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Abstract
Melatonin, as a neuroendocrine hormone, is produced primarily by the pineal gland. Melatonin, a pleotropic molecule, acts as a
free radical scavenger, antioxidant, and regulator of circadian rhythm in mammals via several receptor-mediated and non-
receptor-mediated mechanisms. This inexpensive, well-tolerated, and multi-target molecule has a great therapeutic potential
against many diseases. Many evidences have proposed that melatonin plays a key role in the pathophysiology of various
cardiovascular diseases. The aim of this paper is to discuss the data and experiments regarding the effects of melatonin in
management of cardiovascular risk factors. PubMed, EMBASE, and Scopus have been searched for data collection using related
keywords. Two hundred ten articles were included in this review from 2253 founded documents. Using these documents, the
main mechanisms of action of melatonin are discussed and summarized in this article. Also, recent progresses regarding
melatonin’s effects on cardiovascular risk factors and diseases including diabetes, hypertension, hyperlipidemia, obesity, myo-
cardial ischemia-reperfusion injury, pulmonary hypertension, and atherosclerosis have been reviewed. Many studies have dem-
onstrated the beneficial effects of melatonin in prevention and improving cardiovascular risk factors, and this inexpensive and
well-tolerated drug can be strongly proposed in different cardiovascular diseases as well as metabolic syndrome.
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Introduction

Cardiovascular diseases are the most important cause of death
and account for about one third of all deaths. Considering that
cardiovascular diseases are the major causes of mortality
worldwide, preventive measures to reduce the creation and
development of these disorders are very important (Mozos
2017).

Melatonin (N-acetyl-5-methoxytryptamine) is a very old
molecule which is produced in many organisms such as bacte-
ria, fungi, plants, and animals. In vertebrates, melatonin is the
main hormone of pineal gland that is secreted on a base of a
circadian pattern and synchronized to the dark phase of light/
dark cycle (Cecon et al. 2018). In the other words, the secretion

of melatonin is inversely regulated by light. Melatonin can also
be produced by extra-pineal tissues such as the retina, the innate
immune system, and the gastrointestinal tract (Jockers et al.
2016a). Melatonin regulates the sleep cycle and also has anti-
oxidant and anti-inflammatory properties and controls glucose
and lipid metabolism (Espino et al. 2011).

Moreover, melatonin increasingly is being recognized in the
pathophysiology of cardiovascular diseases. The reduced levels
of melatonin and its major metabolite, 6-sulphatoxymelatonin,
have been reported in various cardiovascular diseases including
myocardial infarcts, coronary heart disease, congestive heart
failure, and nocturnal hypertension (Baker and Kimpinski
2018; Mukherjee et al. 2012). Also, the deficiency in melatonin
secretion, as in shift-work, aging and illuminated environments
during the night, causes glucose intolerance, insulin resistance,
metabolic circadian disorganization and sleep disturbance that
threatens the health conditions (Cipolla-Neto et al. 2014).

Melatonin receptors have been identified within the car-
diovascular system, including various vascular tissues. In
animals, pinealectomy causes hypertension and peripheral
vasoconstriction (Zanoboni et al. 1978) (Baker and
Kimpinski 2018).
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Administration of melatonin has been shown to be efficient
in the modulation of oxidative stress, inflammatory marker,
hypertension and metabolic syndrome (Gomes Domingos
et al. 2019). Exogenous melatonin also has been shown to
reduce platelet aggregation, nocturnal hypertension, and se-
rum catecholamine levels (Pandi-Perumal et al. 2017b).

In this review, we discuss the effect of melatonin on car-
diovascular risk factors such as hypertension, hyperlipidemia,
diabetes, etc. and the recent progresses in the understanding of
melatonin’s effects on cardiovascular diseases (Table 1).

Scopus, PubMed, and EMBASE databases were searched
with the following keywords:

- Hypertension or “blood pressure” or hypotensive or
antihypertensive

- Diabetes or hyperglycemia or insulin or hypoglycemic or
antihyperglicemic or antidiabetic or “blood glucose”

- Dyslipidemia or hyperlipidemia or “high cholesterol” or
“high t r ig lycer ide” or hypercholes te ro lemia or
hypertriglyceridemia

- atherogenic or atherosclerosis
- Obesity or overweight or appetite or anti-obesity or

“weight loss”
- “metabolic syndrome”
In total, 2253 studies were found, of which 210 were in-

cluded in this review.

Melatonin secretion and metabolism

The pineal gland secretes melatonin in response to low light.
In low light conditions, a cascade of signal transductions
(starting at the suprachiasmatic nucleus and ending at the

pineal gland) is activated and induces an increase in melatonin
synthesis and secretion (Moore 1996). Initially, it was thought
that melatonin production is restricted to the pineal gland.
However, the removal of pineal gland did not result in the
complete elimination of melatonin, and about 20% of the nor-
mal levels remained in serum and urine. Melatonin-
synthesizing enzymes have been shown in retina, ovary, gas-
trointestinal tract and etc. However, the melatonin produced
outside the pineal gland generally does not reach the blood-
stream and therefore does not show systemic effects (Bubenik
and Pang 1994)

Melatonin is metabolized at the site of production or in the
liver. In liver, cytosol, mitochondria, and endoplasmic reticu-
lum are involved in melatonin metabolism (Slominski et al.
2017). 6-Sulfatoxymelatonin is the main metabolite of mela-
tonin that produced in the liver and exerted in urine. 6-
Sulfatoxymelatonin is a reliable biomarker representing the
blood melatonin concentration (Xu and Huang 2017).

Mechanisms of action of melatonin

Melatonin exerts its physiological actions through four mech-
anisms including:

1- Binding to melatonin receptors in plasma membrane, cy-
toplasm and nucleolus

2- Binding to orphan nuclear receptors
3- Binding to intracellular proteins such as calcium binding

proteins
4- Antioxidant effect.

Table 1 Summary of the effects of melatonin on cardiovascular risk factors

Condition Mechanism Type of receptor Reference

Oxidative stress Inhibiting the electron transfer reactions of quinones MT3 (Nosjean et al. 2000)

Scavenging of free radicals Direct and
non-receptor-mediated

(Tan et al. 2015)

Diabetes Modulating the expression of the glucose uptake transporters MT1 and MT2 (Nduhirabandi et al. 2017)

Activation of the tyrosine kinase β-subunit of the insulin
receptor and downstream AKT and GSK-3β

MT1 (Heo et al. 2018); (Sharma et al. 2015)

Stimulation of the secretion of glucagon via PI3K activation MT1 (Bähr et al. 2011).

