in the method (Hayashima et al. 2021). 
Enzymatically generated glutathione (GSH) is an essential 
antioxidant involved in GPx4 renewal (Nehring et al. 2020; 
He et al. 2021; Tang et al.2021). The cytosolic enzymes 
glutathione synthetase (GSS) and glutamate-cysteine ligase 
(GCL) catalyze the GSH synthesis in two steps using glu-
tamate, cysteine, and glycine (Aoyama et al. 2008; Franklin 
et al. 2009). Cysteine is required for cell survival, accord-
ing to several studies. Due to low glutathione levels, human 
fibroblasts cannot be cultured in cystine-free media (Con-
rad and Sato 2012; Scindia et al. 2015). Disulfide-linked 
heterodimers of cystine/glutamate antiporter systems (Xct) 
are two subunits linked with the disulfide bond that allows 
glutamate and cysteine exchange across plasma membranes 
(Lewerenz et al. 2013; Liang et al. 2019). Solute carrier 3 
member 2 (SLC3A2) is the first of these components, and 
then comes solute carrier 7 member 11 (SLC7A11). Cystine 
is quickly converted to cysteine when injected into the cell. 
Cystine/cystathionine and glutamate are the primary targets 
of erastin in ferroptosis, which is why this exchange is criti-
cal. Cysteine can be synthesized from methionine via the 
transsulfuration pathway in some cell types, and this mecha-
nism may be resistant to erastin (Dixon et al. 2012). When 
selenium levels within cells are low, cysteine is positioned 
in the GPx4 active site (Ingold et al. 2018). For example, 
the enzyme’s activity is 1000 times lower than that of the 
naturally occurring GPx4 recombinant Cys mutant (Ingold 
et al. 2018). Na2SeO3 supplementation restored GPx4 func-
tion in SH-SY5Y cells exposed to methamphetamine (Yu 
et al. 2017). To prevent irreversible hyperoxidation suppres-
sion by Sec deprotonation, GPx4 requires selenium. Sec has 
an advantage over Cys in the central nervous system with 
its thiol groups because Sec can deprotonate fast (Barayuga 
et al. 2013; Brigelius-Flohé and Maiorino 2013; Song et al. 

2014; Cardoso et al. 2017; Doll et al. 2017). GPx4 was 
assumed to be the only regulator of ferroptosis until now. 
No matter whether acyl-CoA synthetase long-chain family 
member 4 (ACSL4) is expressed or not, blocking GPx4 does 
not cause ferroptosis, contrary to the common belief (Wu 
et al. 2018; Doll et al. 2019; Bersuker et al. 2019). This dem-
onstrates the possibility of other mechanisms of resistance. 
GPx4 and glutathione may work together with ferroptosis 
suppressor protein 1 (FSP1) and coenzyme Q10 (CoQ10) to 
reduce phospholipid peroxidation and ferroptosis (Wu et al. 
2002; Han et al. 2020). Because of its molecular similarities 
to AIFM1, the apoptosis-inducing factor mitochondrial 2 
(AIFM2) was anticipated to initiate apoptosis via a caspase-
1-independent pathway (Chen et al. 2020a, b; Khan et al. 
2022b). FSP1 functions as an oxidoreductase after being 
drawn to the cellular membranes by myristoylation to pro-
mote the regeneration of coenzyme Q10 (CoQ10) utilizing 
NADPH. Ubiquinol, a lipophilic radical-trapping antioxidant 
(RTA) (Frei et al.1990; Ng et al. 2019; Kalra et al. 2022), is 
a reduced form of CoQ10 that inhibits the formation of lipid 
peroxides, hence regulating ferroptosis. The mevalonate pro-
cess uses acetyl-CoA to create ubiquinol. The mechanism 
of ferroptosis has been reported to be blocked by small mol-
ecules. Endogenous CoQ10 levels are depleted when FIN56 
attaches to and activates squalene synthase (Mullen et al. 
2016; Shimada et al. 2016) (Fig. 1).

