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Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has 
affected the world’s health systems for more than two years. This disease causes a high mortality rate followed by cytokine 
storm–induced oxidative stress and acute respiratory distress syndrome (ARDS). Therefore, many drugs have been con-
sidered with emphasis on their anti-inflammatory and antioxidant effects in controlling the consequences of SARS-CoV-2 
infection. Icariin is a major bioactive pharmaceutical compound derived from Epimedium plants, which is known due to 
its anti-inflammatory and antioxidant effects. Additionally, the protective effects of icariin have been studied in different 
pathologies through modulating intracellular pathways. In addition to the potential effect of this compound on inflammation 
and oxidative stress caused by SARS-CoV-2 infection, it appears to interfere with intracellular pathways involved in viral 
entry into the cell. Therefore, this paper aims to review the molecular mechanisms of anti-inflammatory and antioxidant 
properties of icariin, and hypothesizes its potential to inhibit SARS-CoV-2 entry into host cells through modulating the 
intracellular pathways.
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Background

The coronavirus disease 2019 (COVID-19) epidemic origi-
nated in Wuhan, China, and it has now spread worldwide. 
COVID-19 is caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), a new member of the coro-
navirus family. Despite the development of vaccines, there 
is no definitive cure for reducing the mortality rate caused 
by it. Icariin (C33H40O15) is the most abundant and the 
main phytochemical (secondary metabolite) of the ancient 
Chinese medicinal plant, Epimedium prenylflavonoids (EP), 

used for its potent anti-inflammatory and antioxidant proper-
ties for centuries (Li et al. 2022). It exhibits wide positive 
effects on bone, cardiovascular, neurologic, lung, and liver 
against different pathologies (Zeng et al. 2022). Table 1 sum-
marizes the anti-inflammatory and anti-oxidative effects of 
icariin in experimental studies. Although no study has been 
conducted to investigate the effect of this compound on 
COVID-19, its molecular mechanisms indicate its possible 
effect on various aspects of the pathophysiology of this dis-
ease. Therefore, the aim of this review is to hypothesize the 
therapeutic potential of icariin on molecular factors involved 
in SARS-CoV-2 infection.

Anti‑inflammatory properties of icariin

Cytokine storm is known as one of the main causes of mor-
tality followed by SARS-CoV-2 infection (Ghasemnejad-
Berenji 2021; Jiang et al. 2022). Elevated levels of different 
pro-inflammatory cytokines such as IL (interleukin)-1, IL-6, 
and tumor necrosis factor α (TNF-α) have been detected 
in COVID-19 patients associated with acute respiratory 
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distress syndrome (ARDS) (Jiang et al. 2022). Accordingly, 
anti-inflammatory agents are an important part of treat-
ment strategies against SARS-CoV-2 infection. One of the 
most well-known features of icariin is its anti-inflammatory 
effects, which have been studied in different models. Here, 
the mechanism of anti-inflammatory effects of this com-
pound is investigated.

Angiotensin II (Ang II) is the main effector molecule of 
the renin-angiotensin system which is thought to be involved 
in inducing inflammatory responses in COVID-19 patients. 
Decreased ACE2 levels on the cell surface followed by its 
endocytosis contribute to increasing Ang II, as shown in 
COVID-19 patients (Khezri 2021). Elevated Ang II level 
has been associated with different inflammatory patholo-
gies. One of the main targets of Ang II is angiotensin type 
1 receptor (AT1R), which its activation leads to induces 
inflammatory responses (Phillips and Kagiyama 2002). 
The main downstream effector of AT1R followed by Ang 
II binding is the PI3K/AKT signaling pathway which acti-
vates inflammatory factors such as NF-κB (El-Shoura et al. 
2018). Regardless of the PI3K/AKT/NF-κB pathway acti-
vation by Ang II, it has been shown that ORF7a protein of 
SARS-CoV-2 activates NF-κB leading to induce the expres-
sion of pro-inflammatory cytokines such as IL-1β, IL-1α, 
IL-6, IL-10, IL-8, and TNF-α (Su et al. 2021). In this case, 
there are numerous studies indicating the effect of icariin 
on the activity of mentioned factors. For instance, it has 
been reported that icariin suppresses the destructive effects 
of Ang II on human umbilical vein endothelial cells (Wang 
et al. 2008), cardiomyocytes (Zhou et al. 2014), and cer-
ebrovascular remodeling (Dong et al. 2019). On the other 
hand, it has been reported that icariin suppresses cigarette 
smoke–induced TNF-α expression through NF-κB inhibi-
tion (Li et al. 2014). Also, it has been indicated that icariin 
has protective effects against lipopolysaccharide-stimulated 
macrophages through NF-κB suppression leading to inhibit 
TNF-α expression (Chen et al. 2010). Additionally, protec-
tive effects of icariin in a rat model of cerebral ischemia–rep-
erfusion injury have been shown to be mediated by peroxi-
some proliferator–activated receptors-γ (c-γ) activation and 
NF-κB suppression (Xiong et al. 2016).