Dyslipidemia Upregulation of antioxidative enzymes and glutathione levels MT1 and MT2 (Mozaffari et al. 2012).

Obesity Reversing of high fat diet-induced gut microbiota dysbiosis – (Xu et al. 2017)

Hypertension Vasodilation via modulation of guanylyl cyclase and cGMP
production

MT2 (Baker and Kimpinski 2018).

Arrhythmias Upregulation of connexin-43 – (Beňová et al. 2015)

Modulation of PKC-related signaling – (Benova et al. 2013)

Atherosclerosis Modulating of MAPK pathway MT1 (Cheng et al. 2015)

Inducing autophagy via the Sirt3/Parkin signaling pathway – (Ma et al. 2018)
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Melatonin receptors

In humans, two types of membrane receptors (MT1 andMT2):
one type of cytoplasmic receptor (MT3) and one type of nu-
clear receptor have been identified for melatonin (Emet et al.
2016) (Fig. 1). Both MT1 and MT2 belong to G protein-
coupled receptors, whereas MT3 is a quinone reductases
which inhibits the electron transfer reactions of quinones and
consequently prevents oxidative stress. MT3 receptor is locat-
ed in the cytoplasm of liver, lung, kidney, eye, heart, brown fat
tissue, and intestine and muscle cells. This receptor is a detox-
ification enzyme. Some studies indicate the role of MT3 re-
ceptor in regulation of intra-ocular pressure (Ekmekcioglu
2006) (Emet et al. 2016). Retinoid-related orphan nuclear hor-
mone receptor (RZR/RORα) is forth type of melatonin recep-
tors. Melatonin, via this receptor, regulates some transcription
factors belongs to retinoic acid receptor super-family. (Pandi-
Perumal et al. 2008). The GPR50 receptor (a Melatonin-
related Orphan receptor) does not bind to melatonin; however,
it potentiates the binding of melatonin to MT1 receptors. Its
natural ligand has not been defined yet (Ekmekcioglu 2006;
Emet et al. 2016).

For G protein-coupled receptors of melatonin, receptor
binding affects intracellular signaling through regulatory ac-
tivities of adenylate cyclase, guanylate cyclase, phospholipase
C, and calcium channels. MT1 andMT2 receptors, via activat-
ing Gi subunit, inhibit adenylate cyclase, which subsequently
reduce cAMP production (Dubocovich 1995). Additionally,
through Gq subunit, melatonin increases phospholipase C

activity and intracellular calcium concentrat ions
(Dubocovich 1995). Melatonin has the ability to attach to
calcium binding proteins (such as calmodulin) with high af-
finity, thereby inhibits the activation of myosin light-chain
kinase, which in turn will decrease the contractile response
in different smooth muscles (Fathollahi et al. 2015). MT2 re-
ceptors, but not MT1, also modulate guanylyl cyclase and
subsequently cGMP production (Baker and Kimpinski 2018).

In the central nervous system including hypothalamus, pi-
tuitary, suprachiasmatic nucleus, hippocampus and
paraventricular nucleus, the melatonin receptors are highly
expressed. (Baker and Kimpinski 2018). Melatonin receptors
also have widespread distribution in central and peripheral
vasculature. In CNS vessels, melatonin receptors have been
identified within the vertebral arteries and Circle of Willis of
rats and primates (Capsoni et al. 1994) (Baker and Kimpinski
2018). In peripheral vessels, melatonin receptors have been
identified in the coronary arteries of chicks, the caudal artery
of rats and internal carotids in primates (Stankov et al. 1993)
(Baker and Kimpinski 2018). Melatonin effects on the vascu-
lar tonicity depend on the type of activated melatonin receptor.
Animal studies reveal that vasorelaxation is mediated through
MT2 activation and vasoconstriction through MT1 activation
via endothelium and smooth muscle, respectively (Fig. 1)
(Ekmekcioglu 2006). Despite numerous studies indicating
the presence of different melatonin receptors in vascular tis-
sue, there are few reports specifying the presence of MT1 and
MT3 receptors in cardiomyocytes (Slominski et al. 2012).
Considering the widespread distribution of receptors within
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the cardiovascular system, melatonin is expected to play an
important role in various cardiovascular diseases (Baker and
Kimpinski 2018).

Antioxidant and free radical scavenger
activity of melatonin

The antioxidant and mitochondrial-protecting effects of mel-
atonin have been demonstrated in numerous animal studies
(Kurhaluk et al. 2018) (Gerush et al. 2018) (Djordjevic et al.
2018) and clinical trials (Raygan et al. 2019b). For example,
Raygan et al. showed that administration of 5 mg (twice daily)
melatonin to diabetic patients with CHD for 12 weeks has
beneficial effects on plasma MDA, GSH, PCO, NO, and se-
rum hs-CRP levels (Raygan et al. 2019b). In elderly diabetic
patients, 5 mg/daily of melatonin reduced the glutathione and
MDA concentrations and activities of SOD-1, CAT, GPx-1,
and GR (Rybka et al. 2016). Twomainmechanisms have been
suggested to explain the antioxidant and free radical scaveng-
ing activity of melatonin: first mechanism is binding of mel-
atonin to the MT3 receptor which prevents from oxidative
stress via inhibiting the electron transfer reactions of quinones
(Nosjean et al. 2000), and the second mechanism is the scav-
enging of free radicals, because this hormone is an electron
donor (Tan et al. 2015). Depending on the dose of endogenous
or exogenous melatonin, receptor-dependent or receptor-
independent mechanisms (first or second mechanisms) may
be involved (Jockers et al. 2016a).

In addition to the above two mechanisms, melatonin also
indirectly stimulates antioxidative enzymes such as glutathi-
one peroxidase, glutathione reductase superoxide dismutase,
and glucose-6-phosphate dehydrogenase, and consequently
lowers molecular damage under conditions of excessive oxi-
dative stress (Reiter and Tan 2003). This stimulation of anti-
oxidative enzymes is mediated by acting on MT1 and MT2
receptors. Due to its highly lipophilic properties, melatonin
easily crosses cell membranes and reaches intracellular com-
partments, including nuclei and mitochondria. Melatonin spe-
cially reduces mitochondrial oxidative stress that preserves
normal mitochondrial function and decreases subsequent ap-
optotic events and cell death (Acuna-Castroviejo et al. 2014).

