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Abstract
Manganese (Mn) is required for many essential biological processes as well as in the development and functioning of the brain.
Extensive accumulation ofMn in the brainmay cause central nervous system dysfunction known asmanganism, a motor disorder
associated with cognitive and neuropsychiatric deficits similar to parkinsonism. Vinpocetine, a synthetic derivative of the
alkaloid vincamine, is used to improve the cognitive function in cerebrovascular diseases. It possesses antioxidant and
antiinflammatory properties. The present work was designed to explore the potential neuroprotective mechanisms exerted by
vinpocetine in theMn-induced neurotoxicity in rats. Rats were allocated into four groups. First group was given saline. The other
three groups were given MnCl2; two of them were treated with either L-dopa, the gold standard antiparkinsonian drug, or
vinpocetine. Rats receiving MnCl2 exhibited lengthened catalepsy duration in the grid and bar tests, motor impairment in the
open-field test and short-term memory deficit in the Y-maze test. Additionally, histological examination revealed structural
alterations and degeneration in different brain regions. Besides, striatal monoamines and mitochondrial complex I contents were
declined, apoptotic biomarker caspase-3 expression and acetylcholinesterase activity were elevated. Moreover, oxidative stress
and inflammation were detected in the striata. L-dopa or vinpocetine exerted protective effects against MnCl2-induced neuro-
toxicity. It could be hypothesized that modulation of monoamines, upregulation of mitochondrial complex I, antioxidant,
antiinflammatory, and antiapoptotic activities are significant mechanisms underlying the neuroprotective effect of vinpocetine
in the Mn-induced neurotoxicity model in rats.
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Abbreviations
AChE Acetylcholinesterase
DA Dopamine
H&E Hematoxylin and eosin
IL-1β Interleukin-1 beta
MDA Malondialdehyde
Mn Manganese
NA Noradrenaline
PDE Phosphodiesterase

ROS Reactive oxygen species
5-HT Serotonin
SOD Superoxide dismutase
TAC Total antioxidant capacity
TNF-α Tumor necrosis factor-alpha
α-Syn α-synuclein

Introduction

Manganese (Mn) is a fundamental and plenteous element es-
sential for proper function (Kwakye et al. 2015). Despite its
essentiality, high-dose Mn exposure like enormous and ex-
tended inhalation of Mn in mining, welding, and industries
seriously leads to its accumulation in specific brain areas caus-
ing neurotoxicity and an extrapyramidal motor disorder, re-
ferred to as manganism (Perl and Olanow 2007). Manganism
is characterized by behavioral changes, tremors, difficulty in
walking and awkward movements. Additionally, pre-existing
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symptoms develop before advanced manganism, such as
slowed hand movements, anxiety, hostility, and hallucina-
tions. As in various neurodegenerative diseases, patients could
be asymptomatic for months or even years following exposure
(Peres et al. 2016a).

Mn-induced motor dysfunction and neuropsychiatric
and cognitive deficits develop as a result of its accumula-
tion in the basal ganglia which is implicated in the regula-
tion of motor and non-motor functions and hence inducing
progressive neuronal deterioration (Bakthavatsalam et al.
2014; Bouabid et al. 2014).

The molecular mechanisms by which Mn causes neurotox-
icity are not clearly understood. Cellularly, Mn accumulates in
mitochondria, where it inhibits the electron transport chain
complexes (Zhang et al. 2004), altering oxidative phosphory-
lation (Gavin et al. 1992) and ATP production (Brouillet et al.
1993). The impaired energy production affects mitochondrial
permeability transition, causing organelle swelling, disruption
of the outer membrane, and subsequently the release of vari-
ous apoptogenic factors into the cytosol, thereby promoting
apoptosis (Milatovic et al. 2011). Depletion of high-energy
phosphates is also accompanied with excessive generation of
reactive oxygen species (ROS), which induces membrane
polyunsaturated fatty acids oxidation, producing an array of
lipid peroxidation products. Furthermore, production of ROS
is accompanied with inflammatory responses and release of
inflammatory mediators. It has been reported that inflamma-
tion is implicated in neuronal damage and death (Milatovic
et al. 2009). These interrelated pathways of oxidative stress,
inflammation, and apoptosis contribute to the pathophysiolo-
gy of neurodegenerative diseases (Tansey et al. 2007).

Previous studies reported that neuroprotective agents
which ameliorate cellular energy metabolism and/or possess
antioxidative and antiinflammatory properties could be bene-
ficial in modulating manganism (Milatovic et al. 2011; Santos
et al. 2012a; Gawlik et al. 2017).

A synthetic derivative of the alkaloid vincamine,
vinpocetine, has long been used as a nootropic agent enhancing
the cognitive function of patients with cerebrovascular disease.
It augments cerebral blood flow and glucose uptake (Vas et al.
2002). Also, it decreases the risk of transient ischemic attacks
and strokes in chronic cerebrovascular insufficiency patients
(Valikovics 2007). Vinpocetine is an efficient scavenger of free
radicals and prevents lipid peroxidation (Zaitone et al. 2012).
Furthermore, the drug displays memory-protective and
memory-enhancing properties (DeNoble et al. 1986; Bhatti
and Hindmarch 1987) and potent antiinflammatory effect
(Jeon et al. 2010).