The other main intracellular factor involved in inflam-
matory responses is the signal transducer and activator 
of transcription (STAT), which its over-activity has been 
detected in the kidney of COVID-19 patients (Salem et al. 
2021). Also, it has been proposed that elevated level of leptin 
in COVID-19 patients is associated with STAT3 and AKT 
over-activity and pro-inflammatory cytokine expression 
(Wang et al. 2021). On the other hand, STAT over-activity 
may be involved in Th17 response in COVID-19 patients 
(Martonik et al. 2021). However, the inhibitory effect of 
icariin on STAT activity has been shown in different mod-
els. For instance, icariin has been shown to suppress Th1/

Th17 responses through suppression of STAT1 and STAT3 
activation leading to inhibit inflammatory responses in an 
animal model of colitis (Tao et al. 2013). In addition, it has 
been indicated that STAT3 inhibition by icariin leads to 
regulating Th17 activity and alleviates rheumatoid arthritis 
in a murine model (Chi et al. 2014). There are several stud-
ies indicating the effect of icariin on Th17 function without 
emphasizing the STAT activity. In this regard, it has been 
shown that icariin regulates Th17/Treg function in murine 
airways leading to reduce the expression of IL-6 and TGF-β 
(Wei et al. 2015).

Neutrophil infiltration to the lungs during SARS-CoV-2 
infection has been shown to be closely related to lung injury 
(Wang et al. 2020a). Elevated expression of several adhe-
sion molecules involved in neutrophil recruitment such as 
intercellular adhesion molecule-1 (ICAM-1) and vascular 
cell adhesion molecule 1 (VCAM-1) has been detected in 
COVID-19 patients (Tong et al. 2020; Spadaro et al. 2021). 
Regarding the effect of icariin on neutrophil infiltration dur-
ing inflammatory processes, it has been shown that icariin 
decreases neutrophil infiltration into the lung followed by 
lipopolysaccharide-induced acute inflammation in rats via 
NF-κB suppression (Xu et al. 2010). On the other hand, 
it has been demonstrated that icariin suppresses ICAM-1 
expression via NF-κB inhibition leading to suppression of 
neutrophil recruitment and inhibiting lung injury in mice 
affected with cobra venom factor (Guo et  al. 2018). In 
another study, it has been demonstrated that treatment of 
keratinocytes with icariin followed by TNF-α/IFN-γ-induced 
inflammation leads to inhibit the expression of IL-8, IL-1β, 
and ICAM-1 performing an anti-inflammatory effect (Kong 
et al. 2015). Additionally, icariin has been reported to sup-
press ICAM-1 and VCAM-1 expression and exhibits a pro-
tective effect against high glucose-induced inflammation in 
human umbilical vein endothelial cells (Sun et al. 2019).