In addition to the melatonin itself, which is a direct free
radical scavenger, the metabolites of melatonin such as cyclic
3-hydroxymelatonin and N1-acetyl-N2-formyl-5-
methoxykynuramine, (is deformylated to N1-acetyl-5-
methoxykynuramine) are also free radical scavengers
(Jockers et al. 2016a). Therefore, a cascade melatonin’s me-
tabolites may contribute to the antioxidant effects of the parent
molecule and the total antioxidant capacity of melatonin
seems to be higher than that of other known antioxidants such
as vitamin E and vitamin C, under in vivo and in vitro condi-
tions (Pandi-Perumal et al. 2017a).

Recent studies have reported that melatonin also modulates
the autophagy process via different pathways including the
reduction of mammalian Mst1 phosphorylation and enhance-
ment of Sirt3 expression. Autophagy is a lysosomal degrada-
tion process that removes damaged organelles and misfolded
proteins in order to maintain cellular homeostasis
(Roohbakhsh et al. 2018).

Impaired autophagy can cause cardiac hypertrophy (Zaglia
et al. 2014), heart failure (Thomas et al. 2013) and ischemia/
reperfusion (I/R) injury (Rodella et al. 2013a). Administration
of melatonin has alleviated adverse left ventricle remodeling.
Exogenous melatonin also reduces cardiac dysfunction in di-
abetic animals (Zhang et al. 2017) and induces a significant
protective effect in ischemia/reperfusion (I/R) injury and hy-
pertension (Rodella et al. 2013a) (Yu et al. 2015b).

Melatonin and aging

Aging causes the morphological and functional deterioration
in all living organisms, especially in mitochondria. Age-
related impairment of mitochondria leads to the elevated free
radicals that obviously cause molecular disfigurement and
functional decay in different systems. Melatonin by its scav-
enging activities reduces the oxidative stress of the mitochon-
dria. It has been reported that surgical removal of the pineal
gland of young rats causes a more rapid accumulation of free
radicals in different tissues when the animals reached
25 months of age (Reiter et al. 1999). It seems that melatonin
deficiency is responsible for the accelerated oxidative damage
and therefore one of the factors that contributed to elevated
oxidative injury in the elderly, including an increased inci-
dence of diseases that have a significant free radicals compo-
nent including cardiovascular diseases (Reiter et al. 2018).

Melatonin and diabetes

Diabetes is the greatest risk factor for the development of
cardiovascular diseases. The relative risk of fatal cardiovascu-
lar events in diabetic patients is 2- to 3-fold higher compared
to non-diabetic individuals. The mechanisms of this height-
ened risk are poorly understood. Diabetes is characterized by
hyperglycemia, impaired insulin secretion, insulin resistance
and an enhanced inflammatory state. Each of these co-
morbidities can contribute to the increased the risk of cardio-
vascular diseases in diabetic patients (Barrett et al. 2017).
Hyperglycemia and insulin resistance increase the susceptibil-
ity of the arterial wall to atherosclerosis and cause arterial
stiffening at any given age.

In diabetic patients, melatonin levels are lower than healthy
people and a functional interaction between insulin and mela-
tonin has been observed (Reutrakul et al. 2018). Moreover,
glucose intolerance and insulin resistance can be seen in some
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physiological or pathophysiological states such as shift work,
aging and environmental high level of illumination during the
night which are associated with reductions in blood melatonin
levels (Cipolla-Neto et al. 2014). A similar situation is also seen
inMT1-knockout animals (Contreras-Alcantara et al. 2010). On
the basis of these evidences, melatonin may be involved in the
development of diabetes. On the other hand, melatonin admin-
istration reduces glucose tolerance mainly by decreasing the
morning release of insulin (Rubio-Sastre et al. 2014). In addi-
tion, various studies have shown a correlation between sleep
disorders and a greater risk for type 2 diabetes and a decreased
glucose tolerance. Moreover, the role of allelic variations of the
MT2 receptors on glycemic control and insulin secretion has
been proposed in genome-wide association studies (Andersson
et al. 2010). Both insulin and melatonin exhibit a circadian
rhythm, but there is negative correlation between melatonin
and insulin. In the other words, insulin secretion is inversely
affected by melatonin. Collectively, the reduction of melatonin
levels due to any reason including aging and exposure to light at
night may cause type 2 diabetes. Therefore, circadian system
can be considered as a pharmacological target for decreasing
the prevalence of insulin resistance and hyperglycemia.
According to the results of animal studies, melatonin supple-
mentation has beneficial effects on insulin resistance, insulin
secretion, and glucose homeostasis (Zhao et al. 2017; Mayo
et al. 2018; Zhao et al. 2017; Zhou et al. 2018a; Hajam et al.
2018; Lardone et al. 2014; Zanuto et al. 2013). It has been
shown that melatonin regulates blood glucose levels via direct
binding to melatonin receptors and modulating the expression
of the glucose uptake transporters that regulate the uptake of
glucose in adipocytes (Nduhirabandi et al. 2017).

MT1 and MT2 receptors are expressed in the beta-cells of
the pancreas islets and are involved in the modulation of in-
sulin secretion, via the inhibition of the adenylate cyclase
(Fig. 2). Cyclic guanosine monophosphate formation is also
reduced in the pancreatic beta-cells by inhibiting the soluble
guanylate cyclase, via MT2 receptors (Peschke et al. 2015).
Melatonin regulates both basal and stimulated insulin secre-
tion through the maintenance of ROS homeostasis in pancre-
atic islets (Simões et al. 2016). Melatonin, through MT1 re-
ceptors, phosphorylates and activates the tyrosine kinase β-
subunit of the insulin receptor, and consequently mobilizes
several intracellular transduction steps of the insulin-
signaling pathways (tyrosine phosphorylation of IRS-1; IRS-
1/PI(3)-kinase and downstreamAKTand GSK-3 β (Heo et al.
2018). Melatonin also activates MAPK signaling pathway
including Raf1 and ERK (Li et al. 2018). The PI3K/AKT
pathway is involved in cell metabolism and glycogen synthe-
sis and MEK/ERKs pathway is involved in cell proliferation,
growth and differentiation (Sharma et al. 2015). In α-cells of
pancreatic islets, melatonin stimulates the secretion of gluca-
gon via PI3K activation (Bähr et al. 2011).