Oxidation mechanisms

Lipid metabolism is essential for both pathological and 
physiological processes in the human body. For example, 
in cell signaling and energy metabolism, fatty acids are a 
critical component of membranes in biology (Olzmann and 
Carvalho 2019). Polyunsaturated fatty acids (PUFAs) con-
tain two or more double bonds and are crucial for plasma 
and membrane formation (Kihara 2012; Zárate et  al. 
2017). Whereas cis-double bonds of methylene groups 
of fatty acids are quickly oxidized, making fatty acids 
more susceptible to autoxidation (Carvalho et al. 2010; 
Dixon and Stockwell 2019). Lipid hydroperoxides are a 
significant element in ferroptosis. A ferroptosis cell death 
signal is PE (phosphatidylethanolamine) that contains ara-
chidonic acid (AA) (AA-PE). It is possible to lengthen 
adrenoyl (AdA) using an enzyme called elongase (Yang 
and Stockwell 2016; Chen et al. 2021). It has recently been 
discovered that AA-OOHPE is the most potent inducer of 
iron apoptotic phenotype in comparison to other phospho-
lipids (PL)-OOH forms, and it catalyzes the conversion of 
acyl-CoA to acyl-PE via the acyl-CoA synthetase family 
4 (ACSL4) (Müller et al. 2017; Lin et al. 2021). LPCAT3 
is required to complete the esterification process, whereas 
LOXs and reactive oxidizing radicals accelerate the trans-
formation of AA-PE to AA-OOH-PE (Hirschhorn and 

1332 Naunyn-Schmiedeberg's Archives of Pharmacology (2022) 395:1331–1341



1 3

Stockwell 2019; Capelletti et al. 2020; Wang et al. 2020). 
Cytochrome P450 oxidoreductase (POR), a stress-induced 
enzyme, increases lipid peroxidation by providing elec-
trons to downstream effectors. Ferroptosis occurs when 
AA-OOH-PE exceeds the reduction mechanism’s com-
petence (Zou et al. 2020; Bagayoko and Meunier 2021). 
Lipid peroxidation can be caused by iron because of its 
ability of redox activation. The first step in the process is 
to release iron bound for Fenton reaction products from the 
labile iron pool (LIP), promoting ROS buildup (Jomova 
and Valko, 2011; Bertrand 2017; Li et al. 2020; Fujii et al. 
2020). For example, iron’s role in enzyme reactions, such 
as lipoxygenases (LOXs) and NADPH oxidases, directly 
impacts the rate and extent of lipid peroxidation. Accord-
ing to these studies, iron homeostasis proteins also can 
regulate a condition known as ferroptosis. It has also been 
shown that silencing the iron response element-binding 
protein 2 (IREB2) via sh-RNA can reduce ferroptosis sen-
sitivity (Tao et al. 2020; Chen et al. 2020a, b). One of the 
iron-sulfur cluster production enzymes, NFS1 (cysteine 
desulfurase) and Prominin2, a ferroptosis stress response 

protein, have also been discovered to suppress the forma-
tion of ferroptosis in lung cancer (Adam et al. 2006). In 
addition, ferroptosis can be triggered by ferritin autophagy 
in the lysosomes, which increases the decreased iron con-
tent (Hou et al. 2016; Liu et al. 2020a, b). To prevent cel-
lular harm from iron-mediated degradation, cells undergo 
ferritinophagy, a mechanism regulated by the nuclear 
receptor coactivator 4 (NCOA4) cargo receptor (Cicenas 
et al. 2017; Gryzik et al. 2021) (Fig. 1).