One of the main consequences of cytokine storm is 
fibrosis in different organs especially the lungs (Grillo et al. 
2021). In COVID-19 patients, Ang II-AT1R axis and ele-
vated inflammatory cytokines are represented as the main 
cause of lung fibrosis (Brosnahan et al. 2020). In this case, 
it can be re-referred to the PI3K/AKT singling pathway, as 
it has been shown that Ang II-AT1R axis induces activa-
tion of this pathway leading to lung fibrosis induction (Hu 
et al. 2018). However, it has been demonstrated that icariin 
augments bleomycin-induced pulmonary fibrosis in rats by 
targeting the NF-κB pathway (Du et al. 2021). Based on 
this evidence, it can be said that negative regulation of the 
PI3K/AKT pathway by icariin may lead to suppression of 
lung fibrosis in COVID-19 patients and further studies in 
this regard may be constructive.

The other consequence of high levels of Ang II and 
cytokine storm in COVID-19 patients is blood coagula-
tion which is closely related to the severity of the disease 
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(Han et al. 2020; Khezri and Ghasemnejad-Berenji 2021). 
Interestingly, it has been reported that platelets isolated 
from COVID-19 patients are over-activated due to over-
activity of the PI3K/AKT signaling pathway (Pelzl et al. 
2021). Since different studies have been conducted to sup-
press blood coagulation through inhibition of this pathway 
(Khezri et al. 2022), designing similar studies in order 
to clarifying the effect of icariin on platelet activity in 
COVID-19 patients can also be considered. However, 
previous studies have indicated the anti-platelet activity 
of icariin without emphasizing on mentioned factors. For 
instance, it has been demonstrated that icariin improves 
the imbalance between plasminogen activator inhibitor-1 
and tissue-type plasminogen activator activities, sup-
presses platelet activity, and inhibits blood coagulation 
in rabbits fed a high-cholesterol diet (Zhang et al. 2013; 
Irfan et al. 2021). In addition, inhibitory effects of icariin 
on platelet activation have been reported in spontaneously 
hypertensive rats (Li et al. 2021).

Antioxidant effects of icariin

Disturbing the balance between free radicals’ generation 
and the ability of cells to their elimination leads to oxida-
tive stress induction (Pizzino et al. 2017). Reactive oxygen 
species (ROS) play a central role in alterations in pulmo-
nary and red blood cell activity and contribute to hypoxic 
respiratory failure in severe cases of COVID-19 (Laforge 
et al. 2020). Since oxidative stress plays a crucial role 
in pathogenesis of respiratory viruses, especially SARS-
CoV-2, therapeutic interventions to modify oxidative 
stress represent a rational approach for the treatment of 
lower respiratory tract infections (Karkhanei et al. 2021). 
However, there are several intracellular factors which can 
be examined here. Nuclear factor erythroid 2–related tran-
scription factor (Nrf2) is one of the main transcription fac-
tors of antioxidant enzymes which its activation exhibits 
protective effects against different pathologies (Liu et al. 
2019). Therefore, therapeutic interventions to activate it 
in SARS-CoV-2 infection have been highly regarded as a 
treatment option (Cuadrado et al. 2020). Regarding the 
Nrf2-activating effects of icariin, it has been shown that 
icariin augments cigarette smoke–induced oxidative stress 
in lung human epithelial cells through Nrf2 activation, 
increased glutathione levels, and suppression of ROS gen-
eration (Wu et al. 2014). Additionally, protective effects of 
icariin on hypoxia/reoxygenation-induced oxidative stress 
have been shown to be mediated by Nrf2-heme oxygenase 
1 (HO-1) activation in cardiomyocytes (Sun et al. 2021). 
Also, it has been reported that icariin inhibits carrageenan-
induced acute inflammation and oxidative stress in rats 

through increasing the Nrf2 expression and reducing 
NF-κB expression (El-Shitany and Eid 2019).

Hypothesis of possible effect of icariin 
on SARS‑CoV‑2 entry to the host cells

In order to study the effect of a compound on COVID-
19, it is necessary to first explain its potential ability to 
suppress entry of the SARS-CoV-2 into the host cell. So 
far, four main factors are presented mediating the SARS-
CoV-2 entry to host cells, including angiotensin-convert-
ing enzyme 2 (ACE2), transmembrane Serine Protease 
2 (TMPRSS2), furin, and cluster of differentiation 147 
(CD147).