In human studies, few randomized controlled trials have
evaluated the antihyperglycemic effect of melatonin.
Rezvanfar et al. (Rezvanfar et al. 2017) showed that melatonin
administration at a dosage of 6 mg for 12 weeks decreased
fasting glucose and HbA1c in diabetic patients. This research
group also reported that 10 mg/day of melatonin for 12 weeks
could improve glycemic control in diabetic patients with cor-
onary heart disease (Raygan et al. 2019a). Another 12-week
clinical trial showed the significant improvement of the in-
flammatory status and insulin sensitivity in obese patients

Fig. 2 Mechanisms of melatonin in diabetes
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with acanthosis nigricans receiving melatonin (Sun and Wang
2018). Recently, a systematic review and meta-analysis of 12
randomized controlled indicated that melatonin significantly
reduces fasting glucose. However, the insulin and HbA1c
levels was not significantly influenced by melatonin (Doosti-
Irani et al. 2018).

Totally, the evidence indicates that melatonin supplemen-
tation may improve glucose homeostasis and advance the cur-
rent therapeutic strategy to treat the diabetes. However, more
prospective studies using higher doses and longer administra-
tion period are recommended to confirm the impact of mela-
tonin on diabetic patients.

Dyslipidemia

Low melatonin levels have been reported in individuals with
elevated LDL cholesterol levels (Pandi-Perumal et al. 2017b).
On the other hand, exposure to light at night has been associ-
ated with impaired lipid parameters in elderly individuals. In a
cross-sectional study in 528 elderly individuals, exposure to
light at night caused a significant increase in body weight,
waist circumference and LDL cholesterol levels (Obayashi
et al. 2013).

There are large numbers of animal studies showing that
melatonin administration can improve dyslipidemia (Santos
et al. 2018; Salari Lak et al. 2011; Ríos-Lugo et al. 2010). In
diet-induced hypercholesterolemic rats, the low (1mg/kg/day)
and high (10 mg/kg/day) dose of melatonin decreased the total
cholesterol, LDL cholesterol, oxidized LDL, total antioxidant
capacity, and TBARS levels specially in higher dose (Butun
et al. 2013). Melatonin administration (25 μg/ml) in high-fat
diet rats for 9 weeks decreased body weight gain and triglyc-
erides and cholesterol levels from the 3rd week without affect-
ing food intake (Ríos-Lugo et al. 2010).

A study on aluminum-induced toxicity in rats showed that
melatonin alleviates the aluminum induced increase in total
cholesterol, LDL cholesterol, triglycerides, and oxidized LDL
(Allagui et al. 2015).

There are also several clinical studies showing the relation
between melatonin and lipid profile in doses ranging between
0.3 and 10 mg/day (Mozaffari et al. 2012). In a study in pa-
tients with nonalcoholic fatty liver disease, administration of
melatonin (5 mg; 2 times per day) for 14 months significantly
reduced LDL cholesterol and triglycerides (Celinski et al.
2014). In cigarette smokers also, 2 weeks of melatonin admin-
istration (3 mg/kg) significantly reduced free fatty acids and
smoke-induced vascular injury (Wang et al. 2016).

Regarding to the related mechanisms, most of studies pro-
pose the antioxidant effect of melatonin as the main mecha-
nism in improving lipid profile. Melatonin increases antioxi-
dative enzymes and glutathione levels, removes free radicals,
decreases lipid peroxidation, and prevents electron leakage

from the mitochondria (Mozaffari et al. 2012). Melatonin also
modulates the macrophage activity and regulates the secretion
of cytokines, such as TNF-α, IFN-γ, IL-2, and IL-6, which
affects cholesterol metabolism (Mozaffari et al. 2012).

In addition to the antioxidant mechanism, it has been
shown that melatonin improves lipid metabolism via gut
microbiota communities in animals and humans. In high-
fat diet-fed mice, oral administration of melatonin im-
proves lipid metabolism and reverses microbiota dysbiosis
of gut (Yin et al. 2018).

Obesity

Obesity is a major risk factor for cardiovascular diseases in-
cluding hypertension, ischemic heart disease, and diabetes.
Melatonin has shown antiobesity effects in different animal
and human studies (Prado et al. 2018b; Nduhirabandi et al.
2014; Nduhirabandi et al. 2011). Melatonin supplementation
lowers body weight and intra-abdominal visceral fat deposi-
tion. This antiobesogenic effect of melatonin is partly due to
its regulatory role on the balance of energy and the regulation
of the energy store. Moreover, its relationship with the phys-
iological processes of wakefulness/sleep rhythm may impact
bodyweight (Cipolla-Neto et al. 2014).Melatonin also chang-
es the composition of the gut microbiota. It has been shown
that high fat diet causes gut microbiota dysbiosis that contrib-
utes to obesity in mice. The antiobesity effects melatonin may
be mediated by the reversing of high fat diet-induced gut mi-
crobiota (Xu et al. 2017).

The potential involvement of brown adipose tissue has also
been suggested as another mechanism whereby animals gain
weight in the absence of melatonin and lose weight in pres-
ence of melatonin (Tan et al. 2011). Brown adipose tissue
burns calories for the purpose of heat production, thereby
consuming glucose and fatty acids and limiting fat deposition
(Richard and Picard 2011). Melatonin also regulates the
adipocyte-derived bioactive factors such as adipokines. The
dysregulated production or secretion of adipokines is seen in
obesity (Favero et al. 2015). Moreover, melatonin is able to
improve other complications associated with obesity, such as
cutaneous symptoms in obese patients with acanthosis
nigricans (Sun et al. 2018), periodontitis (Virto et al. 2018),
and metabolic abnormalities (Nduhirabandi et al. 2011).

Melatonin and hypertension

Melatonin has an important role in the regulation of several
cardiovascular parameters, including blood pressure, and is
considered as a possible antihypertensive agent (Pechanova
et al. 2014) In animal and human studies, melatonin has
shown an effective and safe antihypertensive effect
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(Klimentova et al. 2016) (Simko et al. 2018). For example, in
L-NAME-induced hypertension male Wistar rats, administra-
tion of melatonin (10 mg/kg/day) for 4 weeks, has blunted
systolic blood pressure enhancement (Simko et al. 2018). In
another study, 6-week administration of melatonin reduced
systolic blood pressure in rats with continuous light-induced
hypertension.

