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Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even
after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast
cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers,
proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism,
and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological
targets for elimination of BCSCs are described in this review.
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Abbreviations
ABC ATP-binding cassette
ATM Ataxia telangiectasia-mutated

serine/threonine kinase
Bcl2 B cell lymphoma 2
BCRP Breast cancer resistance protein
BCSCs Breast cancer stem cells
BIK Bcl2 interacting killer
Bmi-1 B cell-specific Moloney murine

leukemia virus integration site 1
BMP2 Bone morphogenetic protein 2
CAIX Carbonic anhydrase-IX
CAT Catalase
CSL CBF-1/RBPJ-κ in Homo sapiens/Mus

musculus, respectively, Suppressor of
hairless in Drosophila melanogaster,
Lag-1 in Caenorhabditis elegans

CDK Cyclin-dependent kinases
ChKs Checkpoint kinases
c-myc C-terminus of myc protein
DHh Desert Hedgehog
DLL4 Delta-like 4 ligand

DOX Doxorubicin
DRs Death receptors
EMT Epithelial-to-mesenchymal transition
EpICD EpCAM intracellular domain
FAS Fatty acid synthase
FTC Fumitremorgin C
Gl Glioma-associated oncogene
GLUT Glucose transporter
GM-CSF Granulocyte-macrophage

colony-stimulating factor
GPO Glutathione peroxidase
GSK-3β Glycogen synthase kinase 3 β
HDR Homology-directed recombination
Hh Hedgehog
HK Hexose kinase
IHh Indian Hedgehog
IL Interleukin
JAK Janus kinase
LRP Low-density lipoprotein-related receptor
MAML Mastermind like
m-TOR Mammalian target of rapamycin
Nanog Gene named after the Tír na nÓg legend
NHEJ Nonhomologous end joining
NICD Notch intracellular domain
non-BCSCs Non-breast cancer stem cells

or bulk tumor cells
Oct-4 Octamer-binding transcription factor
PDZ Disheveled PDZ domain
PI3-k Phosphoinositide 3-kinase
PTEN Phosphatase and tensin homolog
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SCs Normal stem cells
SHh Sonic Hedgehog
SMADs Homologs of Sma and MAD proteins
Smo Smoothened
SOD Superoxide dismutase
SOX Sry-related HMG box
STAT Signal transducers and activators

of transcription
STAT3 Signal transducer and activator

of transcription factor 3
TGF-β Transforming growth factor-β
TR Thio-redoxin

Introduction

Breast cancer is the most common type of cancer in women
and is the second leading cause of cancer-related deaths
worldwide. According to the World Health Organization
(WHO) report, 17.5 million breast cancer-related deaths can
be expected per year, by 2050 (Ferlay et al. 2010). Resistance
to conventional therapies, metastasis, and relapse of tumors
are emerging as major causes of breast cancer-related deaths
(Singh and Settleman 2010). Recently, it was identified that
breast cancer stem cells (BCSCs) are one of the major respon-
sible factors for therapy resistance, tumor relapse, and metas-
tasis (Al-Hajj et al. 2003; Chen et al. 2013). It was reported
that BCSCs express high levels of drug efflux transporters,
which can be determined by treatment with Hoechst 33342
dye. The cells containing high levels of the drug efflux trans-
porters expulse Hoechst and are designated as side population
(SP) cells (Patrawala et al. 2005). Accumulating evidence has
shown that numerous cell lines and tumors contain SP cells
and that this cell population possesses a greater capacity for
chemoresistance and tumorigenesis than non-SP cells (Britton
et al. 2012). The quiescence of BCSCs (i.e., they spend more
time in G0 cell cycle phase) and their high DNA repair capac-
ity also makes them to resist apoptosis caused by chemother-
apeutic agents (Reya et al. 2001). The pool of BCSCs which
are spared by conventional therapies will convert into tumor
cells in future, thus leading to tumor relapse (Li et al. 2011).

Unlike bulk tumor cells (non-BCSCs), BCSCs grow in a
nonattached (suspension) form when moving from their
source to other locations in the body. Due to the nonattached
growth nature, BCSCs proliferate in blood stream during can-
cer metastasis and give rise to spread of tumor. BCSCs pro-
mote cancer metastasis by a process called epithelial-to-
mesenchymal transition (EMT), in which epithelial cells lose
their intercellular adhesion, accompanied by gain of invasive
and migratory properties, which is a prerequisite for metasta-
sis (Karnoub et al. 2007; Sabe 2011; Liu et al. 2012; Hu et al.
2015). In this review, we discuss potential avenues for the
pharmacological targeting of BCSCs based on their molecular

features, including surface biomarkers (CD44, CD133,
EpCAM, and ALDH1), proteins involved in self-renewal
pathways (Wnt/β signaling proteins, Smo, γ-secretase,
STAT-3, etc.), drug efflux transporters (ABCG2 and
ABCB1), apoptotic/antiapoptotic proteins (Bcl2, survivin
etc.), proteins involved in autophagy, metabolism, epigenetic
regulation, and microenvironment regulation (Ablett et al.
2012; Britton et al. 2012; Vinogradov and Wei 2012;
Chapellier and Maguer-Satta 2016).

