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Abstract
The molecular study of muscles is needed to overcome chronic inflammation and maintenance of muscles in the human body.
Schisandrin C is a pharmacological compound derived from the fruit of Schisandra chinensis and has many characteristics
including anti-inflammation, anti-tumor, and anti-oxidation. However, the cellular and molecular mechanisms of Schisandrin C
are still not well understood especially in skeletal muscle. Therefore, the present study was evaluated whether the properties of
Schisandrin C in C2C12 skeletal muscle cells involved maintenance of cellular homeostasis and protection against oxidative
damage. Differentiated C2C12 cells were exposed to H2O2 to induce oxidative stress. The characteristics of anti-oxidants, anti-
inflammation, autophagy, and mitochondrial biogenesis were tested by Western blotting. Confocal microscopy was also used to
observe mitochondrial activity. Schisandrin C inhibited inflammatory molecules with enhancing anti-oxidant activity and reduc-
ing reactive oxygen species (ROS) even in the presence of H2O2. The dual anti-inflammation and anti-oxidant roles of
Schisandrin C regulated the translocation of nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor-2
(Nrf-2) to nucleus followed by inhibition of the mitogen-activated protein kinase (MAPK) pathway. Schisandrin C promoted the
expression of autophagy and mitochondrial biogenesis molecules. Furthermore, the effect of Schisandrin C increased the
mitochondrial activity against oxidative stress. Consequently, the action of Schisandrin C enhanced the regulation of autophagy
and mitochondrial biogenesis with potential involvement of anti-oxidative mechanisms including the MAPKs/Nrf-2/heme
oxygenase-1 signaling pathway in C2C12 skeletal muscle cells exposed to oxidative stress. Therefore, Schisandrin C may be
considered as a beneficial compound for several muscle inflammations.
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Introduction

Inflammation is the underlying cause of many human diseases
(Guo et al. 2008). Chronic inflammation of skeletal muscle is

characterized by the invasion of mononuclear immune cells,
myositis, and the destruction of muscle tissue caused by
exercising too much or performing extreme exercises (Guo
et al. 2008; Oh et al. 2013). Therefore, the study of molecular
pathway to protect muscles is needed to overcome chronic
inflammation and facilitate the repair and maintenance of
muscles in the human body.

The inflammatory responses are mediated by various in-
flammatory cytokines and molecules, which are indices of
inflammatory activity (Oh et al. 2010; Chun et al. 2014; Liu
et al. 2015). NF-κB is a key regulator known to exacerbate
inflammatory diseases. Pro-inflammatory genes, matrix me-
talloproteinase-2, metalloproteinase-9 (MMP-2/9), inducible
nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-
2) are modulated by NF-κB translocation (Rahman and Fazal
2011). Heme oxygenase-1 (HO-1) plays an important role in
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mitochondrial biogenesis and downregulation of chronic in-
flammatory molecules, intracellular adhesion molecule-1
(ICAM-1), and vascular cell adhesion molecule-1 (VCAM-
1) (Zukor et al. 2009). In addition, HO-1 promotes mitochon-
drial macroautophagy and reduces redox-activity in age-
related diseases (Zukor et al. 2009; Lee et al. 2015). The stim-
ulation of autophagy is critical for maintaining muscle mass
and mitochondrial biogenesis in skeletal muscle (Masiero
et al. 2009; Lesmana et al. 2016). It has been known that
HO-1 expression is continuously regulated by PI3K/Akt,
MAPKs, NF-κB, and Nrf-2 signaling pathways, which induce
anti-oxidative and anti-inflammatory responses (Surh et al.
2008; Furukawa et al. 2010; Paine et al. 2010; Park et al.
2011).