Targeting ferroptosis in renal I/R injury

Thrombotic or embolic events, surgical procedures, and 
renal transplantation have been associated with acute kidney 
failure induced by IRI and have played a substantial role in 
patient morbidity and mortality (Malek and Nematbakhsh 
2015). Necrosis and ferroptosis pathways exist simultane-
ously in renal IRI, suggesting a “synergistic effect” in recent 
studies on renal I/R (Haase et al. 2010; Linkermann et al. 
2014a, b; Ni et al. 2019). Mixed lineage kinase domain-like 

Fig. 1   Pathogenic factors 
trigger a Fenton reaction that 
oxidizes membrane lipids to 
lipid peroxides and regulates 
ferroptosis by increasing H2O2 
or Fe2+ abnormally
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protein (MLKL), a molecular switch in renal IRI, is acti-
vated by PUFA depletion and activates necroptosis. In con-
trast, ACSL4 is activated by necroptosis and makes the 
biomembrane less susceptible to MLKL-induced mem-
brane permeabilization (Casserly and Dember 2003; Choi 
et al. 2019; Li et al. 2020). Iron chelators have already been 
reported to prevent renal tubular cell mortality in several 
studies of renal IRI, suggesting the significant role of iron 
in renal IRI (Paller and Hedlund 1994). Renal tubular cell 
death can be prevented by active in-transforming growth 

factor (TGF) receptor ALK4/5, which has been related to 
stress-induced renal injury (Sharma and Leaf 2019). There 
may be a correlation between ferroptosis and different cell 
death systems in the renal IRI model. Ferroptosis inhibi-
tors are effective in a few preclinical studies for renal IRI, 
although discovering specific pathways regulating fer-
roptosis may yield better outcomes. As a result, future 
research efforts must focus on identifying novel mecha-
nisms or pathways for preclinical and clinical evaluation 
of ferroptosis inhibitors to treat IRI (Fig. 2).

Fig. 2   Esterification of arachidonic acid (AA) by lipoxygenase (LOX) 
produces phosphatidylethanolamine-AA species, which is then oxi-
dized by ferroptosis-inducing mechanisms. Ferroptosis is initiated by 
ACSL4 and LPCAT3, which make it easier to generate AA-PE spe-

cies. This is in contrast to GPX4, which adversely regulates ferropto-
sis by reducing the formation of lipid hydroperoxides (L-OOH). Lipid 
peroxidation inhibitors, iron chelators, antioxidants, and LOX inhibi-
tors can be used to prevent ferroptosis
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Lipid peroxidation inhibitors

Ferrostatin-1 (Fer-1) decreases membrane lipid break-
down and cell death via a reductive mechanism (Skouta 
et al. 2014). Lipid peroxides can be converted to alco-
hols (R-OOHR-OH), or lipid groups can be intercepted 
and scavenged by direct reduction (R-OR-OH) or hydro-
gen atom transfer (Hu et al. 2019; Gupta et al. 2021). 
SRS16-86 (a third-generation ferrostatin) was tested 
on an in vitro model of renal IRI, which offered better 
plasma, metabolic stability, improved kidney function, 
and prolonged life (Pefanis et al. 2019). In fact, ferrosta-
tin 16–86, a more stable homolog, was more successful in 
experimental kidney IRI than Fer-1 (Angeli et al. 2014). 
The ferroptosis inhibitor Liproxstatin-1 was also found 
to be effective in inhibiting human proximal tubule epi-
thelium, Gpx4/kidney, and a model of IRI-induced tissue 
injury (Angeli et al. 2014; Ran et al. 2015; Kajarabille 
and Latunde-Dada 2019). Ferroptosis in RSL3-stimu-
lated mouse striatal cells was suppressed by vitamin E 
and its metabolites, such as quinone/hydroquinone, even 
though this research was conducted before ferroptosis was 
defined. Still, the influence on ferroptosis was not exam-
ined (Zhou et al. 2020a, b). Vitamin E also significantly 
reduced lipid peroxidation of renal cells induced by renal 
I/R in rats (Hinman et al. 2018). I/R-induced tubular epi-
thelial cell injury and inflammation were also decreased 
by XJB-5–131 in mice by particularly inhibiting ferrop-
tosis (Zhao et al. 2020). Quercetin (QCT) is a natural 
flavonoid-containing compound that has been proven to 
reduce ferroptosis in acute renal injury in patients with 
IRI via reducing levels of malondialdehyde (MDA) and 
ROS in renal proximal tubular epithelial cells while rais-
ing levels of glutathione (GSH) (Hatcher et al. 2009; 
Wang et al. 2021a, b, c, d, e).