Breast epithelial hierarchy and origin
of BCSCs

Understanding the cell of origin of breast cancer is of
great importance to unravel the cause of tumor hetero-
geneity. The mammary epithelium is composed of two
types of cell lineages, luminal cells and myoepithelial
(basal cells), which are organized into a series of
branching ducts that terminates into secretary alveoli
and aids in lactation. Luminal cells surround the central
lumen and basal cells are located in basal position ad-
jacent to basement membrane of mammary epithelium.
It was reported that luminal cells and basal cells origi-
nate from multipotent mammary stem cells (MaSCs)
during the development of mammary epithelium.
Breast epithelial hierarchy suggests that BCSCs can be
derived from normal MaSCs, transformed by the dereg-
ulation of normal self-renewal (Dontu et al. 2003;
Wicha et al. 2003). Compelling body of evidence sug-
gest that although MaSCs are required for the long-term
maintenance of mammary gland homeostasis, postnatal
glands, luminal, and basal unipotent progenitor cells can
independently sustain luminal and basal lineages, re-
spectively, for a long period of time (Van Keymeulen
et al. 2011; Rios et al. 2014). Multiple mammary cell
types, therefore, can have long-term self-renewal abili-
ties and BCSCs may originate from these precursor cells
due to mutations. In addition, it was reported that dif-
ferent breast cancer subtypes may originate from differ-
ent mammary cell lineages (Lim et al. 2009; Visvader
2011; Visvader et al. 2014). For example, basal-like
breast cancer is likely to originate from luminal progen-
itor cells, whereas multipotent MaSCs are likely the
precursor of the claudin-low subtype (Lim et al. 2009;
Molyneux et al. 2010).

According to Bmisplacement somatic stem cell^ theory,
BCSCs may originate from misplacement of somatic stem
cells de novo (Wang et al. 2013a). According to this theory,
somatic cells of the normal tissue would undergo successive
DNA mutations that allow the cell to evolve and acquire the
malignant phenotypes of BCSCs. According to this model,
long-lived nature of normal stem cells (NSCs) allows them
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more time to acquire mutations to become BCSCs. It was also
reported that BCSCs can originate from tumor cells via induc-
tion of epithelial to mesenchymal transition (EMT) as a part of
disease progression or in response to chemotherapeutic agents
and environmental stress (Owens and Naylor 2013).

Pharmacological targets of BCSCs

BCSC surface markers

BCSCs express specific biological markers or antigens on
their surface that can be used to identify or label them.
Fluorescence-activated cell sorting (FACS) uses specific cell
surface biomarkers to sort BCSCs (Chen et al. 2013). The
expression of these unique surface biomarkers on BCSCs is
reported to be associated with chemo/radioresistance in breast
cancer (Ablett et al. 2012). A number of therapeutic antibod-
ies, various small molecules, have been proposed for targeting
these biomarkers for identifying and elimination of BCSCs.
CD44, CD133, EpCAM, and ALDH1 are the important bio-
markers of BCSCs. It was reported that triple negative breast
cancer (TNBC) cells have higher percentage of these markers
compared to other breast cancer subtypes (Croker et al. 2009).
It was also reported that BCSC surface markers are enriched in
normal tissues adjacent to TNBC cells (Atkinson et al. 2013).

Cluster of differentiation44

Cluster of differentiation44 (CD44) is a surface glycopro-
tein that is known to participate in a wide variety of cel-
lular functions including regulation of cell adhesion, pro-
liferation, migration, growth, survival, angiogenesis, dif-
ferentiation, and matrix cell-signaling processes in collab-
oration with other cellular proteins (Phillips et al. 2006;
Honeth et al. 2008; Goodarzi et al. 2014; Yan et al. 2015;
Muntimadugu et al. 2016). It was reported that CD44
activates the Rho family of GTPases and initiate recruit-
ment of signaling molecules like T lymphoma invasion
and metastasis-inducing protein (Tiam1), p115, Ras-
related C3 botulinum toxin substrate-1(Rac1), Rho-
associated protein kinase, and proto-oncogene c-Src.
These signaling molecules activates the phosphoionositide
kinase (PI3K) pathway that is necessary for survival and
migration of cancer cells (Bourguignon et al. 2000, 2008,
2009). More recently, it was also reported that CD44 ex-
pression is associated with chemoresistance by upregula-
tion of the multidrug resistance receptor through activa-
tion of STAT3 (Bourguignon et al. 2008; Louderbough
and Schroeder 2011). Clinical studies have shown a pos-
itive correlation between expression of CD44-positive
BCSCs and tumor aggressiveness in patients with breast
cancer (Balic et al. 2006; Yang et al. 2016).

Cluster of differentiation133

Cluster of differentiation133 (CD133) or prominin-1 is anoth-
er important surface biomarker of BCSCs mainly associated
with chemoresistance. It was reported to upregulate
antiapoptotic genes like survivin and c-FLIP, promote autoph-
agy, and associate with theWnt/β-catenin self-renewal signal-
ing pathway and vasculogenic mimicry (VM). The over ex-
pression of CD133 has been reported to have negative corre-
lation with breast cancer patient survival (Wu and Wu 2009;
Li 2013; Liu et al. 2013; Leon et al. 2016).

Epithelial cellular adhesion molecule

Epithelial cellular adhesion molecule (EpCAM) is a type I
transmembrane glycoprotein, belonging to the family of ad-
hesion molecules, which is overexpressed in BCSCs and is
associated with poor survival rate in breast cancer (Munz et al.
2009; Königsberg et al. 2011). EpCAM comprise of an extra-
cellular domain (EpEx) and an intracellular domain (EpICD).
Cleavage of EpICD (upon EpCAM) activation results in sig-
nal transduction and activation of EpICD target genes like
Nanog, Oct4, Klf4, and Sox2. These genes are involved in
cell cycle regulation and apoptosis (Munz et al. 2009). In
addition, it was reported that EpCAM inhibits E-cadherin-
mediated adhesion and also activates Wnt/β-catenin pathway
to promote survival of BCSCs (Fig. 1).