In human studies, both on healthy controls and patient pop-
ulations of nocturnal and essential hypertension, melatonin
intake has shown clinically significant hypotensive effects.
Simko et al. found that melatonin attenuates hypertension
caused by continuous light exposure (24 h/day) (Simko et al.
2014b). Continuous light leads to hypertension, left ventricle
hypertrophy, increased oxidative stress in the left ventricle and
aorta and left ventricle fibrosis. Melatonin treatment reduced
these pathological changes. Melatonin also alleviates 2,3,7,8-
tetrachlorodibenzo-p-dioxin-induced hypertension via de-
creasing vascular reactivity and renal oxidative stress (Ilhan
et al. 2015). A double-blind, placebo-controlled study demon-
strated that administration of 2.5 mg/day of melatonin for
3 weeks to hypertensive patients significantly reduced both
systolic and diastolic blood pressure (Scheer et al. 2004).
Treatment with 2–5 mg/day of melatonin for 7–90 days has
decreased nocturnal systolic and diastolic blood pressure. In
another related study, melatonin was also able to reduce blood
pressure, circulating catecholamines and vascular reactivity in
healthy volunteers (Pandi-Perumal et al. 2017a). Recently, a
systematic review and meta-analysis of 8 randomized con-
trolled trials, demonstrated that melatonin administration sig-
nificantly decreases systolic and diastolic blood pressure in
patients with metabolic disorders (Akbari et al. 2019).

Non-dipper hypertension

Melatonin also can be useful in hypertension with non-dipper
pattern (Zeman et al. 2005). Hypertension can be divided into
dipping and non-dipping pattern on the base of day-night
blood pressure profile. In the non-dipping pattern, the physi-
ological nocturnal fall in blood pressure is blunted which
causes organ damage such as microalbuminuria, left ventric-
ular hypertrophy and worsening the prognosis of cardiovas-
cular events. The surge of melatonin production at night-time
is missed in non-dipping hypertensive patients compared to
hypertensive patients with normal night-time reduction of
blood pressure (dipping pattern) (Dubielski et al. 2016). It
has been suggested that repeated melatonin intake at night,
can reduce nocturnal blood pressure due to its curing effect
on the circadian output of the suprachiasmatic nucleus. It has
been proposed that melatonin administration normalizes the
regulatory function of this hormone on blood pressure (Pandi-
Perumal et al. 2017a).

Non-dipping blood pressure is also a frequent finding in
preeclampsia. In a study on 31 patients with preeclampsia,

nighttime melatonin levels were significantly lower in com-
parison to normal pregnant women (48.4 ± 24.7 vs. 85.4 ±
26.9 pg/mL) (Bouchlariotou et al. 2014). A recent study has
shown that melatonin attenuates the effects of light-at-night on
body temperature and systolic blood pressure (Gubin et al.
2019). On the other hand, a recent randomized, placebo-con-
trolled, crossover pilot study showed that night-time adminis-
tration of high-dose (24 mg/day of a sustained-release formu-
lation for 4 weeks) did not decrease nocturnal blood pressure
in 40 patients with essential hypertension (Rahbari-Oskoui
et al. 2019). It seems that further research projects are needed
to qualify the effects of administration time on the melatonin
antihypertensive properties.

Hypertension in adult offspring

There are also some studies that show maternal melatonin
therapy can prevent hypertension in adult offspring. For ex-
ample, in a study on Sprague-Dawley rats, maternal melatonin
administration attenuated maternal high-fructose-induced hy-
pertension in adult rat offspring. This beneficial effect of ma-
ternal melatonin therapy was related to regulating several
pathways, including Prkaa2, Prkab2, Sirt1, Sirt4, Pparg, and
Ppargc1a. Additionally, melatonin decreased plasma asym-
metric dimethylarginine and increased the protein levels of
mTOR (Tain et al. 2018b). Other studies show that methyl-
donor diet-induced programmed hypertension in adult rat off-
spring is attenuated by maternal melatonin therapy (Tain et al.
2018a). Maternal melatonin therapy also prevents prenatal L-
NAME-induced fetal programming of hypertension in adult
rat offspring via regulation of hydrogen sulfide-generating
pathway and renal transcriptome (Tain et al. 2016).

The precise mechanism(s) of hypotensive effect of melato-
nin is not fully understood. A recent research has proposed a
key role of melatonin in neurovascular blood pressure regula-
tion (Baker and Kimpinski 2018). There are also several pleio-
tropic receptor-independent properties of melatonin which
have a possible impact on blood pressure regulations. These
pleiotropic effects include antioxidant defense mechanisms,
endothelium-dependent vasodilation, sympatho-vagal auto-
nomic regulation (Baker and Kimpinski 2018), the reduction
of myeloperoxidase activity (van der Zwan et al. 2010), pres-
ervation of renal L-arginine availability, restoration of the NO
pathway by reduction of plasma ADMA, restoration of plas-
ma AAR, (Tain et al. 2010), and sympathetic inhibition
(blunting of the excessive catecholamine outflow)
(Pechanova et al. 2016).

Totally, since melatonin acts favorably on hypertension has
minimal side effects (as we discus below), it can be considered
as a suitable alternative in the treatment of this widespread
disease. However, additional studies using longer intervention
periods and higher number of patients are required to qualify
and quantify dosage, duration and time-dependent differences
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of melatonin effects and to clarify its underlying mechanisms
(Gubin et al. 2019) and (Pechanova et al. 2014).

Pulmonary hypertension

Pulmonary hypertension is recognized by elevated pulmonary
arterial pressure that eventually leads to right ventricular hyper-
trophy and heart failure (Vonk-Noordegraaf et al. 2013).
Oxidative stress is one of the main mechanisms in the develop-
ment of pulmonary hypertension (Masri et al. 2008). As
discussed above, melatonin has a potent antioxidant activity,
which can reduce antioxidant damage in cardiovascular tissues.