Ferroptosis can also be prevented by lipid peroxidase 
inhibitors, such as lipoxygenase (LOX) inhibitors. Humans 
have several lipoxygenase isoforms (12/15-LOX, 5-LOX) 
isoform, and 5-LOX is the only human lipoxygenase 
with 3D structural data that exacerbates the ferroptosis 
process (Yang et al. 2016). Despite this, scientists have 
worked hard to identify inhibitors that specifically target 
particular isoforms of the protein. A definitive association 
between ferroptosis and a specific lipoxygenase isoform 
has yet to be established. For example, 15-LOX, which 
encodes lipoxygenase, can oxidize esterified FA and is 
assumed to be responsible for cell death, did not repair 
Gpx4 loss in genetic tests (Mao et al. 2019). Although 
ablation of 15-LOX in heterozygous Gpx4 mice can treat 

male subfertility, this suggests that Gpx4 and lipoxygenase 
have a complicated tissue-specific interplay (Friedmann 
Angeli et al. 2014). As it turns out, blocking more than 
one lipoxygenase had a more significant protective effect 
(Wang et al. 2021a, b, c, d, e) than inhibiting just one. As 
a result, it is necessary to determine whether a particular 
lipoxygenase or pan-lipoxygenase inhibitor may be used to 
develop new therapies that can successfully reduce ferrop-
tosis in renal I/R injury. Cell death in human fibrosarcoma 
cells and GPX/mouse embryonic fibroblasts exposed to 
erastin was reduced by PD146176, a 15-LOX inhibitor 
(Doll et al. 2017).

Iron chelators

Experimental AKI has been effectively treated with iron 
chelation, preventing ferroptosis (Paller et al. 1998). Iron 
deficiency can lead to cell death in the proximal tubular 
cells; hence, none of these are currently used in clinical 
practice. However, the effect of Deferoxamine was evalu-
ated on iron-mediated postischemic renal injury in rats; 
Deferoxamine infused during the first 60 min of reperfu-
sion resulted in a marked improvement in renal function 
and reduction in lipid peroxidation (Paller et al. 1998). A 
dose-adapted form of Deferiprone can, on the other hand, 
be put to the test (Finazzi and Arosio 2014). H-ferritin 
(FtH) is expressed in the kidney’s proximal tubules to 
sequester iron and decrease free iron-mediated toxicity 
efficiently. The ferritin-H (FTH) component’s ferroxidase 
activity transforms Fe2+ to Fe3+, which is then stored in 
the ferritin mineral core by ferroxidase activity. As an 
iron chelator, FtH is vital since each molecule can bind 
to up to 4500 Fe2+ ions. HO-1 increases the expression 
of FtH to store the ferrous iron produced throughout the 
process (Matzanke et al. 1997). This protection is also 
dependent on FtH being upregulated by HO-1. In addi-
tion, HO-1 must increase the expression of FtH for it to 
be preserved. A study used proximal tubule-specific FtH 
mutant mice to evaluate the role of FtH in rhabdomy-
olysis and cisplatin-induced AKI. The removal of FtH 
from proximal renal tubules exacerbated kidney injury 
and increased mortality, despite HO-1 expression being 
considerably higher (Swaminathan 2018). In AKI, Hep-
cidin induces H-ferritin and sequesters iron from mac-
rophages to prevent ferroptosis (Ho et al. 2011). The iron 
chelators Deferasirox and Hepcidin must be studied in a 
preclinical model of renal I/R damage to establish their 
iron-chelating capacities and impact on ferroptosis inhi-
bition (Table 1).
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Emerging mechanism of ferroptosis in renal 
I/R injury