In addition, vinpocetine is a phosphodiesterase (PDE) 1
inhibitor (Van Staveren et al. 2001) and a blocker of voltage-
gated Na+ channels (Sitges et al. 2005). Former in vitro stud-
ies confirmed that vinpocetine prevented the blockage of the
mitochondrial complexes (II, III, IV) as well as entirely

negated the deduction of pyruvate levels and the accumulation
of ROS induced by toxic concentrations of Amyloid beta pep-
tides in PC12 cells (Pereira et al. 2000).

The cognitive improvement properties and the
antiinflammatory effect of vinpocetine make it a potential
candidate for the treatment of various neurodegenerative dis-
eases (Patyar et al. 2011).

According to the aforementioned data, the aim of this work
was to test the neuroprotective role of the nootropic agent,
vinpocetine, in improving the motor and cognitive functions
of Mn-induced neurotoxicity in rats.

Materials and methods

Experimental rats Thirty-two male Sprague–Dawley albino
rats (200–250 g) purchased from The Nile Co., for
Pharmaceuticals and Chemical Industries, Cairo, Egypt, were
kept under the same adequate environmental conditions with
12/12-h light/dark cycle and provided with standard diet pel-
lets that represent their daily dietary requirements and water
was given ad libitum. The study complies with the Guide for
the Care and Use of Laboratory Animals published by the
National Institutes of Health (NIH Publications No. 8023,
revised 1978) and is approved by the Ethics Committee of
Faculty of Pharmacy, Cairo University.

Drugs and chemicals MnCl2.4H2O (MnCl2) and vinpocetine
were bought from Sigma–Aldrich Chemical Co., USA.
MnCl2 was freshly dissolved in saline. Vinpocetine was fresh-
ly suspended in saline with the addition of few drops of tween
80. L-dopa, which is used as a reference antiparkinsonian
drug, was the commercially available Sinemet tablets
(Global Napi Pharmaceuticals, Egypt). Each BSinemet
25 mg/250 mg Tablet^ has 27 mg carbidopa (equivalent to
25 mg of anhydrous carbidopa) and 250 mg L-dopa. Each
tablet was freshly grinded and suspended in saline with the
addition of few drops of tween 80. Highest purity and analyt-
ical grade chemicals were also utilized.

Design of work and experimental groupsRats were randomly
allocated into four groups (8 animals/group) as follows; the
first group was administered saline orally (1 ml/kg, p.o.) and
intraperitoneally (1 ml/kg, i.p.) for 35 days representing con-
trol group. The second group was given (saline, p.o.) and
MnCl2 (25 mg/kg, i.p.) daily for 35 days (Bouabid et al.
2014; Jiang et al. 2014). The third group was given L-dopa
(25 mg/kg, p.o.) (Carvalho et al. 2013) and MnCl2 (25 mg/kg,
i.p.) daily for 35 days. The fourth group received vinpocetine
(6 mg/kg, p.o.) (Zaitone et al. 2012) and MnCl2 (25 mg/kg,
i.p.) daily for 35 days. L-dopa and vinpocetine were given 1 h
before MnCl2 administration. Concentration of the utilized
drugs was selected as formerly reported and from our pilot
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experimental trials of the current study. Lastly, behavioral tests
were performed, animals were sacrificed and the brain was
removed, then striatum was dissected, rinsed with ice-cold
saline, and stored instantly at − 80 °C for further biochemical
investigation. Homogenization of striatal tissues was done in
saline, and these homogenates were used to evaluate markers
of oxidative stress (total antioxidant capacity (TAC), superox-
ide dismutase (SOD), and lipid peroxides), inflammatory cy-
tokines (interleukin-1 beta (IL-1β) and tumor necrosis factor-
alpha (TNF-α)), and acetylcholinesterase (AChE) activity.
Also, monoamines’ content (dopamine (DA), noradrenaline
(NA), and serotonin (5-HT)), mitochondrial complex-1 con-
tent, and apoptotic biomarker Caspase-3 expression in stria-
tum were assessed. Additionally, specimens from different
brain areas of all treated groups were kept in 10% formalde-
hyde solution for histopathological examination using hema-
toxylin and eosin (H&E).

Measured parameters

Catalepsy test (grid test and bar test) It is considered of great
usefulness, because of its similarity to human symptoms of
Parkinsonism, catatonic schizophrenia, and abnormal behav-
ior resulting from brain damage to the basal ganglia (Sanberg
et al. 1988). The first part of catalepsy test was the grid test
which is a vertical grid (25.5 cm wide and 44 cm high with a
space of 1 cm between each wire), on which the rat was hung
by its paws and the time taken by the rat to move its paws or
any kind of movement was detected. The second part was the
bar test which is a horizontal bar (9 cm above and parallel
from the base), on which the rat was placed with both fore-
paws and the time of paw removal was detected (Alam and
Schmidt 2004; Abdin and Hamouda 2008).

