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Abstract
Phenoxodiol is used for the treatment of malignancy. The substance is effective by triggering suicidal tumor cell death or
apoptosis. At least in theory, phenoxodiol could similarly stimulate suicidal erythrocyte death or eryptosis. Eryptosis is charac-
terized by cell shrinkage and breakdown of cell membrane asymmetry with phosphatidylserine translocation to the erythrocyte
surface. Signaling of eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i), formation of reactive oxygen species (ROS),
and increase of ceramide abundance at the cell surface. The present study explored whether phenoxodiol induces eryptosis and
whether it modifies Ca2+ entry, ROS, and ceramide. Using flow cytometry, phosphatidylserine exposure at the cell surface was
quantified from annexin V binding, cell volume from forward scatter, [Ca2+]i from Fluo3 fluorescence, ROS from DCFDA-
dependent fluorescence, and ceramide abundance utilizing specific antibodies. A 48-h exposure of human erythrocytes to
phenoxodiol (100 μg/ml [416 μM]) significantly increased the percentage of annexin V binding cells, significantly decreased
average forward scatter and Fluo3 fluorescence and significantly increased ceramide abundance, but did not significantly modify
DCFDA fluorescence. The effect of phenoxodiol on annexin V binding tended to decrease following removal of extracellular
Ca2+, an effect, however, not reaching statistical significance. In conclusion, phenoxodiol triggers eryptosis, an effect paralleled
by increase of ceramide abundance.
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Introduction

Phenoxodiol, an isoflavonoid (Fig. 1), is utilized in the treat-
ment of malignancy (Aguero et al. 2005; Alvero et al. 2006;
Choueiri et al. 2006b; Mor et al. 2006; Saif et al. 2009; Silasi
et al. 2009; de Souza et al. 2010). The substance is at least in
part effective by triggering suicidal death and sensitization
against cytoxic treatment of tumor cells (Kamsteeg et al.
2003; Sapi et al. 2004; Straszewski-Chavez et al. 2004;

Alvero et al. 2006, 2008; Choueiri et al. 2006a, b; Gamble
et al. 2006; Mor et al. 2006, 2008; Yu et al. 2006; Herst et al.
2007, 2009; Kluger et al. 2007; Morre et al. 2007; Yagiz et al.
2007; De Luca et al. 2008, 2010; Aguero et al. 2010; Wu et al.
2011; Mahoney et al. 2012; Yao et al. 2012; Li et al. 2014;
Isono et al. 2018; Miyamoto et al. 2018). Studies on structure-
activity relationships (Silasi et al. 2009; Chen et al. 2015)
revealed that the anticancer activity of phenoxodiol was supe-
rior to the parent molecule genistein (Silasi et al. 2009). Studies
utilizing tumor xenograft mouse models demonstrated in vivo
activity of phenoxodiol (Alvero et al. 2006, 2007; McPherson
et al. 2009; Aguero et al. 2010; Yao et al. 2012; Li et al. 2014).

At least in theory, phenoxodiol could similarly trigger
eryptosis, the suicidal death of erythrocytes characterized by
b reakdown of ce l l membrane a symme t ry wi th
phosphatidylserine translocation to the cell surface
(Mischitelli et al. 2016a; Bissinger et al. 2019) and cell shrink-
age (Lang et al. 2003). Signaling regulating eryptosis includes
increase of cytosolic Ca2+ activity ([Ca2+]i) (Mischitelli et al.
2016b; Bissinger et al. 2019), ceramide appearance at the cell
surface (Abed et al. 2012), and oxidative stress (Bissinger
et al. 2019). Triggers of eryptosis include diverse cytotoxic
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drugs (Lang et al. 2013, 2017; Pretorius et al. 2016; Briglia
et al. 2017; Bissinger et al. 2019).

The present study exploredwhether phenoxodiol is capable
of stimulating eryptosis. Erythrocytes isolated from healthy
vo lun tee r s were t r ea t ed wi th phenoxod io l and
phosphatidylserine surface abundance, cell volume, [Ca2+]i,
ROS formation, and ceramide abundance were determined
by flow cytometry.