Pannexin signalling

An ATP-releasing pathway protein, pannexin, is found in 
every cell type. Pannexin is a membrane channel composed 
of three proteins (Panx1, Panx2, and Panx3). Panx1 regu-
lates ATP release as a damage-associated molecular pat-
tern (DAMP) molecule that activates autophagy signaling 
or apoptosis under oxidative conditions (Penuela and Gehi 
2013). Pannexin has been reported to exhibit pro-apoptotic 
effects, inflammation, oxidative stress, and cell death dur-
ing kidney injury. The mechanism of ferroptosis in Parkin-
son’s disease was triggered by ATP binding to the P2Y7 
receptor, activating signaling pathways such as PKC and 
MAPK (Karatas et al. 2013). In particular, a decrease in 
ATP release-dependent signaling has been found to lower 
oxidative stress and protect kidneys during IRI (Xu et al. 
2018). P2Y7R-binding Panx 1 stimulates cell death that can 
be reversed by inhibiting ferroptosis, according to studies 
(Xu et al. 2018). A recent study found that silencing Panx1 
expression in cultured HK-2 cells treated with erastin sig-
nificantly attenuated ferroptotic lipid peroxidation and iron 
accumulation.

Further, Panx1 knockout mice subjected to renal IRI dis-
played reduced malondialdehyde (MDA), plasma creatinine 
levels, and tubular cell death compared to wild-type mice. 
Moreover, knockdown of Panx1 in mice offered protection 
against renal IRI by inducing expression of heme oxyge-
nase (HO-1) and attenuating ferroptinophagy via MAPK/
ERK activation (Su et al. 2019). Therefore, Panx1 could 
be a potential therapeutic target for managing acute kidney 
injury (AKI) due to IRI.

miRNAs

Various genes regulate the state of lipid peroxidation and 
iron concentrations in cells. SLC7A11 decreases ferroptosis 
by transferring cystine moiety into the cytosol to enhance 
GSH production, while GPX4 reduces lipid peroxidation in 
cells (Ghini et al. 2018). To affect gene transcription, micro-
RNAs (miRNAs) target the 3′UTR of mRNA22 (Diallo et al. 
2021). Many biological processes rely on miRNA-mRNA 
interaction, including immune responses, cell growth, 
autophagy, and death. A growing number of research sug-
gest that miRNAs may play functional roles by cooperating 
with other noncoding RNAs (Xia et al. 2008). For example, 
in pediatric T-ALL cells, the expression of tumor suppres-
sor genes PTEN and BIM was regulated by miRNAs hsa-
20b-5p and hsa-363-3p and modulated survival of T-ALL 
cells (Drobna et al. 2020). In I/R-induced renal damage, 
miRNAs can slow its progression by modifying the expres-
sion of genes associated with the injury (Zager et al. 2009). 
Dysregulation of miR-182-5p and miR-378a-3p resulted in 
ferroptosis in I/R-induced kidney damage due to reduced 
GPX4 and SLC7A11 expression (Zager et al. 2009). As 
GPX4 and HMOX-1 are the essential regulatory genes in the 
ferroptosis form of programmed cell death and also cause 
injury to renal epithelial cells during IR. A recent study 
investigated the miRNA-mRNA regulatory system involved 
in ferroptosis following renal IR in which the bioinformat-
ics analysis revealed a significant upregulation of HMOX1 
in the early stages of renal IR injury, and miRNA-3587 was 
found to be a regulator of HMOX-1. Inhibition of miR-3587 
in tubular epithelial cells of hypoxia reoxygenation (HR) 
model system showed a significant increase in HO-1 protein 
(encoded by HMOX1) compared to the HR group, resulting 
in a simultaneous increase in GPX4 protein levels, decreased 