The anti-inflammatory effects of medicinal plants have
been exploited in prior studies to repair damaged muscles
(Oh et al. 2013; Kang et al. 2014). Particularly, Schisandrin
C is a pharmacological compound extract from the fruit of
Schisandra chinensis existing anti-inflammatory properties
(Oh et al. 2010; Park et al. 2013). The beneficial therapeutic
effects of Schisandrin C are associated with anti-oxidants and
anti-inflammation characteristics, which exert protective ef-
fects in various tissues (Panossian and Wikman 2008; Park
et al. 2011, 2013; Chun et al. 2014). Some studies reports that
Schisandrin C-mediated anti-inflammatory activity is correlat-
ed with the inhibition of pro-inflammatory cytokine expres-
sion through blocking of NF-κB translocation followed by the
inhibition of the p38 and stress-activated protein kinase/Jun
N-terminal kinase (SAPK/JNK) pathway (Guo et al. 2008;
Park et al. 2013; Chun et al. 2014). However, the molecular
signaling pathway by which Schisandrin C exerts its influence
on HO-1-mediated authophagy and mitochondrial biogenesis
has not been explored. These pathways are intimately associ-
ated with the effects maintenance of cellular homeostasis and
protection by Schisandrin C against oxidative damage in skel-
etal muscle cells.

Therefore, in this study, we examined whether anti-oxidant
and anti-inflammatory activities of Schisandrin C exerted an
effect on H2O2-stimulated C2C12 skeletal muscle cells and
we endeavored to identify any associated molecular signaling
pathway. Furthermore, this study evaluated the regulation of
cellular homeostasis by examined autophagy and mitochon-
drial biogenesis.

Materials and methods

Reagents

Schisandrin C (PubChem CID: 443027; SMB00323) was ob-
tained from Sigma-Aldrich (St. Louis, MO, USA). Antibodies
to Mn-SOD (sc-130345; MW: 25 kDa), CuZn-SOD (sc-
101523; MW: 19 kDa), IL-1β (sc-7884; MW: 31 kDa), Nrf-

2 (sc-722; MW: 57 kDa), NF-κB (p65) (sc-109; MW:
65 kDa), PGC-1α (sc-13067; MW: 90 kDa), HO-1
(sc136960; MW: 32 kDa), VCAM-1 (sc-8304; MW:
110 kDa), MMP-9 (sc-10,737; MW: 92 kDa), and SIRT-1
(sc-74465; MW: 120 kDa) were acquired from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). The antibody to p62
(ab91526; MW: 47 kDa) was acquired from Abcam (Boston,
MA, USA). The antibodies to ATG-5 (BZ01274; MW:
56 kDa), Beclin-1 (BZ01799; MW: 60 kDa), MMP-2
(BS1236; MW: 72 kDa), NRF-1 (BS7179; MW: 53 kDa),
iNOS (BZ01465; MW: 130 kDa), phosphorylated AMPK
(BS5003; MW: 62 kDa), and Lamin B1 (BS3547; MW:
68 kDa) were acquired from Bioworld Technology (Louis
Park, MN, USA). Antibodies to LC3A/B (#4108; MW: 14–
16 kDa), TNF-α (#3707;MW: 25 kDa), COX-2 (#4842;MW:
74 kDa), phosphorylated ERK1/2 (#4377 and #9102; MW:
42–44 kDa), p38 (#9215 and #9212; MW: 43 kDa), JNK
(#9251 and #9252; MW: 46–54 kDa), and AKT (#9271;
MW: 60 kDa) were supplied by Cell Signaling (Beverly,
MA, USA), and the antibody to actin (A2066; MW: 42 kDa)
was purchased from Sigma-Aldrich. The Muse™ oxidative
stress kit was obtained from Merck KGaA, Darmstadt,
Germany.