Materials and methods

Erythrocytes, solutions, and chemicals

Erythrocytes were isolated from fresh Li-heparin-
anticoagulated blood samples drawn from healthy volunteers
in the blood bank of the University Clinic of Tübingen. The
study is approved by the ethics committee of the University of
Tübingen (184/2003 V). The blood was centrifuged at 120g
for 20 min at 21 °C, platelets and leukocytes-containing su-
pernatant discarded, and erythrocytes incubated at a hemato-
crit of 0.4% in Ringer solution containing (in mM) 125 NaCl,
5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-
ethanesulfonic acid (HEPES; pH 7.4), 5 glucose, and 1
CaCl2, at 37 °C for 48 h. In nominally Ca2+-free solutions,
1 mM CaCl2 was replaced by 1 mM EGTA. Where indicated,
erythrocytes were exposed for 48 h to phenoxodiol (Sigma,
Schnelldorf, Germany) at concentrations ranging from
25 μg/ml (104 μM) to 500 μg/ml (2081 μM).

Annexin V binding and forward scatter

Erythrocytes were washed in Ringer solution containing
5 mM CaCl2 and then stained with annexin V FITC (1:200
dilution; ImmunoTools, Friesoythe, Germany) in this solution
at 37 °C for 20 min protected against light. Annexin V abun-
dance at the erythrocyte surface was quantified in a
FACSCalibur (BD, Heidelberg, Germany) with an excitation
wavelength of 488 nm and an emission wavelength of
530 nm. Parallel forward scatter (FSC) was determined as
measure of cell volume.

Intracellular Ca2+

After incubation and washing in Ringer solution, erythrocytes
were loaded with Fluo-3/AM (Biotium, Hayward, USA) at
37 °C for 30 min in Ringer solution containing 5 mM CaCl2
and 5 μM Fluo-3/AM. Fluorescence intensity was measured
with an excitation wavelength of 488 nm and an emission
wavelength of 530 nm on a FACSCalibur. The geomean of
the Ca2+-dependent fluorescence was calculated.

Reactive oxygen species

Reactive oxygen species (ROS) was determined utilizing
2′,7′-dichlorodihydrofluorescein diacetate (DCFDA). After
incubation, washing in Ringer solution, and staining with
10 μM DCFDA (Sigma, Schnelldorf, Germany) in Ringer
solution, erythrocytes were incubated at 37 °C for 30 min in
the dark and washed two times in Ringer solution. ROS-
dependent fluorescence intensity was measured at an excita-
tion wavelength of 488 nm and an emission wavelength of
530 nm on a FACSCalibur (BD). The geomean of the
DCFDA-dependent fluorescence was calculated.

Ceramide abundance

Ceramide abundance at the erythrocyte surface was quantified
with a monoclonal antibody-based assay. Erythrocytes were
stained for 1 h at 37 °C with 1 μg/ml anti-ceramide antibody
(clone MID 15B4, Alexis, Grünberg, Germany) in PBS con-
taining 0.1% bovine serum albumin (BSA) at a dilution of
1:10, washed twice with PBS-BSA, and stained for 30 min
with polyclonal fluorescein isothiocyanate (FITC) conjugated
goat anti-mouse IgG- and IgM-specific antibody
(Pharmingen, Hamburg, Germany) diluted 1:50 in PBS-
BSA. FITC abundance was quantified by flow cytometry at
an excitation wavelength of 488 nm and an emission wave-
length of 530 nm. The geomean of the ceramide-dependent
fluorescence was calculated.

Statistics

Measured values are expressed as arithmetic means ± SD.
Statistical analysis was made using ANOVAwith Tukey’s test
as post-test and t test as appropriate (n = number of different
erythrocyte specimens studied).

Results

The effect of phenoxodiol on eryptosis was tested by determi-
nation of cell membrane scrambling and cell shrinkage.

Fig. 1 Structure of phenoxodiol (Sigma)
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Erythrocytes were incubated for 48 h in Ringer solution
without or with phenoxodiol (25–100 μg/ml [104–416 μM]
or 100–500 μg/ml [416 μM–2080 μM]) and cell membrane
scrambling quantified from phosphatidylserine abundance at
the erythrocyte surface identified by determination of annexin
V binding utilizing flow cytometry. As illustrated in Fig. 2, a
48-h exposure to phenoxodiol increased the percentage of
phosphatidylserine exposing erythrocytes, an effect reaching
statistical significance at 50 μg/ml (208 μM) phenoxodiol.