Five recent animal studies have suggested that melatonin
can be useful in pulmonary hypertension. Maarman et al. re-
ported that melatonin alleviates right ventricular hypertrophy
and dysfunction in a rat model of pulmonary hypertension. It
also reduces plasma oxidative stress and interstitial fibrosis
(Maarman et al. 2015). In another study in pulmonary hyper-
tensive newborn sheep, melatonin reduced pulmonary artery
resistance and pressure and significantly reduced pulmonary
oxidative stress markers, improved the vasodilator function of
small pulmonary arteries and increased enzymatic and non-
enzymatic antioxidant capacity (Torres et al. 2015). In Long
Evans rats with monocrotaline-induced pulmonary hyperten-
sion, Maarman et al. reported that administration of melatonin
for 5 days prior to or 14 days after the injection of monocro-
taline, improved plasma oxidative stress parameters and right
ventricular function and reduced cardiac interstitial fibrosis
both in curative and preventive treatment. (Maarman et al.
2015). Another study in lambs (Ovis aries) showed that post-
natal administration of melatonin decreases nitrotyrosine (as
an oxidative stress marker) and reduces the cardiopulmonary
response to hypoxia and the pathological vascular remodeling.
(Astorga et al. 2018). Hung et al. evaluated the effect of mel-
atonin (10 mg/kg/day) on the pulmonary hypertension and
vascular remodeling in chronically hypoxic rats and found
that melatonin significantly attenuated oxidative and inflam-
matory markers, the levels of RVSP, thickness of the arteriolar
wall and increased in the eNOS phosphorylation in the lung
(Hung et al. 2017).

Totally, melatonin seems to exert beneficial effects in pulmo-
nary hypertension via antioxidant, anti-inflammatory, and vaso-
dilation mechanisms. Clinical studies to evaluate the effect of
melatonin on patients with pulmonary hypertension are needed.

Endothelial dysfunction

The endothelium, by synthesizing and releasing a variety of
endothelium-derived relaxing factors, including NO, vasodi-
lator prostaglandins and endothelium-dependent hyperpolari-
zation factors, has an important role in modulating vascular
tone. The reduced production of these endothelium-derived

relaxing factors causes endothelial dysfunction. Increasing ev-
idence has demonstrated that endothelial dysfunction is the
cause of different cardiovascular diseases (Godo and
Shimokawa 2017). There are some studies indicating melato-
nin prevents the endothelial dysfunction via different mecha-
nisms. Most important mechanism is ameliorating the levels
of N (Rexhaj et al. 2015; Salmanoglu et al. 2016; Paulis et al.
2010). Hung et al. showed that melatonin restores the vascular
responses in diabetic rats through ameliorating the levels of N
and inducing the expression of eNOS (Hung et al. 2013).
Similar results have been reported by Salmanoglu et al.
(Salmanoglu et al. 2016). Melatonin also diminishes blood
homocysteine and asymmetric dimethyl arginine levels which
are reliable markers of endothelial dysfunction (Kantar et al.
2015). Obstructive sleep apnea induces chronic intermittent
hypoxia that is associated with endothelial dysfunction. In rats
with chronic intermittent hypoxia, melatonin has protective
effects against endothelial dysfunction via anti-inflammatory
and antioxidant mechanisms. Melatonin reduces pro-
inflammatory mediators (COX-2, TNF-α, and inducible NO
synthase) and the expression of NADPH oxidase and adhe-
sion molecules (E-selectin, ICAM-1, and VCAM-1) (Hung
et al. 2013). The suppression of the Toll-like receptor 4/
nuclear factor kappa B system in vessels with atherosclerotic
damage is another mechanism for the protective effects of
melatonin in endothelial dysfunction that has been shown in
high-fat-fed rabbits (Hu et al. 2013). Nevertheless, it still
needs to be demonstrated, whether melatonin can improve
already established endothelial dysfunction in human studies.

Melatonin and heart diseases

The results of several studies suggest that low melatonin pro-
duction is associated with a higher risk of cardiac disease such
as coronary heart disease (CHD), left ventricular hypertrophy
(Su et al. 2017), infarction, and congestive heart failure
(Dominguez-Rodriguez et al. 2016). Exogenous melatonin
administration, on the other hand, induces profound protective
effects against different cardiac diseases including ischemia-
reperfusion injury (Yu et al. 2017), (McMullan et al. 2016),
diabetic cardiomyopathy (Zhou et al. 2018b; Kandemir et al.
2018), heart failure (Garakyaraghi et al. 2012; Simko et al.
2014a), aluminum phosphide-induced cardiotoxicity
(Asghari et al. 2017), 2,3,7,8-tetrachlorodibenzo-p-dioxin-in-
duced cardiac injury (Sarihan et al. 2015), elevated heart rate
(Simko et al. 2016), and postural tachycardia syndrome
(Green et al. 2014).

Coronary heart disease

In 48 male CHD patients, overnight urinary aMT6s levels (the
major metabolite of melatonin in urine) were significantly
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lower in the patient group versus control group (Sakotnik et al.
1999). In another study on 15 CHD patients versus healthy
controls, nighttime serum melatonin levels were more than 5
times lower in CHD patients in comparison to controls
(Brugger et al. 1995). Similarly, in 16 patients with coronary
artery disease, the secretion of melatonin was lower at 2 am,
4 am, and 8 am compared to controls (Yaprak et al. 2003). In
comparing urinary aMT6s levels in patients with stable versus
unstable angina and coronary disease, nocturnal urinary
aMT6s levels in patients with unstable angina were signifi-
cantly lower than both healthy controls and patients with sta-
ble angina.

Congestive heart failure

The urinary aMT6s excretions in 33 patients with severe CHF
were significantly lower in comparison to 146 healthy con-
trols. Themechanisms to explain why melatonin production is
reduced in CHF remain to be fully elucidated. It has been
proposed that a complex interaction between melatonin pro-
duction, sympathetic receptor activity, and neuropeptide Y is
involved. In addition, some of substances that are increased in
CHF patients including prostaglandins, calcitonin-gene-
related peptide, and vasopressin may exert a modulatory role
on melatonin production (Baker and Kimpinski 2018).