Open–field test It is the most widely used test to assess
alterations of behavioral activities such as locomotor activ-
ity and exploratory behavior (Genaro and Schmidek 2000;
Sedelis et al. 2001). The experiment was performed using a
wooden box measuring 80 cm × 80 cm × 40 cm height
(Cunha and Masur 1978), with white polished floor and
red walls. The field floor was divided into 16 equal squares
4 × 4 (Vorhees 1974; Volosin et al. 1988). The latency to
start the movement in the open-field is used to evaluate
akinesia, while the decrease of locomotion (ambulation)
and/or rearing indicates hypokinesia (Sedelis et al. 2001;
Capitelli et al. 2008). Furthermore, dopaminergic mecha-
nisms may be involved in the grooming behavior (Van
Wimersma Greidanus et al. 1989).

Y-maze test Spontaneous alternation behavior in the Y-
maze task was used to evaluate short-term memory
(Sarter et al. 1988). The used Y-maze was a wooden, black

maze with three equal-sized arms labeled A, B, and C re-
spectively. Each arm (12 cm wide, 40 cm long, 35 cm high)
was oriented at an angle of 120° from the other two arms
(Teixeira et al. 2013). Rats were located at the end of one
arm and allowed to freely explore the maze during an 8-
min session. Spontaneous alternation behavior was identi-
fied as entry into all three arms on successive choices.
Percentage of spontaneous alternation was calculated ac-
cording to Teixeira et al. (2013) and Aydin et al. (2016).
The floor was cleaned with 10% ethanol and then dried
with a clean cloth before the entry of the next rat.

Assessment of total protein Bradford method was used to
assess the protein content in striatal homogenates (Bradford
1976) with the use of bovine serum albumin as a standard.

Assessment of monoamines’ content Monoamines’ content
(DA, 5-HT, and NA) were evaluated in the striatal homoge-
nates of all treated groups according to Ciarlone (1978). In this
fluorometric assay, the obtained fluorescence is read at exci-
tation 320 nm and emission 480 nm for DA, excitation
380 nm and emission 480 nm for NA, and excitation
355 nm and emission 470 nm for 5-HT using Hitachi
(F3010 model) spectrophotofluorometer.

Assessment of oxidative stress biomarkers Tissue levels of
TAC and malondialdehyde (MDA) as well as SOD activity
were estimated in all treated groups’ striatal homogenates.
TAC was measured following the method of Koracevic et al.
(2001). SOD activity in the samples was evaluated using the
method described by Nishikimi et al. (1972). Estimation of
thiobarbituric acid reactive substances (TBARS) level mea-
sured as MDAwas used as an indicator for lipid peroxidation
(Ohkawa et al. 1979). The assay for each oxidative stress
biomarker was estimated using the Biodiagnostic colorimetric
kit (Cairo, Egypt).

Assessment of inflammatory biomarkers Both striatal IL-1β
and TNF-α levels were quantified by the ELISA technique
using commercial IL-1β and TNF-α ELISA Kits (R&D
Systems, Inc., USA). The procedure was performed in accor-
dance with the manufacturer’s instructions.

Assessment of caspase-3 protein expression using Western
blotting Lysis was done to the homogenized striatal tissues
using ice-cold lysis buffer (10% glycerol, 2% SDS in 62 mM
Tris-HCl, pH 6.8) containing a cocktail of protease inhibitors
(Sigma–Aldrich, St. Louis, MO). Bradford method was used
for determination of protein content in the collected protein
lysates (Bradford 1976). Same amount of total protein
(7.5 μg) was resolved under denaturing conditions by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and then transferred onto nitrocellulose membranes.
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After blocking with 6% non-fat dry milk in TBS-Tween buffer
for 3 h at 4 °C. The nitrocellulose membranes were incubated
with specific primary antibody against the detected protein
(caspase-3) at 4 °C overnight. On the following day, β-actin
monoclonal antibody was added and incubated for 1 h on a
roller shaker at 4 °C. To remove unbound primary antibody,
the membranes were washed five times, 5 min/each in TBS-
Tween buffer, and incubated again with a proper HRP conju-
gated secondary antibody at 37 °C for 1 h. The membranes
were rinsed with TBST buffer, scanning of the bands was
done with ChemiDoc scanner, and then the densitometric in-
tensity of each band was quantified.

Assessment of mitochondrial complex I content This assay
employs the quantitative sandwich ELISA technique. Striatal
mitochondrial complex I was assessed by using commercial
mitochondrial complex I ELISA Kit (Cusabio, Hubei, P.R.
China) according to manufacturers’ prescripts.

Assessment of acetylcholinesterase activity The assay of
AChE is an optimized version of the Ellman method
(Ellman et al. 1961). The kit used (Sigma–Aldrich Co., St
Louis, MO, USA) has a linear range of 10–600 units/L of
AChE activity.