Erythrocyte shrinkage was quantified by measuring eryth-
rocyte forward scatter utilizing flow cytometry. As a result,
exposure to phenoxodiol (25–100 μg/ml [104–416 μM] or
100–500 μg/ml [416 μM–2080 μM]) decreased the average
erythrocyte forward scatter, an effect reaching statistical sig-
nificance at 50 μg/ml (208 μM) phenoxodiol (Fig. 3).

A next series of experiments addressed cytosolic Ca2+ ac-
tivity ([Ca2+]i). Fluo3 fluorescence was employed in order to
quantify [Ca2+]i. The erythrocytes were analyzed after a 48-h
incubation in Ringer solution without or with phenoxodiol
(25–100 μg/ml [104–416 μM]). As illustrated in Fig. 4, a
48-h exposure to phenoxodiol (25–100 μg/ml [104–
416 μM]) decreased the Fluo3 fluorescence, an effect reaching
statistical significance at each 25, 50, and 100 μg/ml (104, 208,
416 μM) phenoxodiol.

Further experiments explored whether phenoxodiol-
induced cell membrane scrambling required entry of extracel-
lular Ca2+. To this end, erythrocytes were incubated for 48 h in
the absence or presence of 100 μg/ml (416 μM) phenoxodiol

in the presence or nominal absence of extracellular Ca2+. As
shown in Fig. 5, removal of extracellular Ca2+ did not signif-
icantly modify the effect of phenoxodiol on annexin V bind-
ing. Both in the presence and absence of extracellular Ca2+ did
phenoxodiol significantly increase the percentage of annexin
V binding erythrocytes. Accordingly, the phenoxodiol-
induced cell membrane scrambling did not require entry of
extracellular Ca2+.

ROS was determined utilizing DCFDA. As illustrated in
Fig. 6, a 48-h exposure to phenoxodiol (100 μg/ml [416 μM])
did not significantly modify the DCFDA fluorescence of
erythrocytes. Accordingly, phenoxodiol did not appreciably
induce oxidative stress.

Ceramide abundance at the erythrocyte surface was deter-
mined utilizing specific antibodies. As shown in Fig. 7, a 48-h
exposure to phenoxodiol (100 μg/ml [416 μM]) significantly
increased the ceramide abundance at the erythrocyte surface.

Discussion

The present study discloses a novel effect of phenoxodiol,
i.e., the stimulation of eryptosis, the suicidal erythrocyte
death, which is characterized by erythrocyte shrinkage
a n d e r y t h r o c y t e memb r a n e s c r amb l i n g w i t h
phosphatidylserine translocation to the erythrocyte surface
(Bissinger et al. 2019). The phenoxodiol concentrations
required for significant stimulation of eryptosis are in
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a bFig. 2 Effect of phenoxodiol on
phosphatidylserine exposure. a
Histogram of annexin V binding
of erythrocytes following
exposure for 48 h to Ringer
solution without (gray area) and
with (black line) presence of
100 μg/ml (416 μM)
phenoxodiol. b Arithmetic means
± SD (n = 20) of erythrocyte
annexin V binding following
incubation for 48 h to Ringer
solution without (white bar) or
with (black bars) phenoxodiol
(25–100 μg/ml [104–416 μM]) or
the solvent alone (DMSO, gray
bar). c Arithmetic means ± SD
(n = 15) of erythrocyte annexin V
binding following incubation for
48 h to Ringer solution without
(white bar) or with (black bars)
phenoxodiol (100–500 μg/ml
[416–2080 μM]) or the solvent
alone (DMSO, gray bar).
***p < 0.001 indicates significant
difference from the absence of
phenoxodiol (ANOVA)
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the range of concentrations reported in the plasma of pa-
tients under phenoxodiol treatment (Choueiri et al.
2006a). A linear correlation was observed between dosage
and plasma concentrations reaching 60 μg/ml (250 μM)
plasma concentration at a dosage of 27 mg/kg/24 h
(Choueiri et al. 2006a).