ACE2 is an enzymatic receptor on cell surface which 
has been introduced as the main SARS-CoV-2 receptor 
because of its high expression on respiratory system cells 
(Jiang et  al. 2022). In addition to the respiratory sys-
tem, high expression of ACE2 has been shown in differ-
ent other organs, including the intestine, skin, and testes 
(reviewed by Khezri et al. (2021)). Regarding the mecha-
nism of SARS-CoV-2 entry to host cells through ACE2, 
it has been shown that clathrin-mediated endocytosis is 
involved (Bayati et al. 2021). In a closer inspection, it 
has been indicated that phosphorylation of AP2M1 which 
encodes the μ2 subunit of AP2 complex, an adapter pro-
tein complex for clathrin, is involved in clathrin-mediated 
SARS-CoV-2 endocytosis (Wang et al. 2020b). One of the 
main regulators of the clathrin-mediated endocytosis is 
the phosphatidylinositol 3‑kinase (PI3K)/AKT signaling 
pathway which is involved in entry of different viruses 
that use clathrin-mediated endocytosis to infect host cells 
(reviewed by Khezri et al. (2021)). Interestingly, the PI3K/
AKT signaling pathway suppression has been shown to 
suppress SARS-CoV-2 entry to host cells (Sun et al. 2021). 
In a closer inspection, existing evidence suggests that the 
association between the PI3K/AKT signaling pathway and 
clathrin-mediated endocytosis of SARS-CoV-2 may be 
mediated by AP2M1. In this regard, it has been shown that 
activation of the PI3K/AKT signaling pathway in acute 
myeloid leukemia stem cells contributes to induce AP2M1 
expression (Yu et  al. 2021). In addition, it has been 
reported that sunitinib, a PI3K/AKT inhibitor, reduces 
SARS-CoV-2 infection via inhibiting AP2M1 phospho-
rylation (Wang et al. 2020b). Based on this evidence, it 
can be said that the effect of a compound on the activity 
of this pathway can affect the entry of SARS-CoV-2 into 
the cell. It is clearly understood that icariin suppresses 
the PI3K/AKT signaling pathway. In this case, it has been 
shown that icariin augments lipopolysaccharide-induced 
inflammation in rat lung tissue through inhibition of the 
PI3K/AKT signaling pathway (Xu et al. 2010). In addition, 
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it has been shown that icariin induces apoptosis of human 
lung adenocarcinoma cells through suppression of the 
PI3K/AKT pathway (Wu et al. 2019). This data suggests 
the probable inhibitory effect of icariin on SARS-CoV-2 
through suppression of clathrin-mediated endocytosis by 
inhibition of the PI3K/AKT/AP2M1 pathway.

Another aspect of the study of ACE2 in COVID-19 is 
related to its shedding which contributes to form soluble 
ACE2 (sACE2) (Zoufaly et al. 2020). It is clearly under-
stood that increased sACE2 levels suppress SARS-CoV-2 
infectivity through binding to its Spike protein (Zou-
faly et al. 2020). One of the main enzymes involved in 
ACE2 shedding is a disintegrin and metalloprotease 17 
(ADAM17) which its role in suppression of SARS-CoV-2 
infectivity has also been studied (Jiang et al. 2022). In 
this regard, although there is no evidence indicating the 
effect of icariin on ADAM17 expression and activity, its 
effect on pathways involved in ADAM17 expression can be 
examined. Mitogen-activated protein kinase (MAPK) is an 
intracellular factor which regulates ADAM17 expression 
positively and is involved in ACE2 shedding by mediating 
of ADAM17 (de Queiroz et al. 2020). On the other hand, 
it has been shown that icariin induces mesenchymal stem 
cell differentiation via MAPK activation (Wu et al. 2015). 
Therefore, studies can be designed to investigate the effect 
of icariin on the MAPK/ADAM17 pathway, ACE2 shed-
ding, and subsequently suppression of virus infectivity.