Aldehyde dehydrogenase1 (ALDH1)

Aldehyde dehydrogenases (ALDHs) are superfamily of en-
zymes which are involved in the oxidation of intracellular al-
dehydes to carboxylic acids, retinoic acid, and γ-amino butyric
acid (GABA) (Ginestier et al. 2007). These enzymes were re-
ported to be overexpressed and associated with chemo/
radioresistance in BCSCs (Resetkova et al. 2010; Croker and
Allan 2012). It was reported that ALDHhigh subtype in BCSCs
was a predictor of poor survival in patients (Ginestier et al.
2007). High ALDH activity also reported to prevent apoptosis
due to anticancer agents by metabolizing them into inactive
metabolites. It was reported that ALDHs influence various
pathways like Wnt, notch, transforming growth factor-β
(TGF-β), extracellular signal-regulated kinases (ERK) in
ALDHhigh subpopulation of cancer cells that influence prolif-
eration and cell fate, epithelial-to-mesenchymal transition
(EMT), retinoic acid synthesis, hypoxia, DNA damage re-
sponse, and cell migration (Rodriguez-Torres and Allan 2016).

Components of self-renewal pathways

Self-renewal is one of the key features of NSCs, responsible for
proliferation and maintenance. The signaling pathways such as
Wnt/β-catenin, Notch, Hedgehog (Hh), TGF-β, signal
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transducer and activator of transcription factor 3
(STAT3), and B cell-specific Moloney murine leukemia
virus integration site 1 (Bmi-1) implicated in the self-
renewal of NSCs (Clarke et al. 2006). In BCSCs, these
self-renewal signaling pathways are deregulated and re-
sult in extensive cell proliferation and also considered
as an early event in the process of carcinogenesis
(Fillmore and Kuperwasser 2008). Inhibition of self-
renewal pathways, therefore, can be an attractive strate-
gy for elimination of BCSCs (Liu et al. 2006; Kai et al.
2010) (Table 1).

Wnt/β-catenin signaling pathway

The Wnt/β-catenin signaling pathway is an evolutionarily
wel l -conserved pathway that regula tes growth,

regeneration, and self-renewal (Branda and Wands
2006). The activation of Wnt/β-catenin pathway occurs
when a Wnt ligand binds to the transmembrane receptor
that in turn results in binding of the low-density lipopro-
tein-related receptor (LRP). This leads to the suppression
of glycogen synthase kinase-3β (GSK-3β) protein, there-
by improving the stability of β-catenin. Consequently, β-
catenin forms a complex with the transcription factor/
lymphocyte enhancer factor and activates the expression
of Wnt target gene such as c-terminus of myc protein (c-
myc) and cyclin D1 (Fleming et al. 2008; Choi et al.
2010). Altered activation of Wnt/β-catenin signaling is a
key feature of breast cancer where it is considered to be
critical for self-renewal of BCSCs and also reported to
enhance tumor metastasis by promoting EMT (Zhao
et al. 2007; MacDonald et al. 2009) (Fig. 2).

Fig. 1 Cross talk between EpCAM signaling and the Wnt/β-catenin
pathway. Activation of the frizzled receptor by members of the Wnt
family of ligands induces the inhibition of GSK3β and the subsequent
stabilization of β-catenin. Upon nuclear translocation, β-catenin controls
Lef-1-dependent transcription. EpICD interacts with the very same

components to form a nuclear complex comprised of β-catenin, FHL2,
and Lef-1. This nuclear complex binds with promoters of genes like
Nanog, Oct4, Klf4, and Sox2 which are involved in cell cycle
regulation and stemness of BCSCs. (Source Imrich et al. 2012)
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Notch signaling pathway

The Notch signaling pathway is essential for differentiation of
BCSCs (Yin et al. 2010). It was reported that the aberrant

activation of notch signaling in BCSCs is associated with
activation of notch target genes which are involved in the
maintenance of self-renewal in BCSCs (Artavanis-Tsakonas
et al. 1999; Reya et al. 2001; Androutsellis-Theotokis et al.

Table 1 Molecular targets of BCSCs

Molecular targets Experimental results Ref.

Surface biomarkers
CD44 Plays an important role in cell–cell interaction, cell adhesion,

and migration
(Klonisch et al. 2008, Wright et al. 2008)

CD133 CD133 inhibition using anti-CD133 antibody results in
elimination of BCSCs and prevented tumor relapse

(Swaminathan et al. 2013, Bostad et al. 2015)

ALDH1 Inhibition of ALDH1 resulted in sensitization of BCSCs
to chemo and radiation therapy

(Croker et al. 2009, Croker and Allan 2012)

EpCAM EpCAM downregulation using SiRNA resulted in
elimination of BCSCs

(Osta et al. 2004, Gilboa-Geffen et al. 2015)

Self-renewal pathways
Wnt/β-catenin pathway
Fz receptor Blockade of frizzled receptor using monoclonal antibody

(OMP-18R5) resulted in silencing of Wnt pathway and
eliminated BCSCs

(Gurney et al. 2012)

β-catenin CWP232228, a β-catenin antagonist resulted in elimination of
BCSCs and also non-BCSCs

(Jang et al. 2015)

Disheveled PDZ domain Disheveled PDZ peptides inhibits PDZ domain and down regulated
Wnt/β-catenin mediated signaling

(Zhang et al. 2009)

Axin 2 Inhibitor of Axin2 results in loss of β-catenin function and down regulates
Wnt/β-catenin pathway

(Chen et al. 2009, Takebe et al. 2011)

Notch signaling pathway
γ-Secretase Inhibition of γ-secretase enzyme using MRK-003

(a γ-secretase inhibitor) resulted in inhibition of notch signaling
in BCSCs and prevented mammosphere and colony formation