The present study further sheds some light on the sig-
naling involved in the stimulation of eryptosis by
phenoxodiol. The effect of phenoxodiol on cell membrane
scrambling was paralleled by an increase of ceramide abun-
dance at the erythrocyte surface. Ceramide is a well-known
stimulator of cell membrane scrambling. Ceramide is

Fig. 3 Effect of phenoxodiol on erythrocyte forward scatter. a
Histograms of forward scatter of erythrocytes following exposure for
48 h to Ringer solution without (gray area) and with (black line)
presence of 100 μg/ml (416 μM) phenoxodiol. b Arithmetic means ±
SD (n = 27) of the erythrocyte forward scatter (FSC) following
incubation for 48 h to Ringer solution without (white bar) or with
(black bars) phenoxodiol (25–100 μg/ml [104–416 μM]) or the solvent

alone (DMSO, gray bar). c Arithmetic means ± SD (n = 15) of the
erythrocyte forward scatter (FSC) following incubation for 48 h to
Ringer solution without (white bar) or with (black bars) phenoxodiol
(100–500 μg/ml [416–2080 μM]) or the solvent alone (DMSO, gray
bar). ***p < 0.001 indicates significant difference from the absence of
phenoxodiol (ANOVA)

Fig. 4 Effect of phenoxodiol on cytosolic Ca2+ activity. a Histogram of
Fluo3 fluorescence of erythrocytes following exposure for 48 h to Ringer
solution without (gray area) and with (black line) presence of 100 μg/ml
(416 μM) phenoxodiol. b Arithmetic means ± SD (n = 27) of erythrocyte
Fluo3 fluorescence following incubation for 48 h to Ringer solution

without (white bar) or with (black bars) phenoxodiol (25–100 μg/ml
[104–416 μM]) or the solvent alone (DMSO, gray bar). ***p < 0.001
indicates significant difference from the absence of phenoxodiol
(ANOVA)
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partially effective by sensitizing erythrocytes for the scram-
bling effect of Ca2+ (Bissinger et al. 2019). Phenoxodiol
decreases cytosolic Ca2+ activity ([Ca2+]i) and the effect
of phenoxodiol on cell membrane scrambling was not sig-
nificantly modified by removal of extracellular Ca2+. The
phenoxodiol-induced eryptosis apparently does not depend
on Ca2+ entry. Along those lines, phenoxodiol triggered cell
membrane scrambling even in the nominal absence of ex-
tracellular Ca2+. Phenoxodiol did not significantly modify
the abundance of reactive oxygen species, another

stimulator of eryptosis (Bissinger et al. 2019). The present
observations, however, do not rule out the involvement of
further signaling pathways. The present study does not de-
fine the direct molecular target of phenoxodiol. Ceramide is
produced by acid sphingomyelinase, which is upregulated
by platelet activating factor (PAF) (Lang et al. 2015). The
cation channel is activated by prostaglandin E2, which is
generated by cyclo-oxygenase (Lang et al. 2005). Possibly,
phenoxodiol influences ceramide abundance and channel
activity by directly or indirectly influencing PAF formation

Fig. 5 Ca2+ sensitivity of
phenoxodiol-induced
phosphatidylserine exposure. a, b
Histograms of annexin V binding
of erythrocytes following
exposure for 48 h to Ringer
solution without (gray areas) and
with (black lines) phenoxodiol
(100 μg/ml [416 μM]) in the
presence (a) and absence (b) of
extracellular Ca2+. c Means ± SD
(n = 16) of annexin V binding of
erythrocytes after a 48-h
treatment with Ringer solution
without (white bars) or with
(black bars) phenoxodiol
(100 μg/ml [416 μM]) in the
presence (left bars, +Ca2+) and
absence (right bars, −Ca2+) of
Ca2+. ***p < 0.001 indicates
significant difference from the
absence of phenoxodiol
(ANOVA)

Fig. 6 Effect of phenoxodiol on reactive oxygen species. a Histogram of
DCFDA fluorescence in erythrocytes following exposure for 48 h to
Ringer solution without (gray area) and with (black line) presence of
100 μg/ml (416 μM) phenoxodiol. b Arithmetic means ± SD (n = 22)

of DCFDA fluorescence in erythrocytes following incubation for 48 h to
Ringer solution without (white bar) or with (black bar) phenoxodiol
(100 μg/ml [416 μM]). ***p < 0.001 indicates significant difference
from the absence of phenoxodiol (ANOVA)
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and cyclo-oxygenase activity. Several signaling pathways
further have been shown to be sensitive to phenoxodiol
(Table 1).