Cell culture and oxidative stress with H2O2

stimulation

C2C12 skeletal muscle cells were obtained from the American
Type Culture Collection (Manassas, VA, USA) and cultured
as previously described in the literature (Singh et al. 2007).
Briefly, the cells were maintained at 37 °C in a humidified 5%
CO2 atmosphere in DMEM (Gibco BRL, Grand Island, NY,
USA) supplemented with 10% fetal bovine serum and 2 mM
glutamine, 100 units/ml penicillin, and 100 μg/ml streptomy-
cin and subculture in a 1:4 ratio. C2C12 myoblasts at approx-
imately 80–90% confluencewere differentiated intomyotubes
upon further incubation in 2% horse serum for 5 days. The
differentiation medium used to generate myotubes was re-
placed every 48 h with fresh medium. Differentiated C2C12
cells were incubated with serum-free DMEM for 12 h and
then treated with different concentrations of Schisandrin C
for specified times. We then exposed the treated cells for at
the indicated times to hydrogen peroxide (H2O2, 200 μM;
Sigma-Aldrich, St. Louis, MO, USA) for oxidative stress.
After the oxidative stress, the cells were rinsed with
phosphate-buffered saline (PBS, pH 7.4) and given a fresh
medium for indicated days. Unless otherwise specified, all
other reagents were purchased from Sigma-Aldrich.

MTT assay

Briefly, after 48 h of incubation with different concentrations
of Schisandrin C in 24-well plates, cells were washed twice

198 Naunyn-Schmiedeberg's Arch Pharmacol (2018) 391:197–206



with phosphate-buffered saline (PBS). MTT (100/100 ml of
PBS) was added to each well. The cells were incubated at
37 °C for 3 h, and dimethyl sulfoxide (500 μl) was added to
dissolve the formazan crystals. The absorbance was measured
at 570 nm with an ELISA reader (Bio-TeK, Winooski, VT,
USA). The relative percentage of survival was calculated by
dividing the absorbance of treated cells by that of the control
for each well.

ROS generation

ROS generation by C2C12 cells was measured by theMuse™
Oxidative Stress Kit using the Muse cell analyzer (Merck
Millipore, Germany) and performing fluorescence-based anal-
ysis. The manufacturer’s protocol was followed without devi-
ation for the assay. Briefly, C2C12 cells were treated with
20 μM of Schisandrin C for 1 h prior to H2O2 (200 μM/ml)
treatment and incubated for 24 h. Samples (1 × 107 cells/ml)
were prepared in 1× assay buffer and treated with oxidative
stress reagent, based on dihydroethidium (DHE) used to detect
ROS that is oxidized with superoxide anion to form the DNA-
binding fluorophore ethidium bromide which intercalates with
DNA resulting in red fluorescence.

Confocal imaging analysis for mitochondrial activity

Cells were cultured on collagen-coated coverslips and incu-
bated with 100 nM MitoTracker Red CMXRos (Invitrogen,
Carlsbad, CA, USA) for 30 min according to the manufac-
turer ’s instructions. The DAPI—4 ′ ,6-diamidino-2-
phenylindole dihydrochloride (Sigma-Aldrich)—counterstain
was applied to localize merged images. The imaging analysis
was performed using a confocal laser scanning microscope
(model LSM510, Carl Zeiss, Ostalbkreis, Germany). The
fluorescence condition was created using an emission and
excitation wavelength of 405 and 543 nm, respectively.

Preparation of cytosolic and nuclear protein

The cytosolic and nuclear proteins were prepared by slight
modification of a previous method (Lee et al. 2013). Briefly,
the cells were washed with ice-cold PBS and scraped into
buffer A (10 mM HEPES pH 7.9, 10 mM KCl, 10 mM eth-
ylenediaminetetraacetic acid [EDTA], 100 mM dithiothreitol,
10% IGEPAL (Rhodia Operations, Aubervilliers, France),
1 mM phenylmethylsulfonyl fluoride, 10 μg/ml pepstatin A,
10 μg/ml aprotinin, and 10 μg/ml leupeptin). The cells were
disrupted with a pipette and centrifuged at 15,000×g for
10 min at 4 °C. The cytosolic supernatant was removed, and
the pellet containing the nuclear fraction was re-suspended in
buffer B (20 mM HEPES pH 7.9, 400 mM NaCl, 1 mM
EDTA, 100 mM dithiothreitol, 10% glycerol, 1 mM
phenylmethylsulfonyl fluoride, 10 μg/ml pepstatin A, 10 μg/

ml aprotinin, and 10 μg/ml leupeptin) on ice for 30 min. After
centrifugation at 15,000×g for 10 min at 4 °C, the supernatant
was collected as the nuclear protein. The resulting superna-
tants were used as the nuclear and cytosolic proteins for the
analysis of NF-κB and Nrf-2.