(Grudzien et al. 2010)

MAML ANTP/DN MAML, a fusion protein that targets Notch nuclear
co-activator MAML1 to inhibit notch signaling

(Epenetos et al. 2009)

Delta-like 4 ligand (DLL4) Inhibition of DLL4 by monoclonal antibodies or small molecule
inhibitor resulted in anticancer activity by inhibiting notch signaling
pathway

(Noguera-Troise et al. 2006, Ridgway et al.
006, Scehnet et al. 2007, Hoey et al. 2009)

Hedgehog (Hh) pathway
Smo A novel synthetic derivative of Smo antagonist (cyclopamine)

inhibits drug resistance in MCF-7/ADR cells and eliminates BCSCs
(Liu et al. 2016c)

Glioma-associated oncogene (Gli) GANT61, a Gli inhibitor effectively silenced Hh signaling pathway in
breast cancer

(Benvenuto et al. 2016)

TGF-β Inhibition of TGF-β signaling using dominant-negative TGF-β type
II receptor (DNRII) resulted in elimination of BCSCs and prevent me-
tastasis

(Liu et al. 2012)

Bmi-1 Bmi-1 silencing using SiRNA inhibits tumor growth and metastasis in
breast cancer

(Deng et al. 2016)

IL-6/JAK/STAT3 pathway
STAT3 Inhibition of STAT3 signaling results in elimination of BCSCs and

prevention of metastasis
(Thakur et al. 2015)

Apoptotic/antiapoptotic proteins
PTEN/PI3/Akt axis Pharmacological inhibition of AKTwith perifosine, an AKT inhibitor

resulted in inhibition of BCSCs as indicated by formation of fewer
mammospheres and resulted in complete eradication of tumor

(Korkaya et al. 2009)

m-TOR Inhibition of m-TOR by rapamycin resulted in sensitization of BCSCs to
radiation

(Lai et al. 2016)

Bcl2 Down regulation of Bcl2 using SiRNA resulted in chemosensitization (Lima et al. 2004)
Fatty acid synthase (FAS) Supression of lipogenesis by modulating FAS expression resulted

in apoptosis in BCSCs
(Pandey et al. 2011)

Death receptor (DR-5) DR-5 inhibition using anti-DR5 antibody resulted in cytotoxicity of
BCSCs

(Londoño-Joshi et al. 2012)

Autophagy proteins
Beclin1 Depletion of Beclin1 resulted in inhibition of autophagy in BCSCs (Gong et al. 2013)

Metabolic enzymes and transporters
Hexose kinases (HK) Inhibition of HK activity by metformin impairs glucose metabolism

and resulted in tumor growth inhibition in breast cancer and BCSCs
(Hirsch et al. 2009, Marini et al. 2013)

Glucose transporters (GLUT) Inhibition of GLUT1 transporter using small molecule inhibitor (WZB117)
resulted in radio sensitization effects in breast cancer

(Zhao et al. 2016)

Microenvironment
Hypoxia inducible factor1α (HIF1α) HIF1α promotes growth of BCSCs. Inhibitors of HIF1α resulted in

chemosensitization of BCSCs
(Samanta et al. 2014, Zhang et al. 2015)

Carbonic anhydrase-IX (CAIX) CAIX is required for expansion of BCSCs in hypoxic environment.
Inhibition of CAIX expression with novel small molecule inhibitor
resulted in inhibition of BCSCs and hypoxia

(Lock et al. 2013)

CXCR1 CXCR1 inhibitor effectively eliminated BCSCs in vitro and in vivo (Ginestier et al. 2010)
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2006; Hori et al. 2013). This signaling pathway is activated
through four Notch receptors (Notch 1–4); among those,
Notch 4 and Notch 1 are implicated in self-renewal of
BCSCs (Bray 2006; Cerdan and Bhatia 2010; Harrison et al.
2010b; Zhong et al. 2016). Ligand protein binding to Notch
receptors leads to their cleavage by γ-secretase to release the
Notch intracellular domain (NICD), and following the nuclear
translocation, it induces transcriptional activation of Notch
target genes to promote survival of BCSCs (Schweisguth
2004). Inhibitors of γ-secretase, therefore, prevent the prote-
olysis of Notch receptors and suppress the Notch activity in
BCSCs. Mastermind-like (MAML) and Delta-like 4 ligand
(DLL4) proteins are the other important molecular targets
from Notch signaling pathway to inhibit self-renewal of
BCSCs (Fig. 2).

Transforming growth factor-β pathway

Transforming growth factor-β (TGF-β)-mediated signaling is
essential during the initial phase of development and regener-
ation of cells (Pryce et al. 2009; Greenow and Clarke 2012).
TGF-β ligands binding activates TGF-β type I receptor. The
type I receptor triggers the phosphorylation of SMADs (tran-
scription factors) and results in ligand-induced transcription of

self-renewal genes in BCSCs (Fig. 2) (Massagué 2000; Liu
et al. 2012). TGF-β signaling exerts tumor suppressor effects
in normal cells and early carcinomas. However, the mutations
in TGF-β results in tumor genesis. As tumors develop and
progress, the protective and cytostatic effects of TGF-β will
be lost. TGF-β signaling then promotes cancer progression,
invasion, and tumor metastasis. TGF-β, therefore, have dual
role in both tumor suppression and tumor progression (Moses
and Barcellos-Hoff 2011). Higher TGF-β levels in the serum
and urine was correlated with poor survival rate and advanced
disease state in cancer patients (Tsai et al. 1997). Designing
novel therapeutic agents targeting TGF-β is, however, chal-
lenging due to its dual role in carcinogenesis. It is necessary to
develop drugs that specifically aimed at blocking the
prometastatic effects of the TGF-β signaling pathway without
affecting its tumor suppressive effects.