The limitations of the present study include the lack of
in vivo data and the uncertainty of the direct molecular target.
Future studies may explore the influence of phenoxodiol on

Fig. 7 Effect of phenoxodiol on ceramide abundance. a Histogram of
ceramide abundance in erythrocytes following exposure for 48 h to
Ringer solution without (gray area) and with (black line) presence of
100 μg/ml (416 μM) phenoxodiol. b Arithmetic means ± SD (n = 13)

of ceramide abundance in erythrocytes following incubation for 48 h to
Ringer solution without (white bar) or with (black bar) phenoxodiol
(100 μg/ml [416 μM]). **p < 0.01 indicates significant difference from
the absence of phenoxodiol (unpaired t test)

Table 1 Reported effects of phenoxodiol

Effect Concentration Cell type References

• Caspase-2-dependent activation of Bid engaging the
mitochondrial pathway leading to the release of
cytochrome c, Smac/DIABLO, and Omi/HtrA2

• Increased activity of caspase-3, caspase-8, caspase-9
• Proteasomal degradation of the anti-apoptotic protein XIAP
• Decreased FLIP-expression via decreased Akt expression
• Increase of sensitivity to Fas-mediated apoptosis due

to inactivation of FLIP and XIAP

1–10 μg/ml (4–42 μM) Ovarian carcinoma Kamsteeg et al. (2003),
Alvero et al. (2006)

Cell cycle arrest in the G1/S phase:
• Via p21 upregulation
• Partially via increased expression of cMyc
• Partially via decreased expression of cyclin-D1
• Partially via decreased Ki-67 expression

≥ 2 μg/ml (≥ 10 μM) Prostate cancer cells Mahoney et al. (2014)

• G1 arrest via p53-independent induction of p21 leading
to specific loss in cyclin-dependent kinase 2 activity

≥ 5 μg/ml (21 μM) Head and neck cancer cells Aguero et al. (2005)

• Reduced XIAP-levels, increased caspase-2 activation,
increased activity of caspase-3, caspase-8, and caspase-9

• Induction of p53-dependent BH3 proteins (PUMA, NOXA)
• Induction of the p53-independent Bim protein resulting

in BAX activation

10 μg/ml (42 μM)
2 μg/ml (8 μM)

Melanoma cells Yu et al. (2006),
Kluger et al. (2007)

Inhibition of proliferation, migration, and capillary
tube formation of endothelial cells via:

• Inhibited expression of adhesion molecuses such as
E-selectin and VCAM-1

• Downregulation of enzymes such as MMP-2 required
for matrix breakdown

• Inhibition of lipid kinase SK, implicated in endothelial
activation and angiogenesis

10 μg/ml (42 μM) Human umbilical vein
endothelial cells

Gamble et al. (2006)

• Inhibition of plasma membrane electron transport (PMET)
• Increased cell surface NADH-oxidase activity
• Inhibition of cell proliferation

24 μg/ml (≤ 100 μM) Human leukemic HL60 cells,
activated splenic T cells

Herst et al. (2007)

• Potent chemosensitizer of most standard chemotherapeutics:
platinum, gemcitabine, taxanes, doxorubicin

• Reversing chemoresistance of tumor cells

5–20 μg/ml (21–83 μM) Ovarian cancer cells, melanoma
cells, osteosarcoma cells, gall
bladder cancer

Alvero et al. (2006),
Kluger et al. (2007),
Yao et al. (2012),
Li et al. (2014)
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blood count and packed cell volume in vivo, and the influence
of the drug on PAF (Lang et al. 2015) and/or cyclo-
oxygenase activity (Lang et al. 2005). Moreover, future
studies may address the possibility that phenoxodiol may
favorably influence the clinical course of malaria by sen-
si t iz ing erythrocytes for the eryptot ic effect of
Plasmodium infection and thus eryptosis and clearance
of infected erythrocytes (Foller et al. 2009).

In conclusion, phenoxodiol triggers erythrocyte cell mem-
brane scrambling, an effect paralleled by increase of ceramide
abundance.
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