Western blot analysis

Western blot analysis was performed as previously described
(Lee et al. 2013). The samples were separated by 8–15% so-
dium dodecyl sulfate–polyacrylamide gel electrophoresis un-
der denaturing conditions and electroblotted onto nitrocellu-
lose membranes. The membranes were incubated with a
blocking buffer; 5% non-fat dry milk in Tris-buffered saline
Tween-20 buffer (25 mM Tris–HCl, pH 7.5, 150 mM NaCl,
0.1% Tween-20) and incubated with the primary antibody.
The membranes were washed with PBS and incubated with
the horseradish peroxidase-conjugated secondary antibody.
The signals were visualized by chemiluminescent detection
according to the manufacturer’s protocol (Amersham
Pharmacia Biotech, London, UK). The membranes were
reprobed with anti-actin antibody to confirm an equal protein
loading. The signals were analyzed by densitometry scanning
(LAS-3000; FujiFilm, Tokyo, Japan).

Statistical analysis

Results were expressed as the mean ± standard deviation.
Statistical significance between groups was assessed by the
ANOVA and Duncan’s test; p values of < 0.05 were consid-
ered statistically significant. At least, three independent exper-
iments were carried out.

Results

Effects of Schisandrin C on cellular viability
and anti-oxidant activity of oxidative stress-induced
C2C12 cells

The differentiated C2C12 skeletal muscle cells were treated
with indicated Schisandrin C concentrations to verify the ef-
fect on cell viability and removal of ROS. The cytotoxicity of
Schisandrin C or H2O2 was checked by the MTT assay, and
H2O2 was used to induce oxidative stress in C2C12 cells.
Schisandrin C did not show cell toxicity below a concentra-
tion of 40 μM. Maximum cell viability was observed at a
Schisandrin C concentration of 20 μM compared with control
cells (Mock) in the absence or presence of H2O2 (p < 0.05;
Fig. 1a, b). In addition, removal of ROS by Schisandrin C was
measured by the Muse™ oxidative stress kit using the Muse
cell analyzer (Fig. 1c, d). The C2C12 cells exposed to oxida-
tive stress indicated the upregulation of ROS generation
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compared with Mock. However, the anti-oxidant effect of
Schisandrin C inhibited ROS generation (p < 0.05; Fig. 1c, d).

Anti-oxidant and anti-inflammatory activity
of Schisandrin C in oxidative stress-induced C2C12
cells

The anti-oxidant activity of Schisandrin C was measured with
Cu/Zn andMn-SOD activity bywestern blotting in the C2C12
cells exposed to oxidative stress. The cells with oxidative
stress by H2O2 were shown downregulated SOD enzymes,
but Schisandrin C-treated cells were gradually increased
SOD enzymes even with H2O2 stimulation (p < 0.05;
Fig. 2a, b). In addition, Schisandrin C significantly decreased

the inflammatory molecules including TNF-α, IL-1β, COX-
2, MMP-2, MMP-9, and VCAM-1 (p < 0.05; Fig. 2c, d).

Schisandrin C inhibits the activation of MAPK
signaling pathway and NF-κB translocation
in oxidative stress-induced C2C12 cells

To clarify the mechanism of Schisandrin C about above dual
effect,MAPK signaling andNF-κB translocationwere examined
in the C2C12 cells exposed to oxidative stress. The C2C12 cells
with oxidative stress were activated all MAPKs such as p-ERK,
p-p38, and p-JNK, but SchisandrinC inhibited theH2O2-induced
MAPKs signaling (p < 0.05; Fig. 3a, b). Furthermore,
Schisandrin C blocked the NF-κB translocation from the cytosol
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Fig. 1 Cell viability and ROS formation of Schisandrin C in
differentiated C2C12 skeletal muscle cells. a The cell viability was
determined by the MTT assay. The differentiated C2C12 cells were
treated with Schisandrin C (5–40 μM) for 48 h. b The C2C12 cells
were treated with indicated Schisandrin C concentration, and then cells
were exposed to H2O2 at a concentration of 200 μM for 48 h. c, d The
level of ROS formation was analyzed by a Muse oxidative stress assay,