Hedgehog signaling pathway

Hedgehog (Hh) signaling pathway is an important pathway
that is responsible for the maintenance and self-renewal ca-
pacity of the BCSCs. The Sonic Hh (SHh), Desert Hh (DHh),
and Indian Hh (IHh) are the three gene homologs of Hh
(Ingham and McMahon 2001; Micchelli et al. 2002; Takebe

Fig. 2 Wnt/β-catenin (a), Notch
(b), Hedgehog (c) and STAT3 (d)
and Bmi (e) mediated signaling
for self-renewal of BCSCs.
STAT3 signal transducer and
activator of transcription factor 3,
TGF-β transforming growth
factor-β, Hh Hedgehog, Smo
Smoothened, SHh Sonic
Hedgehog, IHh Indian hedgehog,
DHh desert hedgehog, NICD
Notch intracellular domain,
NECD Notch extracellular
domain, GSK-3β glycogen
synthase kinase 3 β, DHh desert
Hedgehog, DLL4 delta-like 4
ligand, Bmi-1 B cell-specific
Moloney murine leukemia virus
integration site 1, JAK Janus
kinase, Gli glioma-associated
oncogene
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et al. 2011). In Hh pathway, the activation of Smoothened
(Smo), a seven-pass transmembrane receptor, is necessary
for signaling process. In the presence of Hh ligand, Smo acti-
vates the glioma-associated oncogene (Gli) family of tran-
scription factors (Gli1/2/3) to carry out the further downstream
signaling required for self-renewal of BCSCs (Svärd et al.
2006). Smo receptor and Gli family of proteins, therefore,
can be druggable molecular targets to inhibit self-renewal of
BCSCs (Fig. 2).

B cell-specific Moloney murine leukemia virus integration
site-1

The B cell-specific Moloney murine leukemia virus integra-
tion site-1 (Bmi-1) is one of the polycombcomplex proteins,
reported to be involved in the differentiation and self-renewal
mechanisms of BCSCs (Alkema et al. 1993; Jacobs et al.
1999; Gil et al. 2005). Bmi-1 affects morphogenesis during
embryonic development and in hematopoiesis with a perva-
sive expression in almost all tissues (Van der Lugt et al. 1994).
It is noted that BCSCs are dependent on Bmi-1 for their main-
tenance and self-renewal (Fig. 2) (Sawa et al. 2005; Borah
et al. 2015). In addition, it was reported that Hh signaling
act along with Bmi-1 to regulate the self-renewal of BCSCs
(Kubo et al. 2004; Liu et al. 2006).

JAK/STAT3 pathway

Signal transducers and activators of transcription (STATs) are a
family of transcription factors required for regulation of growth,
survival, and differentiation of cells (Darnell Jr et al. 1994; Ihle
2001). So far, seven STAT proteins have been recognized in
mammalian cells. Among all, STAT3 plays a key role in carci-
nogenesis by regulating the transcription of genes involved in
cell proliferation, differentiation, apoptosis, angiogenesis, and
metastasis (Akira et al. 1994; Yu and Jove 2004). IL-6/JAK/
STAT3 is the canonical STAT3 activation signaling pathway,
reported to be deregulated in cancer. Since the receptor of IL-6
does not contain a kinase catalytic domain, it induces STAT3
phosphorylation by activating members of the JAK family
(Fig. 2) (Ihle et al. 1994; Heim et al. 1995; Ihle and Kerr 1995;
Stahl et al. 1995; Ihle 2001). The IL-6/JAK2/STAT3 pathway
was found to be active in CD44+/CD24− BCSCs. It was dem-
onstrated that inhibition of STAT3 pathway suppressed growth of
xenograft tumors. In addition, it has been reported that cancer
cells can be converted into a cancer stem cells via the IL-6/JAK1/
STAT3 signaling pathway (Marotta et al. 2011;Wang et al. 2012;
Kim et al. 2013; Xiong et al. 2014; Chung and Vadgama 2015).
STAT3 is an important molecular drug target for inhibition of this
pathway. Recently, it was identified that niclosamide, an anti-
helmenthic drug, is an inhibitor of STAT3 phosphorylation (Li
et al. 2013; Wang et al. 2013b; Li et al. 2014). In addition,
niclosamide is also reported to prevent conversion of non-

BCSCs to BCSCs (Kim et al. 2013) and reduced resistance to
chemotherapy (Liu et al. 2016a; Liu et al. 2016b) (Table 2).
Recently, Wang et al. have shown that leptin-JAK/STAT3 regu-
late lipid metabolism through fatty acid β-oxidation (FAO) to
promote breast cancer stemness and chemoresistance. Blocking
FAO and/or depleting leptin sensitized cancer cells to chemother-
apy while reducing BCSCs in vivo (Wang et al. 2018).

Apoptotic/antiapoptotic proteins

Deregulation of apoptosis and antiapoptotic (survival) signaling
pathways is a characteristic of cancer and a critical determinant of
efficacy of chemotherapy (Fig. 3) (Brown and Attardi 2005). In
this context, a compelling body of evidence suggests that BCSCs
use several mechanisms to deregulate apoptotic/antiapoptotic
pathways and promote resistance to treatment (Wicha et al.
2006; Karnoub et al. 2007). The B cell lymphoma2 (Bcl2),
FLICE like inhibitory protein (c-FLIP), nuclearfactor-κ-B
(NF-κB), phosphatase and tensin homolog (PTEN), mammalian
target of rapamycin(m-TOR), and death receptors (DR)-4/5 pro-
teins are the well-characterized regulators of apoptosis and mo-
lecular targets for elimination of BCSCs (Martinou and Youle
2011). Bcl2 is an antiapoptotic protein that is reported to be
overexpressed in 75% of breast cancer cells (Domen et al.
1998; Honma et al. 2015; Merino et al. 2016). It was reported
that breast tumor-targeted gene therapy with pro-apoptotic gene
Bcl2 interacting killer (BIK) improved the efficacy of the che-
motherapeutic agents against breast cancer (Lang et al. 2011).