TMPRSS2 is involved in SARS-CoV-2 fusion into 
the cell (Matsuyama et al. 2020). Extensive expression 
of TMPRSS2 in various tissues and cells introduces it 
as a candidate for therapeutic interventions to prevent 
the SARS-CoV-2 entry and replication in the host cell. 
Regarding the association between icariin and TMPRSS2, 
in a computational study, it has been shown that icariin has 
a strong binding affinity to TMPRSS2 which introduces it 
as a potential inhibitor of SARS-CoV-2 entry to host cells 
(Chikhale et al. 2020).

CD147 is the other known receptor for SARS-CoV-2 to 
enter the host cells (Ulrich and Pillat 2020). It seems that 
this receptor is involved in SARS-CoV-2 infectivity in car-
diomyocytes as it has been reported that melatonin augments 
myocardial injury caused by SARS-CoV-2 through CD147 
(Loh 2020). In this case, it has been indicated that icariin 
suppresses CD147 expression and exhibits a protective 
role against apoptosis in myocardial cells and it can also be 
considered in the case of SARS-CoV-2 infection (Shi et al. 
2018).

In addition to the mentioned factors, furin and different 
forms of cathepsins including cathepsins B, L, and K are 
involved in SARS-CoV-2 Spike protein cleavage leading to 
its fusion to the cell (Bollavaram et al. 2021). There is no 
data indicating the effect of icariin on furin activity, but it 
serves as a cathepsin K inhibitor in different tissues. For 

instance, it has been shown that icariin inhibits bone degra-
dation in an animal model of arthritis through suppression 
of cathepsin K (Sun et al. 2013).

Although there is not any study on the effects of icariin 
on the mentioned factors, in an in-silico study, it has been 
reported that icariin could interact with the catalytic resi-
dues of the RBD of the spike glycoprotein (Tyr505, Asn501, 
Ser494, Gln493, and Leu455). In addition, it was shown 
that icariin extensively interacts with the active amino acid 
residues of cathepsin B (Istifli et al. 2021).

Collectively, this data introduces icariin as a strong can-
didate to investigate its effects on SARS-CoV-2 infectivity 
through different mechanisms and designing studies in this 
case can be constructive.

Icariin in clinical trials

Double-blinded, placebo-controlled randomized trial studies 
used the purified extract of EP to examine its safety, pharma-
cokinetics in healthy people, and its effect on osteoporosis in 
post-menopausal women. The results showed no substance-
related adverse effects, and the drug was well tolerated. The 
serum levels of EP metabolites were measured, while icaris-
ide I and icariin serum levels were undetectable (Teo et al. 
2019; Yong et al. 2021). Additionally, treating late meno-
pausal osteopenia women (lumbar spine bone densitometry 
T score of − 2 to − 2.5) with daily ingestion of icariin in a 
24-month randomized trial showed significant improvement 
in bone loss prevention (Zhang et al. 2007). We found no 
evidence of icariin application for viral diseases in humans, 
while in animal studies, icariin showed survival effects for 
duck viral hepatitis in ducklings (Xiong et al. 2014). Col-
lectively, these studies suggest that purified icariin can be 
evaluated in the design of clinical trials to evaluate its vari-
ous benefits in COVID-19 patients.

Conclusion

Based on the existing evidence, icariin has been approved 
to be an anti-inflammatory and antioxidant agent in differ-
ent pathologies. These effects have been associated with 
its effects on different inflammatory factors (i.e., NF-κB 
and STATs) which contribute to inducing the expression of 
pro-inflammatory cytokines, the most important of which 
are TNF-α, IL-1, and IL-6. These factors are involved in 
the induction of fibrosis in various organs, and the effect of 
icariin on their expression has been shown to inhibit organ 
fibrosis in various models. Since the role of the mentioned 
factors in the pathophysiology of COVID-19 has been 
shown, the positive effects of icariin in this disease can 
be considered. On the other hand, the interplay between 
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icariin and intracellular pathways involved in the entry of 
SARS-CoV-2 into the host cells has been investigated in 
non-COVID-19 models, which offers hypotheses for the 
beneficial effects of this compound on the disease. How-
ever, it seems that designing studies to investigate these 
effects in SARS-CoV-2 infection can be considered as a 
treatment option. Figure 1 depicts the molecular mecha-
nisms of icariin interfering with SARS-CoV-2 infection.
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