and then C2C12 cells were treated with 20 μM of Schisandrin C for 1 h
prior to H2O2 (200 μM/ml) treatment and incubated for 24 h. The figure
represented the population and ROS profile of the cell. Data was
presented as a percentage of mean Mock group values. Each value
carried out at least three independent experiments. The symbol asterisk
indicated a significantly different between H2O2 and Schisandrin C +
H2O2 (p < 0.05).
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to the nucleus (p < 0.05; Fig. 3c, d). This result implies that the
character of anti-inflammatory and anti-oxidant of Schisandrin C
involves the inhibition of NF-κB translocation to nucleus
through the MAPK signaling pathway.

Combination of Schisandrin C and H2O2 induces
autophagy and mitochondrial biogenesis via Nrf-2
translocation

Schisandrin C induced the cytosol-to-nuclear translocation of
a major transcription factor, Nrf-2. This transcription factor is
associated with mitochondrial biogenesis (Fig. 3e, f).
Furthermore, autophagy has been known to protect cells
against various external stresses as well as to maintain mito-
chondrial numbers in skeletal muscle (Masiero et al. 2009;
Lesmana et al. 2016). Therefore, whether the effect of
Schisandrin C on autophagy and mitochondrial biogenesis
capacity were examined in the C2C12 cells exposed to oxida-
tive stress, autophagy molecules were present at negligible
levels at the onset of oxidative stress (ATG-5, Beclin-1, and
LC3-II) but accumulated in the presence of Schisandrin C.
However, p62 level showed the opposite result (Fig. 4a, b).

The same pattern of accumulation of compounds associated
with mitochondrial biogenesis (HO-1, PGC-1α, SIRT 1 and

NRF-1) was also observed in the presence of Schisandrin C
(Fig. 4c, d). In addition, Schisandrin C affected the activation
of both AKT and AMPK (Fig. 4c, d). As shown by these com-
prehensive results, Schisandrin C maintained helped to maintain
the activity of mitochondria in C2C12 cells, even in the presence
of oxidative stress (Fig. 4e). So, these results indicated that
Schisandrin C was elevated the activity of mitochondria via the
expression of factors associated with autophagy and mitochon-
drial biogenesis (Fig. 4a–e).

Schisandrin C promotes the autophagy
and mitochondrial biogenesis activation via
HO-1-dependent pathway

On the basis of the abovementioned results, mitochondrial
biogenesis promoted by Schisandrin C was hypothesized to
involvement of HO-1. Levels of expressed iNOS and p62
were increased in C2C12 cells with the HO-1 inhibitor
(ZnPP-treated cells) (p < 0.05; Fig. 5a–c). On the contrary,
the expression of autophagy (ATG-5, Beclin-1 and LC3-II),
mitochondrial biogenesis (HO-1 and PGC-1α), and mito-
chondria activity (Fig. 5d) was inhibited by the HO-1 inhibitor
in C2C12 cells (p < 0.05; Fig. 5a–d).
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However, Schisandrin C-treated C2C12 cells even with the
HO-1 inhibitor, the expression of autophagy, and mitochon-
drial biogenesis factors were significantly increased with mi-
tochondria activity (p < 0.05; Fig. 5a–d). These results sug-
gested that Schisandrin C enhanced mitochondrial biogenesis
effects by regulating anti-inflammatory activities and autoph-
agy mediated via HO-1.