Drug efflux transporters

Drug efflux transporters or ATP-binding cassette transporters
(or ABC transporters) like P-glycoprotein (P-gp) or ABCB1
and breast cancer resistance protein (BCRP) or ABCG2 are
implicated in chemoresistance (Shervington and Lu 2008; Yin
et al. 2008). ABCB1 is reported to be expressed and respon-
sible for chemoresistance in breast cancer. Studies have shown
that higher expression of CD133 is also accompanied with an
elevated ABCB1 efflux activity (Moitra 2015). Hoechst
33342 assay which is used to isolate BCSCs is based on the
principle that BCSCs are Hoechst dim due to overexpression
of the ABCG2 drug efflux transporter that pumps the dye out
of the cells (Kim et al. 2008; Britton et al. 2012). Several
inhibitors of ABCG2, like Fumitremorgin C (FTC),
Tryprostatin-A, and Tariquidar, have been proposed to kill
BCSCs in order to achieve radical cure in breast cancer.
However, the clinical application of these compounds is lim-
ited due to their low inhibition capacity and off-target effects
on the healthy cells (Rabindran et al. 1998; Rabindran et al.
2000; Zhao et al. 2002; Woehlecke et al. 2003; Robey et al.
2004; Peired et al. 2016).
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DNA repair capacity

Radiation therapy and chemotherapeutic agents cause DNA
damage for induction of apoptosis (Cheung-Ong et al. 2013).
BCSCs possess DNA repair ability by activation of various

checkpoint mechanisms (Al-Assar et al. 2011; Kim et al.
2012; Peitzsch et al. 2013). DNA damage can be repaired by
homology-directed recombination (HDR) or through nonho-
mologous end joining (NHEJ) (Brandsma and van Gent
2012). The HDR involves resegmentation of the two ends of

Table 2 Various anti-BCSCs
agents and their mechanism of
action for elimination of BCSCs

Anti-BCSC agent Mechanism of action Ref.

Disulfiram Modulator of MAPK signaling pathway (Yip et al. 2011)

Flubendazole Cell cycle arrest at G2/M phase and induced
monopolar spindle formation through
inhibition of tubulin polymerization

(Hou et al. 2015)

Metformin Inhibition of Akt and hexose kinase (Vazquez-Martin et al.
2011)

Niclosamide Inhibition of Wnt, STAT-3, Notch, and
NF-κB
pathways of self-renewal

(Pan et al. 2012)

Salinomycin Inhibition of self-renewal (Zhang et al. 2012)

Simavastatin Inhibition of mevalonate metabolism (Ginestier et al. 2012)

Thioridazine Antagonism of dopamine receptor on CSCs (Ke et al. 2014)

Tranilast Activation of aryl hydrocarbon receptor (Prud'homme et al. 2010)

Epigallocatechin gallate
analogs

Activation of AMPK (Chen et al. 2012)

Everolimus Not established (Zhu et al. 2012)

Sulforaphine Downregulation of Wnt/β-catenin signaling (Li et al. 2010)

Cyclopamine Smo inhibitor (You et al. 2015)

Fig. 3 Apoptotic and
antiapoptotic signaling in cancer
stem cells. Bcl2 B cell lymphoma
2,BIKBcl2 interacting killer,DRs
death receptors, IL interleukin,
PTEN phosphatase and tensin
homolog,PI3-K phosphoinositide
3-kinase, NF-κB nuclear factor-
κB, Bad Bcl-2-associated death
promoter, PUMA p53 upregulated
modulator of apoptosis, IAP
inhibitor of apoptosis protein,
XIAP X-linked inhibitor of
apoptosis protein, IKK I-kappa
kinase, c-FLIP FLICE like
inhibitory protein (Signore et al.
2013)
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DNA from 3′ to 5′, formation of single-strand DNA at the 3′
end, assembly of RAD51 filaments (a protein family contrib-
uting in the repair of DNA double-stand breaks), and finally
repair by annealing at the end of the double-strand break. The
HDR repair occurs during the S and G2 phases of the cell
cycle. NHEJ utilizes the Lupus Ku autoantigen protein p70/
80 (KU70/80) to join the DNA strands. In addition, nucleases,
polymerases, DNA-dependent protein kinases, and ligases
participate in the NHEJ repair process (Jackson 2002; Jasin
and Rothstein 2013). DNA damage checkpoint proteins, like
checkpoint kinases (ChK 1/2) are the important molecular
targets for prevention of DNA repair and inhibition of
BCSCs (Niida and Nakanishi 2006; Yin and Glass 2011).

Oxidative stress

Many anticancer agents and radiation therapy lead to reactive
oxygen species (ROS) production to induce apoptosis in can-
cer cells by either intrinsic or extrinsic pathways (Cook et al.
2004; Sena and Chandel 2012; Sinha et al. 2013). However,
BCSCs maintain low ROS levels in addition to high endoge-
nous antioxidant levels (Trachootham et al. 2009).
Upregulation of genes encoding the antioxidant enzymes like
superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPO) can be found in BCSCs (Diehn et al. 2009).
In addition, BCSCs are regularly localized in the hypoxic
regions of the tumors to avoid ROS-mediated apoptosis.
This makes BCSCs to avoid oxidative DNA damage and
maintain their quiescent state for their survival (Phillips et al.
2006; Gilbertson and Rich 2007). Induction of oxidative stress
and reduction of antioxidant defense, however, is not consid-
ered as an effective strategy for elimination of BCSCs, due to
deleterious effects on healthy cells.