Histopathological examination Isolated brains were fixed in
10% formol saline for 24 h then rinsed with tap water. For
light microscopy, brain sections were prepared and stained
according to the method described by Bancroft and
Gamble (2008). Dehydration was done using serial dilu-
tions of different alcohols (methyl, ethyl, and absolute eth-
yl). Clearance of brain sections was done in xylene embed-
ded in paraffin at 56 °C inside hot air oven for 24 h. Blocks
of paraffin bees wax tissue were set for sectioning at 4-μm
thickness by microtome. Sections of the obtained tissue
were gathered on glass slides and deparaffinized. After
that, staining with H&E was done for histological exami-
nation. Sections were examined by a skillful pathologist
who was blinded to the investigational groups. Abnormal
histopathological outcomes were assessed using a semi-
quantitative method according to the following criteria; a
scale of 0–4 in which 0 = no damage, 1 = up to 25% dam-
age, 2 = 25%–50% damage, 3 = 50%–75% damage, and
4 = more than 75% damage (Behling et al. 2006).

Statistical analysis Results were presented as the mean ±
S.E.M. and multiple comparisons were performed employing
one-way analysis of variance (ANOVA) with Tukey’s multi-
ple comparison post hoc test as appropriate to calculate sig-
nificance of the difference between treatments. The probabil-
ity level of 0.05 was utilized as the criterion for significance.
GraphPad Prism (ISI®, USA) software (version 5) was used
for statistical analysis and graphs sketching.

Results

Vinpocetine attenuated MnCl2-induced alterations
in duration of catalepsy in the grid and bar tests

MnCl2 resulted in bradykinesia and rigidity manifested as
lengthened catalepsy duration in the grid test (Fig. 1a) and
the bar test (Fig. 1b) reaching 1202.74 and 1861.16% respec-
tively as compared with the control group. L-dopa or
vinpocetine obviously reduced the catalepsy duration to
20.20 and 19.42% respectively in the grid test as well as to
14.86 and 13.62% respectively in the bar test, as compared
with MnCl2 treated rats. Intra-comparing the treatment regi-
mens, the results indicated non marked alteration.

Vinpocetine attenuated MnCl2-induced alterations
in rats’ motor performance in the open-field test

MnCl2 caused a significant deterioration in the motor perfor-
mance and coordination of rats as compared with the control
group exhibiting prolonged latency time and lowered ambu-
lation, rearing and grooming frequencies (Fig. 2a–d). Either L-
dopa or vinpocetine produced a distinct decrease in the latency
time reaching 38.83 and 37.30%, respectively, along with re-
versing the decline in ambulation (156.67%, 152.22%), rear-
ing (165.98%, 176.29%), and grooming (200%, 164.10%)
frequencies respectively as compared with the MnCl2 group.
Intra-comparing the treatment regimens, the results indicated
non marked alteration.

Vinpocetine attenuated MnCl2-induced alterations
in rats’ working memory in the Y-maze test

Administration of MnCl2 revealed short-term memory deficit,
indicated by marked drop in the percentage of spontaneous
alternation recording approximately 0.6-fold as compared
with the control rats (Fig. 3). Both L-dopa and vinpocetine
significantly raised the spontaneous alternation to approxi-
mately 1.7-fold as compared with MnCl2 treated rats. Intra-
comparing the treatment regimens, the results indicated non
marked alteration.

Vinpocetine mitigated MnCl2-induced alterations
in striatal monoamines’ content

MnCl2 significantly reduced the striatal levels of DA, 5-HT,
and NA to 29.20, 35.33, and 34.97% respectively as com-
pared with control animals (Fig. 4a–c). Interestingly, L-dopa
and vinpocetine markedly reversed the striatal monoamines’
decline as compared with MnCl2 group. Intra-comparing the
treatment regimens, the results indicated non marked
alteration.
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Vinpocetine mitigated MnCl2-induced alterations
in striatal oxidative stress biomarkers

MnCl2 produced a state of oxidative stress revealed by the
significant elevation in striatal MDA level along with a sig-
nificant decline in striatal TAC and striatal SOD activity as
compared with the control animals (Fig. 5a–c). L-dopa or
vinpocetine markedly decreased MDA level to 41.48 and
53.42%, respectively, while significantly raised the TAC
(147.37%, 166.56%) and SOD activity (246.11%, 159.59%)

respectively as compared with the MnCl2 group. Intra-
comparing between the two treatment regimens, vinpocetine
produced marked decrease in the SOD activity (64.84%) from
L-dopa.

Vinpocetine mitigated MnCl2-induced alterations
in striatal inflammatory biomarkers

MnCl2 triggered inflammation via elevating the TNF-α and
IL-1β content to 407 and 410.93% respectively in comparison

a. Latency �me b. Ambula�on frequency

c. Rearing frequency d. Grooming frequency

Fig. 2 Vinpocetine attenuated
MnCl2-induced alterations in rats’
motor performance in the open-
field test. All the values are
expressed as the mean ± SEM of
eight rats in each group. (a, b)
Statistically significant from the
control and the MnCl2 group,
respectively, P < 0.001 using one-
way ANOVA followed by Tukey
as post hoc test. * and #:
statistically significant from the
control and the MnCl2 group,
respectively, P < 0.01 using one-
way ANOVA followed by Tukey
as post hoc test. a Latency time. b
Ambulation frequency. c Rearing
frequency. dGrooming frequency

a. Grid test b. Bar testFig. 1 Vinpocetine attenuated
MnCl2-induced alterations in
duration of catalepsy in the grid
(a) and bar (b) tests. All the values
are expressed as the mean ± SEM
of eight rats in each group. (a, b)
Statistically significant from the
control and the MnCl2 group,
respectively, P < 0.001 using one-
way ANOVA followed by Tukey
as post hoc test
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with control animals (Fig. 6a, b). L-dopa or vinpocetine sig-
nificantly reversed such increment in TNF-α and IL-1β con-
tent as compared withMnCl2 group. Intra-comparing the treat-
ment regimens, the results indicated non marked alteration.