Discussion

The major compounds of Schisandra chinensis are
Schisandrins (Schisandrin A, B, C) and Gomisins (Gomisin
A, N, J), and these compounds have a wide array of

pharmacological and biological activities (Park et al. 2009;
Oh et al. 2010; Chun et al. 2014). Among these, Schisandrin
C has several biological properties such as anti-tumor, hepa-
toprotective, anti-oxidant, and anti-inflammatory effects (Kim
et al. 2010; Oh et al. 2010; Lin et al. 2011; Park et al. 2013).
According to previous studies, Schisandrin C shows its anti-
inflammatory activity in LPS-induced macrophage (Oh et al.
2010). The results of previous studies with its anti-
inflammatory and anti-oxidant activities were in accordance
with results of this study such as downregulation of the pro-
inflammatorymolecules in C2C12 skeletal muscle cells. Also,
the anti-inflammatory mechanism is associated with down-
activation of mitogen-activated protein kinase (MAPK) path-
ways (Guo et al. 2008; Oh et al. 2010; Paudel et al. 2014).
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Thus, MAPK signaling is a very important therapeutic target
for the treatment of inflammatory disease (Seo et al. 2010).
Previous study reports that Schisandrin inhibits the pathway
of ERK, JNK, and p38 in a dose-dependent manner (Oh et al.
2010; Park et al. 2011). NF-κB, as a transcription factor, is
also involved in inflammatory reactions and is controlled by
the MAPK signaling pathway (Tak and Firestein 2001; Guo
et al. 2008). In this study, Schisandrin C inhibited the three
types of MAPKs; p-ERK1/2, p-JNK, and p-38. Also,
Schisandrin C blocked the translocation of NF-κB from cyto-
sol to nucleus even with exposed to oxidative stress.
Therefore, it can be clearly define that the anti-inflammatory
mechanism of Schisandrin C blocked the translocation of

NF-κB following the inhibition of MAPK signaling pathway.
Also, Schisandrin C had a character to remove reactive oxi-
dants, which was predicted by increasing anti-oxidants en-
zymes. These findings strongly supported that the specific role
of Schisandrin C suppressed the production of pro-
inflammatory molecules, and it may have therapeutic perspec-
tive for the regulation of anti-inflammatory or tissue-
protective signaling pathways.

Autophagy protects cells from the cellular stress of inflam-
mation, immune responses, and control cell death (Saitoh and
Akira 2010; Marino et al. 2014). In particular, autophagy also
plays a crucial role in the regulation of inflammation and
homeostatic process (Lee et al. 2008; Levine et al. 2011). In
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Fig. 4 Schisandrin C induces the molecules of autophagy and
mitochondrial biogenesis. a–d The effect of Schisandrin C on
autophagy and mitochondrial biogenesis was determined in the C2C12
cells with H2O2 stimulation. e Mitochondria activity was observed with
confocal microscopy using Mitotracker stain (red). Nuclei were stained
with DAPI (blue), and the images were merged. Data were presented as a

percentage of mean Mock group values. Representative blots and images
were shown. Each value carried out at least three independent
experiments. The symbol asterisk indicated a significantly different
between H2O2-48 h and Schisandrin C-48 h + H2O2 (p < 0.05) (color
figure online)
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the recently study, Schisandrin B moderately increases the
beclin-1 expression among an autophagy molecules for pro-
tective against oxidative stress-induced inflammation
(Giridharan et al. 2015). Also, it suggests that the hepatopro-
tective mechanisms of Schisandrin A may involve in autoph-
agy flux activation (Lu et al. 2014). In this study, it has been
demonstrated for the first time that Schisandrin C increased
the autophagy molecules such as ATG-5, LC3-II, and Beclin-
1 in C2C12 skeletal muscle cells. So, these results predicted
that Schisandrin C like as other Schisandrins may be able to
activate of autophagy for enhancement of skeletal muscle ho-
meostasis. In addition, p62 is an adapter molecule for the
formation of autophagosome and essential molecule to main-
tain cellular homeostasis and muscle mass (Fujita et al. 2008;
Masiero et al. 2009). The p62 protein generally increases un-
der oxidative stress, and p62 accumulation inhibits the autoph-
agy activity such as Beclin-1 expression and LC3B-I to
LC3B-II conversion (Zheng et al. 2009; Park et al. 2017).
Thus, p62 level reduction indicates to increase of autophagic