BCSCs metabolism

Differentiated bulk cancer cells rely primarily on glycolysis
for production of ATP and to manage high rate of proliferation
(Ward and Thompson 2012). In contrast, BCSCs can be high-
ly glycolytic or oxidative phosphorylation (OXPHOS) depen-
dent. In both cases, mitochondrial function is important
(Sancho et al. 2016). Inhibition of the mitochondrial metabolic
function, therefore, became a potential strategy in recent years
for elimination of BCSCs and prevention of tumor relapse. It
was reported that BCSCs show distinct glucose and
mevalonate metabolism (Ginestier et al. 2012; Dong et al.
2013). It has been recently demonstrated that adenine nucleo-
tide translocator-2 (ANT2), which is involved in glycolytic
metabolism (Raaijmakers et al. 2005), and Hexokinase 2
(HK2), which catalyzes the first committed step of glucose
metabolism, can be targeted for elimination of BCSCs.
Using HK2 conditional knockout mice, it was demonstrated
that HK2 is required for tumor initiation and maintenance in

breast cancer (Patra et al. 2013). Metformin has been reported
to eliminate BCSCs by inhibiting HK2 and thereby enhanced
the effects of chemotherapy (Salani et al. 2014) (Fig. 4).

BCSCs microenvironment/niche

BCSCs require a specialized microenvironment or niche
which is regulated by various factors for their survival. The
factor that regulate BCSCs microenvironment include fibro-
blast stimuli, immune cells, autocrine signals, and extracellu-
lar matrix (ECM) components, as well as physical/chemical
factors such as oxygen pressure, nutrients levels, and low pH
(Bozorgi et al. 2015; He et al. 2016). Growth factors and
cytokines released by tumor cells and cancer-associated fibro-
blasts and immune cells have strong effects on the survival
and metastasis of BCSCs (Culig 2011; Korkaya et al. 2012). It
was reported that combination therapy with an IL-6 receptor
antibody is required to suppress acquired trastuzumab resis-
tance in breast cancer in vivo. In addition, it was reported that
the IL-8 receptor, CXCR1, is highly expressed in BCSCs.
Interestingly, chemotherapy may increase the CSC pool by
stimulating the release of IL-8, whereas a CXCR1 small mol-
ecule inhibitor helped to eliminate the residual BCSC popula-
tion following docetaxel therapy (Ginestier et al. 2010).

Autophagy proteins

Autophagy is a survival promoting physiological process in
BCSCs against various environmental stress, radiation, che-
motherapeutic drugs, and hypoxia (Choi et al. 2013).
Autophagy plays an important role in breast cancer initiation
or t ransformat ion of mammary epi the l ia l ce l l s ,
chemoresistance, and metastasis. Excessive self-eating can
promote death, and low levels of autophagy activated in re-
sponse to cellular stress is believed to promote resistance of
breast cancer cell to chemotherapy, radiation, and targeted
therapy in most settings (Jain et al. 2013). In BCSCs, it was
repor ted that autophagy is a lso responsib le for
chemoresistance, tumor relapse, and metastasis (Sui et al.
2013; Ojha et al. 2015). Mechanisms by which autophagy
promotes cancer include induction of the p53 and altering
metabolic function of mitochondria (White 2015). It was re-
ported that treatment with autophagy inhibitors or silencing of
autophagy-associated genes affects stem cell renewal, differ-
entiation, and stress-resistant abilities that results in elimina-
tion of BCSC population and enhanced the sensitivity to che-
motherapeutic agents (Mai et al. 2012; Singh et al. 2012).
Recently, it was reported that autophagy inhibition with chlo-
roquine (CQ) resulted in elimination of BCSCs in triple neg-
ative breast cancer (TNBC) and potentiated the cytotoxic ef-
fects of carboplatin (Liang et al. 2016).
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Epigenetic regulation of BCSCs

Epigenetic regulation of the genome is one of the primary
mechanisms by which genetic code is altered to control cellu-
lar developmental hierarchies without change in DNA se-
quences. Epigenetic mechanisms include histone modifica-
tions, DNA methylation, chromatin remodeling, and changes
in noncoding RNAs including miRNAs. Emerging evidences
suggest that deregulation of various epigenetic mechanisms
can contribute to tumor initiation and progression, particularly
with respect to maintenance and BCSCs. Histone methylation
is a critical factor in epigenetic regulations and is mediated by
methyltransferases which catalyze the mono-, di-, or
trimethylation of specific lysine residues (Wei et al. 2008).
Histone methylation occurs predominantly on lysine (K) and
arginine (R) residues (Stallcup 2001). The histone lysine
methylation occurs at three different levels: mono-, di-, and
trimethylation and commonly associated with gene activation
or repression. Histone H3 lysine 4 (H3K4), histone H3 lysine
36 (H3K36), and histone H3 lysine 79 (H3K79) are associated
with gene activation and histone H3 lysine 9 (H3K9), histone
H3 lysine 27 (H3K27), and histone H4 lysine 20 (H4K20) are
associated with gene repression. Aberrations in histone mod-
ifications can lead to deregulated gene expression as seen in
various human disease and malignancies. It was reported that
epigenetic enzymes will be recruited to the E-cadherin pro-
moter by Snail and cause transcriptional silencing of E-
cadherin and lead to EMT. Dong et al. have investigated the