Vinpocetine downregulated MnCl2-induced
alterations in striatal caspase-3 protein expression

MnCl2 dramatically upregulated striatal caspase-3 expression
reaching approximately 11-fold as compared with the control
rats (Fig. 7). Either L-dopa or vinpocetine downregulated the
elevated caspase-3 expression to approximately 0.4-fold and
0.6-fold respectively as compared with MnCl2 treated rats.
Intra-comparing the treatment regimens, the results indicated
non marked alteration.

Vinpocetine downregulated MnCl2-induced
alterations in striatal mitochondrial complex І content

Striatalmitochondrial complex І contentwasmarkedly decreased
following the administration ofMnCl2, reaching 56.55% as com-
pared with the control animals (Fig. 8). Both L-dopa and
vinpocetine significantly amended such alteration in mitochon-
drial complex І content recording 138.15 and 129.64% respec-
tively as compared with MnCl2 group. Intra-comparing the treat-
ment regimens, the results indicated non marked alteration.

Vinpocetine downregulated MnCl2-induced
alterations in striatal acetylcholinesterase activity

MnCl2 significantly raised the AChE activity to 361.56% in
comparison with control rats (Fig. 9). L-dopa or vinpocetine

a. Dopamine b. Serotonin

c. Norepinephrine

Fig. 4 Vinpocetine mitigated
MnCl2-induced alterations in
striatal monoamines’ content. All
the values are expressed as the
mean ± SEM of six rats in each
group. (a, b) Statistically
significant from the control and
the MnCl2 group, respectively,
P < 0.001 using one-way
ANOVA followed by Tukey as
post hoc test. a Dopamine. b
Serotonin. c Norepinephrine

Fig. 3 Vinpocetine attenuatedMnCl2-induced alterations in rats’working
memory in the Y-maze test. Spontaneous alternation (%) =

alternation behavior
maximum alternations

� �� 100. All the values are expressed as the mean ±
SEM of eight rats in each group. (a, b) Statistically significant from the
control and the MnCl2 group, respectively, P < 0.001using one-way
ANOVA followed by Tukey as post hoc test
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markedly suppressed the AChE activity to 58.84 and 53.55%
respectively as compared with MnCl2 treated rats. Intra-
comparing the treatment regimens, the results indicated non
marked alteration.

Brain histopathology

The effect of treatments on different brain areas is shown in
Figs. 10, 11, 12, 13, and 14 and the score for tissue damage is
presented in Table 1.

Control rats showed no histopathological alteration as well
as normal cerebral cortex (Fig. 10a), hippocampus (subiculum
and fascia dentate) (Fig. 11a), striatum (Fig. 12a), substantia

nigra (Fig. 13a), and cerebellum (Fig. 14a). Rats injected with
MnCl2 revealed moderate congestion in the cerebral cortical
blood capillaries (Fig. 10b) whereas the cerebral cortex of L-
dopa (Fig. 10c) and vinpocetine (Fig. 10d) treated rats exhib-
ited no histopathological alteration. In MnCl2, the hippocam-
pus showed degeneration in the neurons with atrophy in
subiculum and nuclear pyknosis was also detected in most
neurons of the fascia dentate (Fig. 11b). Interestingly, pretreat-
ment with either L-dopa (Fig. 11c) or vinpocetine (Fig. 11d)
significantly amended the pathological alterations induced by
MnCl2 in the hippocampus. Following MnCl2 administration,
the striatum showed focal gliosis, focal eosinophilic plagues
formation, and congestion in the blood vessels (Fig. 12b)

a. Malondialdehyde b. Total an�oxidant capacity

c. Superoxide dismutase

Fig. 5 Vinpocetine mitigated
MnCl2-induced alterations in
striatal oxidative stress
biomarkers. All the values are
expressed as the mean ± SEM of
six rats in each group. (a, b, c)
Statistically significant from the
control, the MnCl2, and the L-
dopa group, respectively,
P < 0.001 using one-way
ANOVA followed by Tukey as
post hoc test. #Statistically
significant from theMnCl2 group,
P < 0.01 using one-way ANOVA
followed by Tukey as post hoc
test. a Malondialdehyde. b Total
antioxidant capacity. c
Superoxide dismutase