Melatonin and arrhythmias

In an isolated perfused heart model in rat, melatonin has
shown antiarrhythmic effects. Melatonin significantly in-
creased the threshold to induce ventricular fibrillation. This
protective effect of melatonin against malignant arrhythmias
may be related to upregulation of cardiac cell-to-cell electrical
coupling protein (connexin-43) especially in individuals with
melatonin deficiency (Beňová et al. 2015). Similarly, in an-
other study in SHR rats, melatonin has attenuated abnormal
myocardial connexin-43 distribution in SHR, and upregulated
connexin-43 mRNA, total connexin-43 protein, and its func-
tional phosphorylated forms. Moreover, melatonin increased
cardioprotective PKC expression in SHR rats. These findings
indicate that melatonin has antiarrhythmias activity via the
upregulation of myocardial connexin-43 and modulation of
PKC-related cardioprotective signaling (Benova et al. 2013).

Melatonin also has indirect antiarrhythmic effects via its
renal and cardiac protective actions. Melatonin prevents ar-
rhythmogenic myocardial remodeling during unilateral ureter-
al obstruction via AT1 reduction and Hsp70-VDR increment
that reduces oxidative stress, fibrosis, and apoptosis in rat
heart (Prado et al. 2018a).

In a clinical study, melatonin has shown beneficial effects
in age-dependent disturbances of cardiovascular rhythms in
normotensive and hypertensive volunteers. Administration
of melatonin (1.5 mg/day) at 22:30 h for 2 weeks attenuated

the increased morning of heart rate (Gubin et al. 2016). On the
other hand, there is a small clinical report indicating melatonin
administration to two patients (with normal myocardium) for
treating sleep disorders has shown proarrhythmic effect (pre-
mature ventricular contractions). The discontinuation of mel-
atonin stopped premature ventricular contractions in both pa-
tients (de Vries et al. 2017).

Collectively, it seems that more studies are needed to de-
termine whether melatonin exerts proarrhythmic or antiar-
rhythmic effects in human.

Myocardial infarctions

In patients with ST segment elevation myocardial infarctions
who underwent primary percutaneous coronary intervention,
there is a relation between the intra-platelet melatonin levels
and the rate of angiographic no-reflow phenomenon (a phe-
nomenon associated with impaired clinical outcomes). Intra-
platelet melatonin levels are lower in patients with angio-
graphic no-reflow compared to patients without no-reflow.
Regression analysis shows that intra-platelet melatonin levels
are the only predictor of angiographic no-reflow followingMI
(Dominguez-Rodriguez et al. 2010).

The mechanisms of these protective effects remain incom-
pletely understood. Ghaeli et al. reported that in patients with
ST segment elevation myocardial infarction undergoing pri-
mary percutaneous coronary intervention, the addition of mel-
atonin to the standard treatment significantly reduces the level
of creatine kinase-MB compared with the group receiving
only standard therapy (Ghaeli et al. 2015). It has been sug-
gested that melatonin may protect against ischemia-
reperfusion injury by activating silent information regulator
1 (SIRT1) signaling in a receptor-dependent manner (Yu
et al. 2015a). Another study also found that melatonin could
protect adipose-derived mesenchymal stem cells (ADSCs)
against hypoxia/serum deprivation injury by modulating the
SIRT1 signaling pathway. Melatonin treatment also reduces
the expression of the apoptotic proteins including acetylated
p53, acetylated Ac-Fox01, acetylated nuclear factor kappa-
light-chain-enhancer of activated B cells and B cell lymphoma
2-associated X protein, while increasing the expression of the
antiapoptotic protein BCL-2 (Han et al. 2016). Similarly, mel-
atonin improved the survival and function of ADSCs in a rat
model of myocardial infarction. Its protective effects were due
to increased expression of Cu/Zn superoxide dismutase and
other antioxidant enzymes (Zhu et al. 2015). Melatonin also
enhances Notch1/Hes1/Akt signaling and saves intracellular
Trx system via upregulating Hes1, Notch1, N1ICD, and p-Akt
expressions which ameliorates myocardial ischemia reperfu-
sion injury (Yu et al. 2017). The activation of PKB, ERK1/2,
and STAT-3 during reperfusion and inhibition of the MPTP,
are other proposed mechanisms (Lochner et al. 2013).
Melatonin suppresses the Syk/COX-1/SERCA axis, which
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sustains mitochondrial homeostasis, ameliorates myocardial
apoptosis, and delays the development of diabetic cardiomy-
opathy (Zhou et al. 2018b; Xiong et al. 2018). In
streptozotocin-induced diabetic cardiomyopathy in rats, mel-
atonin has protective effects via phosphorylation of VEGF-A
(Kandemir et al. 2018) and modulation of Mst1/Sirt3 signal-
ing (Zhang et al. 2017) .

Collectively, there are strong evidences of reduced melato-
nin levels in various cardiovascular diseases. However, to
identify whether reduced melatonin levels are the cause or
consequence of such conditions, further research including
larger scale studies with larger number of patients are needed.
The therapeutic role of exogenous melatonin in cardiovascular
diseases also needs further studies.

Atherosclerosis

There is no human study about the effectiveness of melatonin
in the treatment of atherosclerosis. However, many animal
studies show that melatonin is effective in the treatment of
atherosclerosis (Rodella et al. 2013b; Li et al. 2019). Cheng
et al. reported that melatonin reduces the number and area of
atheromatous plaques in a rabbit model of atherosclerosis via
modulating MAPK pathway. In addition to MAPK signaling,
a recent study showed that melatonin decreases aortic endo-
thelial permeability and atherosclerosis in a mouse model of
diabetes by phosphorylation of myosin light-chain and de-
creasing the expression of MLCK (Cheng et al. 2015).
Melatonin also decreases the upstream expression of extracel-
lular signal-related kinase (ERK) and p38 (Tang et al. 2016).
Similar results have been reported in a rabbit’s model of ath-
erosclerosis. In this study, melatonin has reversed the increase
of MLCK activity and expression via decreasing the levels of
phosphorylated JNK, ERK, and p38 (Cheng et al. 2015). Zhu
et al. found that via downregulating the expression of MT1
receptors, miR-29b promotes endothelial permeability and ap-
optosis in high-fat diet-fed apoE knockout mice (Zhu et al.
2014). The anti-inflammatory effects of melatonin improve
cigarette smoke-induced restenosis in rat carotid arteries
after balloon injury (Yang et al. 2014). Anti-inflammatory
and antiproliferative properties of melatonin also have
been shown in rat aortic smooth muscle cells. In these
cells, melatonin reduces TNF-alpha-induced RASMC in-
flammation via decreasing VCAM-1 expression and NF-
kappaB activity through the inhibition of P38 mitogen-
activated protein kinase phosphorylation (Li et al. 2019).
Another mechanism for anti-inflammatory properties of
melatonin in vascular smooth muscles is inducing autoph-
agy and attenuating NLRP3 inflammasome activation,
which is mediated by the Sirt3/Parkin signaling pathway
(Ma et al. 2018).