interaction of Suv39H1 (Snail binding protein) with Snail and
identified Suv39H1 is critical for the enrichment of H3K9me3
on the E-cadherin promoter in breast cancer cells and in the
induction of EMT (Dong et al. 2012, 2013). It was also re-
ported that the stemness of BCSCs is maintained by the epi-
genetic marker H3K27me3. In a recent study, Ningning Yan
et al. have proposed H3K27me3 as a target for elimination of
BCSCs. It was reported that inhibition of H3K27me3 demeth-
ylation specifically target BCSCs by inactivation of JMJD3
and UTX, which facilitate target gene activation by catalyzing
the conversion of H3K27me3 and H3K27me2 to H3K27me1
and maintain the balance between methylation and demethyl-
ation (Yan et al. 2017). Recent studies in epigenomics have,
therefore, led to understand the key mechanisms by which
epigenetic regulations contribute to tumor progression.
Further understanding of the mechanisms involved in epige-
netic regulations and testing the epigenetic modulating drugs,
offer new avenues for targeting BCSCs.

Future prospects

One major challenge for targeting BCSCs is the molecular
cross talk between the self-renewal signaling pathways in
BCSCs and NSCs. Multiple developmental signaling path-
ways implicated in regulating BCSCs, like TGF-β, Wnt, and
Notch, have been shown to regulate normal stem and progen-
itor cells. Selective targeting of BCSCs, therefore, will be

Fig. 4 Mechanism of action of
metformin for elimination of
BCSCs
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challenging. TGF-β is a potent EMT inducer that is reported
to be secreted by multiple cell types in tumors (Padua and
Massagué 2009). TGF-β is reported to activate EMT pro-
grams in both mammary epithelial cells and also BCSCs. In
BCSCs, TGF-β activation leads to expression of surface
markers CD44highCD24low, and the increase the ability to
form mammospheres (Mani et al. 2008; Scheel et al. 2011;
Bruna et al. 2012). In normal human mammary cells, efficient
activation of EMT requires co-operation of both TGF-β and
Wnt signaling pathways. However, such co-operation is re-
ported to be essential only in early developmental stage
(Nishita et al. 2000). In adult mammary glands, MaSCs ex-
hibit elevatedWnt signaling (van Amerongen et al. 2012) and
the overexpression of Wnt proteins or activation of canonical
Wnt by Axin2 mutation or MMP3 overexpression promotes
the expansion of MaSCs (Shackleton et al. 2006; Zeng and
Nusse 2010; Kessenbrock et al. 2013). In contrast to Wnt,
Notch is reported to induce the commitment of MaSCs to
luminal-specific progenitors (Bouras et al. 2008). However,
basal-like breast cancer is likely to originate from luminal
progenitor cells (Molyneux et al. 2010). Notch signaling,
therefore, is particularly important for this breast cancer sub-
type (Harrison et al. 2010a). It was also reported that although
TGF-β increases BCSC numbers in claudin-low subtype, it
suppresses BCSC in certain basal-like and luminal breast can-
cer subtypes (Bruna et al. 2012). Similarly, Wnt-
overexpressing fibroblasts promoted the growth of one
patient-derived xenograft (PDX) model but inhibited another
PDX (Green et al. 2013). Future therapeutic strategies can,
therefore, be tailored based on the molecular signature of spe-
cific tumor subtypes. In addition, understanding the complex
differences in the biology of NSCs and BCSCs is necessary
for selective targeting of BCSCs. For instance, designing ther-
apeutic strategies to target mutation present only in BCSCs
and selective targeting mechanisms of tumor propagation that
are distinct from NSC regulation are possible strategies. For
example, the cyclopamine (inhibitor of Hh pathway) is inac-
tive in normal cells due to expression of patched (Ptc) gene.
Ptc gene products are reported to prevent binding of
cyclopamine to its target. However, tumor cells respond well
to treatment with cyclopamine due to mutations in Ptc gene.
Thus, cyclopamine was expected to selectively kill tumor cells
(Goodrich and Scott 1998; Borah et al. 2015). In recent years,
researchers have also focused on designing suitable nano-drug
delivery systems to specifically target BCSCs. The application
of nanocarriers for BCSC-targeting, however, is in its infancy,
and many issues need to be well studied in clinical settings
(Pindiprolu et al. 2017). Due to complex signaling network
and their high dynamic plasticity according to the need of the
environment, there are greater chances for development of
drug resistance in BCSCs. Multi-targeted anti-BCSC agents
need to be designed, therefore, to overcome drug resistance.
Various pathways of BCSCs like Hh, notch, and Wnt have

multiple points which can be targeted simultaneously. The
existence of cross talk among these signaling pathways needs
to be understood for designing novel therapeutic agents for
targeting BCSCs (Bashyal Insan and Jaitak 2014).
Accumulating body of evidences also suggests that although
BCSCs are eliminated, non-BCSCs which are left behind will
revert back to acquire characteristics of BCSCs. Combination
therapy with chemotherapeutic agents and anti-BCSC agent
is, therefore, needed to achieve a radical cure.

Conclusion

Compelling body of evidence suggest that the presence of
BCSCs is the major cause of tumor relapse, metastasis, and
chemoresistance in breast cancer. As discussed in the review,
many molecular targets have been identified in BCSCs. They
include surface markers, self-renewal pathways, apoptotic
pathways, autophagy, metabolism, and microenvironment.
The current research is focused on developing anticancer
agents against these targets to eliminate BCSCs and to achieve
radical cure in breast cancer therapy. The identification of
strategies that take advantage of these targets of BCSCs needs
to be well studied.
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