a. Tumor necrosis factor alpha b. Interleukin-1 betaFig. 6 Vinpocetine mitigated
MnCl2-induced alterations in
striatal inflammatory biomarkers.
All the values are expressed as the
mean ± SEM of six rats in each
group. (a, b) Statistically
significant from the control and
the MnCl2 group, respectively,
P < 0.001 using one-way
ANOVA followed by Tukey as
post hoc test. a Tumor necrosis
factor alpha. b Interleukin-1 beta
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together with no alteration in the substantia nigra (Fig. 13b).
Congestion was detected in the blood vessels of the striatum
of both L-dopa (Fig. 12c) and vinpocetine (Fig. 12d) treated
groups along with intact substantia nigra (Fig. 13c and
Fig. 13d respectively). While MnCl2 induced mild congestion
in the blood vessels of the cerebellum (Fig. 14b), L-dopa
(Fig. 14c) and vinpocetine (Fig. 14d) restored its normal
architecture.

Discussion

The present work pointed out the interrelation between behav-
ioral changes, oxidative stress, inflammation, mitochondrial
dysfunction, and apoptosis as well as histopathological chang-
es due to exposure to MnCl2. We further probed the neuropro-
tective effect of vinpocetine on these interconnected path-
ways. To our knowledge, this is the first study to investigate
the in vivo effect of vinpocetine on Mn-induced neurotoxicity
in rats.

The present investigation showed that exposure of rats to
MnCl2 caused a cataleptic behavior in the grid and bar tests, a
result which reflects the development of bradykinesia and
rigidity in rats, concomitantly with motor dysfunction in the
open-field test and a marked decrease in striatal DA level.
These results are in harmony with previous studies (Desole
et al. 1994; Vidal et al. 2005; Vezér et al. 2007; Santos et al.
2012b, 2013).

Administration of vinpocetine attenuated the MnCl2-in-
duced catalepsy as well as restored the impaired locomotor
functions with subsequent restoration of striatal DA level.

Caspase-3

β- actin

Control MnCl2
L-dopa+ 

MnCl2

Vinpocetine

+MnCl2

Fig. 7 Vinpocetine downregulated MnCl2-induced alterations in striatal
caspase-3 protein expression. All the values are expressed as the mean ±
SEM of six rats in each group. (a, b) Statistically significant from the
control and the MnCl2 group, respectively, P < 0.001 using one-way
ANOVA followed by Tukey as post hoc test

Fig. 8 Vinpocetine downregulated MnCl2-induced alterations in striatal
mitochondrial complex І content. All the values are expressed as themean
± SEM of six rats in each group. (a, b) Statistically significant from the
control and the MnCl2 group, respectively, P < 0.001using one-way
ANOVA followed by Tukey as post hoc test

Fig. 9 Vinpocetine downregulated MnCl2-induced alterations in striatal
acetylcholinesterase activity. All the values are expressed as the mean ±
SEM of six rats in each group. (a, b) Statistically significant from the
control and the MnCl2 group, respectively, P < 0.001 using one-way
ANOVA followed by Tukey as post hoc test
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These effects were comparable with that of L-dopa, indicating
the ability of vinpocetine to potentiate the dopaminergic trans-
mission in the striatum. Former studies confirmed similar out-
comes (Zaitone et al. 2012; Deshmukh and Sharma 2013;
Sharma and Deshmukh 2015).

The current study showed that MnCl2 treatment caused a
decline in cognitive functions in the Y-maze test, suggesting
impaired spatial memory, together with raised striatal AChE
activity. This result is in accordance with previous studies (Lai
et al. 1992; Liapi et al. 2008; Hogas et al. 2011; Babadi et al.
2014). Cholinergic activity plays a significant role in the path-
ophysiology of Mn-induced neurotoxicity (Finkelstein et al.
2007). Mn effect on the cholinergic system may contribute to
impairments in learning, memory, and locomotion (Peres et al.
2016b). With regard to the role of the cholinergic system in
memory and learning functions, it could be hypothesized that
the increase in AChE activity might be responsible for the
decline in cognitive functions in Mn-treated rats.

Additionally, it is well accepted that the hippocampus is
essential for spatial learning and memory performance
(Martin and Clark 2007; Ryan et al. 2010). Also, Wang et al.
(2014) reported that Mn caused hippocampal neurons’ injury
in vitro. In line, our histological results indicated that Mn
caused hippocampal damage and hence memory impairment
which is in accordance with (Vezér et al. 2007).

Either L-dopa or vinpocetine improved the spatial working
memory by attenuating the decline in cognitive functions in

the Y-maze test, reduced the increase in AChE activity as well
as ameliorated the hippocampal damage inMnCl2-treated rats.
Enhancement in spatial memory demonstrated with
vinpocetine might be due to amelioration of cholinergic func-
tions, antioxidant activity, and inhibition of neuronal cell dam-
age (Patyar et al. 2011). Moreover, the efficacy of vinpocetine
in improving memory has been confirmed in cognitively
healthy and compromised subjects (Subhan and Hindmarch
1985; Ogunrin 2014). Up till now, several mechanisms have
been suggested for vinpocetine in improving memory deficits
and blood flow; inhibition of PDE1 (Shang et al. 2016), as an
antiinflammatory agent (Jeon et al. 2010; Zhang and Yang
2014); and increasing cerebral metabolism through enhancing
cerebral blood flow, glucose and oxygen consumption in the
brain, and ATP production (Shang et al. 2016).