flux (Bjørkøy et al. 2009; Lesmana et al. 2016). In this study,
the oxidative stress to C2C12 cells increased p62 level but
Schisandrin C downregulated its expression, whichmeant that
Schisandrin C activated autophagic flux under oxidative
stress. Interestingly, the inhibition of autophagy expression
leads to increase the production of oxidative reactive species
(ROS) and mitochondrial damage (Mortensen et al. 2010). In
addition, the meaning of autophagy balance is critical for
maintaining appropriate function and number of mitochondria
in skeletal muscle (Lesmana et al. 2016). Therefore, it is con-
sider that the regulation of autophagy by Schisandrin C is
essential for the mitochondrial biogenesis and activity in
C2C12 cells exposed to oxidative stress.

HO-1 is recommended to a potential therapeutic target mol-
ecule for various inflammatory diseases (Kirkby and Adin
2006; Lee et al. 2013). HO-1 increases the expression of mi-
tochondrial biogenesis related molecules such as peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α)
through Nrf-2 translocation (MacGarvey et al. 2012). In this
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C2C12 cells. bMitochondria activitywas observedwith confocal micros-
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study, Schisandrin C activated the regulators of mitochondrial
biogenesis such as high expression of PGC-1α and Nrf-2
followed by HO-1 expression in C2C12 skeletal muscle cells.
The vital role of Schisandrin C in accordance with mitochon-
drial activity was confirmed by the confocal assay. In addition,
previous studies suggest that the expression of PGC-1α,
Sirtuin-1 (SIRT-1), and phosphorylated-AMP-activated pro-
tein kinase (p-AMPK) enhances the mitochondrial biogenesis
in skeletal muscles (Winder et al. 2000; Rodgers et al. 2005;
Lagouge et al. 2006; Sasaki et al. 2014). In particular, the
PGC-1α induces mitochondrial biogenesis by activating dif-
ferent transcription factors, including nuclear respiratory
factor-1 (NRF-1) (Jornayvaz and Shulman 2010; Lesmana
et al. 2016). In this study, Schisandrin C induced the expres-
sion of PGC-1α, SIRT-1, p-AMPK, and NRF-1. According to
these results, the anti-inflammatory mechanism of Schisandrin
C played an important role in the regulation of mitochondrial
homeostasis in C2C12 skeletal muscle cells exposed to oxi-
dative stress.

In this study, Schisandrin C also promoted AKT acti-
vation and inhibition of MAPK pathways. These results
implicated that mechanism of mitochondrial biogenesis by
Schisandrin C may be regulated by PI3K/AKT, MAPKs,
and HO-1. Park et al. (2011) reported that the expression
of HO-1 is regulated by p-AKT, MAPK, and transcription
factors (NF-κB and Nrf-2 signaling pathways). It has
known that HO-1 is regulated by PI3K/AKT and MAPK
signaling pathways (Furukawa et al. 2010; Park et al.
2011, 2013). From this point, the HO-1 expression was
inhibited by ZnPP, and then the molecules of autophagy
and mitochondrial biogenesis were checked. Previous
study suggests that the important role of HO-1 regulates
autophagy activity against inflammatory damage
(Carchman et al. 2011; Park et al. 2011). In this study,
the HO-1 inhibition significantly decreased above mole-
cules, but Schisandrin C improved autophagy and mito-
chondrial biogenesis even under HO-1 inhibition by in-
hibitor and oxidative stress. These finding suggested that
the main event of Schisandrin C was to increase HO-1
expression which was involved in the regulation of anti-
oxidation and anti-inflammation by the enhancement of
autophagy and mitochondrial biogenesis.

In summary, this study confirms that the oxidative stress
has an adverse effect on inflammation and mitochondrial bio-
genesis to act muscle homeostasis, but Schisandrin C could
minimize side effects of oxidative stress. Therefore,
Schisandrin C might provide one of the additional supporting
compounds for enhancement of skeletal muscle homeostasis
against diseases associated with oxidative stress.
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