Table 1   Ferroptosis inhibitors against renal I/R injury

Drug Target Effect Reference

Ferr-1; SRS16-86 (a 
third generation fer-
rostatin)

Lipid peroxidation Improved renal function, decreased tubular 
injury, and cell death

Pefanis et al. (2019)

Liproxstatin Lipid peroxidation Decreased lipid peroxidation and improved 
tubular injury

Angeli et al. (2014); Ran et al. (2015); 
Kajarabille and Latunde-Dada (2019)

16–86 Lipid peroxidation Increased survival and tubular cell death Angeli et al. (2014)
Deferoxamine Iron chelation Impoved renal function and reduced lipid 

peroxidation
Paller et al. (1998)

PD146176 15-LOX inhibitor Not tested in IRI but tested in human fibro-
sarcoma cells and GPX/mouse embry-
onic fibroblasts

Doll et al. (2017)

Vitamin E Antioxidant defence system Impoved renal function and tissue damage Hinman et al. (2018)
Quercetin Antioxidant defence system Reduced ROS in renal proximal tubular 

epithelial cells and increased glutathione 
(GSH) levels

Hatcher et al. (2009); Wang et al. (2021a, 
b, c, d, e)
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Fe2+ and malondialdehyde level, and restored standard mito-
chondrial membrane potential. Therefore, the results indi-
cated that miR-3587 suppression promoted HO-1 upregula-
tion and protected renal tissues from IR-induced ferroptosis 
(Tao et al. 2021).

Heme oxygenase‑1

Heme oxygenase is a well-known ubiquitous enzyme with 
a wide range of potential therapeutic applications in vari-
ous disorders. Three different isoforms of the enzyme heme 
oxygenase 1 (HO-1) have been acknowledged: HO-1, HO-2, 
and HO-3, with the latter being a splice variation of HO-2. 
Inflammation and oxidative stress cause cell damage, which 
can be reduced by regulating iron metabolism (Khan et al. 
2022a). Intracellular iron absorption and heme breakdown 
are facilitated by heme oxygenase-1 (HO-1) (Khan et al. 
2022a, b, c; Khan et al. 2020). The intracellular ferrous 
iron level decreases when HO-1 expression or enzymatic 
activity is decreased. Thus, HO-1 is usually regarded as an 
essential regulator of iron metabolism. Gene deletion and 
transgenic techniques have established that HO-1 protects 
against AKI. It has been found that selective overexpres-
sion of HO-1 mice in the proximal tubule level is protec-
tive, whereas HO-1 deletion results in ferroptosis (Schipper 
et al. 2009; Liu et al. 2020a, b). However, toxin-induced 
HO-1 overexpression damages the kidneys and results in 
mitochondrial dysfunction (Wang et al. 2021a, b, c, d, e). 
Iron levels in the blood are maintained by FPN, the only 
iron export protein in mammals. In AKI mice, the FPN gene 
was knocked out, and renal function improved, possibly 
due to reduced ferroptosis and FtH chelation of ferrous iron 
(Shiraishi et al. 2000; Nath 2014; Wang et al. 2018; Fang 
et al. 2020). It has been found that HO-1 regulates oxidative 
stress and autophagy in a range of animal models of kidney 
injury, including ischemia–reperfusion, lipopolysaccharide, 
and cisplatin. Inflammation is regulated by HO-1, a criti-
cal contributor in this process (Adedoyin et al. 2018; Khan 
et al. 2020). Global HO-1 deficit in renal IRI mice model 
has shown to promote myeloid cell trafficking and monocyte 
chemoattraction through increased MCP-1 and MCP-1 traf-
ficking (Pittock et al. 2005).