MnCl2-treated rats exhibited decreased striatal DA
reflecting deficits in the dopaminergic outcome and vulnera-
bility of the dopaminergic system to Mn exposure. This is in
line with the results of (Liccione and Maines 1988; Brouillet
et al. 1993; Desole et al. 1994; Vidal et al. 2005). In addition,
MnCl2 reduced 5-HT and NA contents, which is in line with
Bouabid et al. (2014) and Beaudin et al. (2015). Anxiety and
motor activity disorders associated with manganism may be
due to dysregulation of the noradrenergic system. Also, mod-
ulation of the serotonergic neurons leads to depression, sleep-
lessness, and loss of memory, symptoms which are described
as early symptoms of manganism (Bouabid et al. 2015).

Fig. 11 Representative photomicrographs of hippocampus of
experimental groups stained by H&E (magnification × 40): showing
normal histological structure of the hippocampus (hp) of control rats
(a), detecting degeneration (dn) in the neurons with atrophy in subiculum

(sb) and nuclear pyknosis (np) in most neurons of the fascia dentate (fs) in
the hippocampus ofMnCl2 group (b), normal histological structure of the
hippocampus in L-dopa + MnCl2 group (c), and vinpocetine + MnCl2
group (d)

Fig. 10 Representative photomicrographs of cerebral cortex of
experimental groups stained by H&E (magnification × 40): showing
normal histological structure of the meninges (mn) and cerebral cortex
(cc) of control rats (a), identifying mild congestion (cg) in cerebral

cortical blood capillaries of MnCl2 group (b), normal histological struc-
ture of the cerebral cortex in L-dopa +MnCl2 group (c), and vinpocetine +
MnCl2 group (d)
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The current work confirmed the ability of vinpocetine to
attenuate the striatal monoaminergic hypofunction. In 1988,
Kiss and Szporny stated the ability of vinpocetine to antago-
nize the decrease of monoamines induced by hypoxia. In line
with our study, vinpocetine was reported to restore the DA
level in both MPTP- and rotenone-treated rats (Zaitone et al.
2012; Sharma and Deshmukh 2015).

Oxidative damage has been considered as a cornerstone in
Mn-induced neurotoxicity (Liu et al. 2013). The current data
showed that MnCl2 decreased the TAC, elevated the MDA
level and suppressed the SOD activity in the striatal tissues
reflecting a state of oxidative stress. These results are in har-
mony with previous studies (Zhang and Huang 2008;
Chtourou et al. 2010, 2012; Szpetnar et al. 2016).

In our study, concurrent treatment with either L-dopa or
vinpocetine attenuated Mn-induced oxidative stress. Many
previous studies reported the ability of vinpocetine to amelio-
rate the rise in ROS generation and the reduction in antioxi-
dant levels either in vitro (Santos et al. 2000; Solanki et al.
2011; Herrera-Mundo and Sitges 2013) or in vivo (Deshmukh
et al. 2009; Abdel-Salam et al. 2011).

Milatovic et al. (2009) showed that Mn exposure is accom-
panied by inflammatory responses and the release of inflam-
matory mediators. MnCl2 exposure increased the striatal pro-
inflammatory cytokines TNF-α and IL-1β, indicating a pro-
inflammatory activation. This result is in accordance with pre-
vious studies (Liu et al. 2009; Zhao et al. 2009).

The current study showed an inhibitory effect of L-dopa and
vinpocetine on brain inflammation induced byMnCl2 through
suppressing the TNF-α and IL-1β elevation. Former study
reported that, in the central nervous system, PDE inhibitors

such as vinpocetine downregulated inflammatory mediators
like IL-1, IL-6, and TNF-α as well as upregulated inhibitory
cytokines such as IL-10 (Yoshikawa et al. 1999).

Neuronal apoptosis has been implicated as a significant
contributor to Mn-induced neurotoxicity. A growing evidence
suggests that Mn triggers apoptosis in various cell types
(Chun et al. 2001; Malecki 2001; Hirata 2002; Seo et al.
2013). In the current work, the level of caspase-3 was remark-
ably elevated in Mn-treated rats which is in accordance with
previous studies (Jiang et al. 2014; Shi et al. 2015).

Administration of vinpocetine suppressed the striatal
caspase-3 activity with similar effect as L-dopa. Consistent
with the aforementioned vinpocetine’s antioxidant and
antiinflammatory effects demonstrated in the current study,
an antiapoptotic effect has been confirmed too. Our result is
in harmony with previous in vitro studies (Erdö et al. 1990;
Gabryel et al. 2002; Bora et al. 2016).

Taken together along with our results, we can propose that
vinpocetine’s antiapoptotic action could serve as one of the
pathways underlying its neuroprotective effect.