Melatonin dose and safety

Most of clinical trials have shown very low toxicity of mela-
tonin over a wide range of doses (Pandi-Perumal et al. 2017b).
In a systematic review on 51 controlled studies of melatonin
supplementation in humans, 26 articles found no significant
adverse effects while 24 studies reported at least one statisti-
cally significant adverse effect. Adverse effects were generally
minor and short-lived. The most commonly reported adverse
events were fatigue, mood change, and neurocognitive perfor-
mance. A few studies noted endocrine (e.g., glucose metabo-
lism and reproductive parameters) and cardiovascular (e.g.,
blood pressure and heart rate) adverse effects. Totally, it seems
that the safety profile of oral melatonin supplementation in
humans is generally favorable. By dosing in accordance with
natural circadian rhythms, most of these adverse effects can be
easily managed. (Foley and Steel 2019).

The dose of oral melatonin has ranged between 0.050 and
0.16 mg/kg in most studies (Navarro-Alarcon et al. 2014).
However, the considerably larger doses of melatonin have
been used in different clinical studies and found to be safe.
For example, in the treatment of amyotrophic lateral sclerosis,
patients received doses of 300 mg/day for up to 2 years
(Weishaupt et al. 2006). In a phase I dose escalation study to
assess the tolerability and pharmacokinetics in healthy volun-
teers, no adverse effects with the oral doses of 20, 30, 50, and
100 mg of melatonin were seen (except mild transient drows-
iness with no effects on sleeping patterns) (Galley et al. 2014)
(Pandi-Perumal et al. 2017b).

Melatonin analogs

The competence of melatonin as a drug is limited because of
its poor oral bioavailability and short half-life. Regarding to
the therapeutic efficacy of melatonin in a wide variety of dis-
eases, the development of new selective ligands for melatonin
receptors has become an active area of investigations during
recent years. Several melatonin receptor agonists with in-
creased receptor affinity or improved pharmacokinetics are
under being development including indolic and nonindolic
compounds (Carocci et al. 2014).

Although there are some synthetic MT receptor antagonists
under investigations, the majority of non-selective MT1–MT2
receptor ligands, including drugs used in humans are agonists,
including ramelteon, agomelatine, and tasimelteon (Fig. 3).
Ramelteon and tasimelteon are pure MT receptor ligands,
while agomelatine is also an antagonist at the 5-HT2C recep-
tors, which contributes to its antidepressant action (Jockers
et al. 2016b). Other non-selective MT receptor agonists in-
clude 6-hydroxymelatonin, 6-chloromelatonin, 2-
iodomelatonin, UCM 793, GR 196429 and 2-methoxy-α,β-
didehydro-agomelatine. This latter ligand shows ~ 3500-fold
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greater potency than melatonin in the melanophore aggrega-
tion assay (Jockers et al. 2016a).

Ramelteon (for insomnia), agomelatine (to treat depres-
sion), and tasimelteon (for treatment of sleep and circadian
disturbances) are the approved analogs of melatonin and cur-
rently available as marketed drugs (Cecon et al. 2018).
Piromelatine, Neu-P11, and TIK-301 are clinically under in-
vestigation compounds (Paulis et al. 2012). The results of
preclinical studies show that melatonin receptor agonists can
be considered promising agents for the treatment of
cardiovascular-related pathologies (Carocci et al. 2014).

Regarding to that attention has been focused on the develop-
ment of potent long-acting melatonin analogs (ramelteon,
agomelatine, piromelatine, and tasimelteon) and considerably
high doses of these analogs have been administered in clinical
trials in comparison to melatonin itself, clinical trials on melato-
nin in the range of 50–100mg/day are needed to further evaluate
and compare the therapeutic value of melatonergic agents in
cardiovascular diseases (Cardinali and Hardeland 2017).

Conclusion

In summary, the physiological and pharmacological impor-
tance of melatonin in prevention and improving cardiovascu-
lar risk factors as well as metabolic syndrome is relatively well
defined. Many studies have demonstrated that melatonin has

beneficial effects on hypertension, myocardial injury, ische-
mia reperfusion injury, pulmonary hypertension, vascular dis-
eases, lipid metabolism, and other related disorders including
the metabolic syndrome. It is therefore not surprising that
melatonin, as an inexpensive and well-tolerated drug, has
been strongly proposed in many cardiovascular diseases, es-
pecially with potential benefits in the reduction of ischemia–
reperfusion injury and decreasing nocturnal blood pressure.
Decreased production or secretion of melatonin is attributed
to the development of hypertension, both essential and noc-
turnal. Melatonin, as a pleiotropic and multi-target molecule,
has the advantage of exerting simultaneously a variety of ef-
fects and therefore it can replace the many drugs needed by the
patient. The development of potent long-acting melatonin an-
alogs (e.g., ramelteon, agomelatine, piromelatine, and
tasimelteon) is another active area of investigations during
recent years to increase the potency and selectivity of melato-
nin therapy. Ramelteon (for insomnia), agomelatine (to treat
depression), and tasimelteon (for treatment of sleep and circa-
dian disturbances) are the approved analogs of melatonin and
currently available as marketed drugs.

Future prospective

Oral melatonin supplementation has shown promising results
in clinical trials of essential and nocturnal hypertension;

Melatonin

Tasimelteon

Ramelteon

Agomelatine

Fig. 3 Melatonin and its analogs
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however, large-size clinical trials are needed to evaluate mel-
atonin’s efficacy as a novel therapeutic intervention in treat-
ment of this condition and also other cardiovascular diseases.
In future clinical trials, the administration of larger doses of
are needed, because in most previous studies, the dose has
ranged between 0.050 and 0.16 mg/kg.

Although melatonin supplementation seems to be relative-
ly safe in humans, but some patients may experience adverse
events. The adjustment of dose and administration in accor-
dance with the circadian rhythm of endogenous melatonin
may reduce the likelihood of complications. In further clinical
research projects, a more comprehensive focus on potential
adverse events is required.
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