On the other hand, macrophage’s overexpression with 
HO-1 in patients with renal IRI has shown anti-inflammatory 
properties and contributed to renal recovery (Zarjou et al. 
2013). Other systems, such as proximal tubular ferritin, are 
required to protect cells against iron-induced damage and 
death. For example, iron generated by HO-1-catalytic activ-
ity can be stored more effectively when the heavy chain of 
ferritin is upregulated. The ability of HO-1 to upregulate 
H-ferritin is essential for protection (Zarjou et al. 2013). 
Researchers have studied the role of FtH in rhabdomyoly-
sis and cisplatin-induced AKI in proximal tubule-specific 

mutant mice (Zarjou et al. 2013). Removing FtH from renal 
tubules has been shown to aggravate kidney damage and 
increase mortality, even though HO-1 expression is signifi-
cantly higher in these tubules (Mohammad et al. 2021). Hep-
cidin has also modulated iron metabolism via FPN in AKI 
by restoring iron homeostasis and lowering inflammation. 
As the primary regulator of ferroportin-mediated iron export 
and intracellular H-ferritin levels, Hepcidin is essential for 
iron homeostasis. Hepcidin, a protective molecule, protects 
against acute kidney injury. Promising agents targeting 
Hepcidin, H-ferritin, and ferroptosis pathways could be an 
effective treatment strategy to prevent renal IRI (Moham-
mad et al. 2021). NRF2 activation is influenced by metabolic 
proteins, including ferritin and heme oxygenase 1 (HO-1), 
that control iron availability and ferroptosis (Nie et al. 2018). 
Current research revealed that HO-1 deletion in hepatocellu-
lar carcinoma and kidney cells enhanced erastin-induced fer-
roptosis (Nie et al. 2018; Kim et al. 2021). At the same time, 
NRF2 activation by ulinastatin upregulated HO-1 expres-
sion and reduced acetaminophen-induced liver I/R injury 
via alleviating ferroptosis, suggesting that acetaminophen 
induced ferroptosis via downregulation of the NRF2/HO-1 
signaling pathway (Wang et al. 2021a, b, c, d, e). Therefore, 
NRF2 function needs to be evaluated for its beneficial effects 
against renal I/R damage via targeting ferroptosis.

Conclusion and perspective

Ferroptosis has emerged as a possible target for designing 
a novel treatment regimen for a wide range of disorders. 
Dysregulation in iron metabolism and ROS generation 
are the primary causes of ferroptosis. Several studies have 
shown that ferroptosis has a significant function in renal I/R 
models. Lipid peroxidase inhibitors and iron chelators have 
been shown to inhibit renal I/R damage ferroptosis. How-
ever, further therapeutic options for preventing ferroptosis in 
renal I/R conditions need to be developed. Renal ischemia/
reperfusion (I/R) models have shown many ferroptosis regu-
lators’ expressions, comprising LOX, SLC7A11, and FTH1. 
Preventing ferroptosis in renal I/R injury may be possible 
by using pharmaceutical drugs to alter these parameters. 
Humans have several lipoxygenase isoforms (12/15-LOX, 
5-LOX), and blocking one of these enzymes may prevent 
ferroptosis. Therefore, lipid peroxidase inhibitors may be 
evaluated in renal I/R models that may successfully reduce 
ferroptosis. PD146176, a 15 LOX inhibitor, had reduced cell 
death in GPX/mouse embryonic fibroblasts and human fibro-
sarcoma cells exposed to erastin. Hence, preclinical evalua-
tion of these inhibitors in the renal I/R model should also be 
done. More understanding and identification of molecular 
mechanisms of ferroptosis in renal I/R models is required to 
assess the effect of modulating these mechanisms with the 
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desired therapeutic agent. In renal I/R models, specific indi-
cators for ferroptosis, such as caspase activation in the event 
of apoptosis and the development of autophagy lysosomes in 
the case of autophagy, have yet to be developed. Therefore, 
ferroptosis inhibition could be a promising strategy to reduce 
renal I/R damage and should be evaluated in preclinical and 
clinical platforms.
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