Intracellularly,Mn accumulates inmitochondria and inhibits
the complexes of the electron transport chain (Zhang et al.
2004; Avila et al. 2010), thereby impairing oxidative phosphor-
ylation (Gavin et al. 1992) and ATP production (Brouillet et al.
1993; Milatovic et al. 2007) and increasing the generation of
ROS (Gunter et al. 2006; Milatovic et al. 2007). In the present
study, treatment of rats with Mn downregulated the striatal
complex I activity. This result clearly shows the ability of Mn
to alter several pathways of themitochondrial respiratory chain,
especially at the complex I level. Our finding is in parallel with
a recent study conducted in vivo by Apaydin et al. (2016).

Fig. 12 Representative photomicrographs of striatum of experimental
groups stained by H&E (magnification × 40): showing normal
histological structure of the striatum (st) of control rats (a), identifying
focal gliosis (gl), focal eosinophilic plagues formation (pl) and congestion

(cg) in the blood vessels in the striatum of MnCl2 group (b), congestion
detected in the blood vessels of the striatum in L-dopa +MnCl2 group (c),
and vinpocetine + MnCl2 group (d)

Fig. 13 Representative photomicrographs of substantia nigra of experimental groups stained byH&E (magnification × 40): showing normal histological
structure of the substantia nigra (sn) of control rats (a), MnCl2 group (b), L-dopa + MnCl2 group (c), and vinpocetine + MnCl2 group (d)
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Also, previous in vitro studies are in agreement with our result
(Galvani et al. 1995; Zhang et al. 2004; Zhang et al. 2008).

Vinpocetine reversed the decline of mitochondrial complex I
activity similar to L-dopa. This reflects the ability of vinpocetine
to ameliorate the mitochondrial dysfunction. It has been shown
that vinpocetine significantly attenuated the diminished mito-
chondrial enzyme complexes I, II, and IV in the rat striatum in
3-nitropropionic acid-induced experimental Huntington’s dis-
ease (Gupta and Sharma 2014).

MnCl2 caused morphological changes and degeneration in
different brain regions. These results are in harmony with

previous literatures (Vezér et al. 2007; Wang et al. 2015;
Bahar et al. 2017).

Microscopically, the current study revealed the neuropro-
tective effect of L-dopa and vinpocetine against the tissue
damage induced by MnCl2.

The protective effect of vinpocetine might be attributed to
its antiinflammatory, antioxidant, and antiapoptotic properties
besides its inhibitory action on mitochondrial complex I, all of
which will eventually target multiple factors underlying the
pathogenesis of manganism thereby providing a better
outcome.

Fig. 14 Representative photomicrographs of cerebellum of experimental
groups stained by H&E (magnification × 40): showing normal
histological structure of the cerebellum (cb) of control rats (a), identifying

mild congestion (cg) in the blood vessels of the cerebellum of MnCl2
group (b), normal architecture of the cerebellum of L-dopa + MnCl2
group (c), and vinpocetine + MnCl2 group (d)

Table 1 Semi-quantitative analysis of histopathological alterations in rat brains of different experimental groups

Histopathological alteration in different brain regions Nuclear pyknosis
and degeneration
of neuronal cells

Eosinophilic focal
plagues formation

Focal gliosis Congestion in
blood vessels

Brain regions Experimental groups

cc Control (saline, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.80 ± 0.13a

L-dopa (25 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00b

Vinpocetine (6 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00b

hp Control (saline, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

MnCl2 (25 mg/kg, I.P.) 3.25 ± 0.25a 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

L-dopa (25 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00b 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Vinpocetine (6 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00b 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

st Control (saline, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 2.43 ± 0.22a 2.70 ± 0.22a 3.53 ± 0.23a

L-dopa (25 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00b 0.00 ± 0.00b 1.96 ± 0.09b

Vinpocetine (6 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00b 0.00 ± 0.00b 1.23 ± 0.11b

sn Control (saline, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

L-dopa (25 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Vinpocetine (6 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

cb Control (saline, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.86 ± 0.11a

L-dopa (25 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00b

Vinpocetine (6 mg/kg, P.O.) +MnCl2 (25 mg/kg, I.P.) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00b

Scoring for brain tissues stained with hematoxylin and eosin was performed as 0 = no damage, 1 = up to 25% damage, 2 = 25–50% damage, 3 = 50–75%
damage, and 4 =more than 75% damage, and the total score for each alteration in different brain regions was calculated from these. All the values are
expressed as the mean ± SEM. (a, b) Statistically significant from the control and the MnCl2 group, respectively, P < 0.05 using one-way ANOVA
followed by Tukey as post hoc test

cc cerebral cortex, hp hippocampus, st striatum, sn substantia nigra, cb cerebellum
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Conclusion

The present study shows that vinpocetine could be recom-
mended as a promising disease-modifying therapy to abate
neurodegeneration and dementia when given early in the
course of manganism, hence improving patients’ quality of
life through alleviating both motor and non-motor symptoms
besides being devoid of L-dopa’s undesirable adverse effects
such as L-dopa-induced dyskinesias. The current work was
able to draw a clearer image of the neuroprotective action of
vinpocetine by evaluating its efficacy in Mn-induced
neurotoxicity.
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