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Abstract Since chronic kidney disease due to diabetic ne-
phropathy (DN) is becoming an ever larger health burden
worldwide, more effective therapies are desperately needed.
In the present study, the anti-diabetic and renoprotective ef-
fects of aliskiren have been evaluated in streptozotocin (STZ)-
induced DN in rats. DN was induced by a single intraperito-
neal injection of STZ (65 mg/kg). Three weeks after STZ, rats
were divided into four groups; normal, diabetic, diabetic treat-
ed with gliclazide (10 mg/kg/day) for 1 month, and diabetic
treated with aliskiren (50 mg/kg/day) for 1 month. At the end
of the experiment, mean arterial blood pressure and heart rate
were recorded. Rats were then euthanized and serum was
separated for determination of glucose, insulin, kidney func-
tion tests, superoxide dismutase activity (SOD), adiponectin,
and tumor necrosis factor-alpha (TNF-α). One kidney was
used for estimation of malondialdehyde (MDA), reduced glu-
tathione (GSH), and nitric oxide (NO) contents. Other kidney
was used for histopathological study and immunohistochem-
ical measurement of caspase-3 and transforming growth factor
beta (TGF-β). In addition, islets of Langerhans were isolated
from normal rats by collagenase digestion technique for
in vitro study. Aliskiren normalized STZ-induced hyperglyce-
mia, increased insulin level both in vivo and in vitro,

normalized kidney function tests and blood pressure, and al-
leviated STZ-induced kidney histopathological changes. This
could be related to the ability of aliskiren toward preserving
hemodynamic changes and alleviating oxidative stress and
inflammatory and apoptotic markers induced by STZ in rats.
However, aliskiren was more effective than gliclazide in
relieving STZ-induced DN. These findings support the
beneficial effect of aliskiren treatment in DN which could be
attributed to its anti-diabetic, renoprotective, antioxidant, anti-
inflammatory, and anti-apoptotic effects. Moreover, clinical
studies are required to establish the effectiveness of aliskiren
treatment in patients suffering from hypertension and
diabetes.
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TGF-β Transforming growth factor-beta
TNF-α Tumor necrosis factor-alpha

Introduction

Diabetic nephropathy (DN) is one of the most serious compli-
cations of diabetes and the most common cause of end-stage
renal failure in the world. Since the 1950s, kidney disease has
been recognized as a common complication of diabetes mellitus
(DM). Fifty percent of patients with DM of more than 20 years’
durationwere having this complication. About 3%of diagnosed
patients with type 2 DM have overt DN (De Boer et al. 2011).

DN was defined clinically by microalbuminuria, that is, a
urinary albumin excretion of more than 300 mg in a 24-h
collection or macroalbuminuria and abnormal renal function
(Shlipak 2011). Coca et al. (2012) cited that intensive glyce-
mic control is important for nephropathy prognosis. Intensive
treatment of hyperglycemia would prevent DN, including de-
velopment of microalbuminuria, and could slow progress of
chronic kidney disease (Coca et al. 2012). The cause of DN is
multifocal andmay include altered glucose metabolism, ische-
mia, and superoxide-induced free radical formation and in-
creased oxidative stress (Fowler 2008).

Interventions that inhibit the activity of the renin-
angiotensin aldosterone system (RAAS) like angiotensin-
converting enzyme inhibitors (ACEIs) or angiotensin II recep-
tor blockers (ARBs) have become a standard and essential
therapy in the management of DN (Lewis et al. 1993).
However, most studies to date show kidney disease progression
inmany patients despite treatment with ACEI or ARB (Morgan
et al. 2004; Forclaz et al. 2003; Doulton 2006). A potential
explanation for this limitation in success is the increase in renin
secretion and synthesis (Azizi et al. 2004; Kramer et al. 1998),
as a result of negative feedback from the suppression of angio-
tensin II synthesis or activity by these agents. Besides, they
have little effect on basal glucose and insulin levels, in lean
animals (Akbar et al. 2012; Michel et al. 2016).

Renin is the initial and rate-limiting substance in the RAS.
The direct renin inhibitor (DRI) may locally have some advan-
tages in terms of specificity by blocking angiotensin I generation.
Therefore, there is currently renewed interest in DRIs. Aliskiren,
the first renin inhibitor to reach themarket, lowers elevated blood
pressure efficiently by decreasing plasma and/or local renin ac-
tivity (Jensen et al. 2008). Recently, increasing evidence shows
that aliskiren has an anti-proteinuric effect in patients with dia-
betes and also exerts renoprotective, cardioprotective, anti-ath-
erosclerotic, and antioxidant effects in animal models indepen-
dent of its blood pressure lowering activity (Komers 2013; Pilz
et al. 2005; Lu et al. 2008; De Mello 2015; Kamal 2013).

In a recent study, aliskiren was found to be equally effective
to ACEI and ARB in slowing the progression of DN in db/db

mice. However, the use of combination therapy with aliskiren
and ACEI/ARB was not recommended (Zhou et al. 2015).

A very recent study showed that aliskiren has a potential
anti-fibrotic effect in bleomycin-induced pulmonary fibrosis
in rats (Abuelezz et al. 2016). Another study showed that
aliskiren protects liver tissues of rats during paracetamol-
induced toxicity by preventing oxidative stress and cytokine
changes (Karcioglu et al. 2016).

So in the present study, we have therefore designed exper-
iments to investigate the different mechanisms of action un-
derlying the therapeutic action of aliskiren in renal damage
induced by streptozotocin (STZ) type 1 diabetes using rats
as the working model and focusing on its anti-diabetic effect
by both in vivo and in vitro studies, besides comparing its
effects with a reference anti-diabetic drug as gliclazide.

Materials and methods

Animals

Female Wistar rats weighing 180–200 g were obtained from
the National Scientific Research Center (Giza, Egypt). Rats
were housed under controlled temperature (25 ± 2 °C) and
constant light cycle (12 h light/dark) and allowed free access
to a standard rodent chow diet and water ad libitum. The
investigation complies with the Guide for Care and Use of
Laboratory Animals published by the US National Institutes
of Health (NIH Publication No. 85-23, revised 2011) and was
approved by the Eth ics Commi t t ee fo r Animal
Experimentation at Faculty of Pharmacy, Cairo University
(permit number PT 1180).

Drugs and chemicals

STZ, gliclazide, and study chemicals were purchased from
Sigma-Aldrich Co. (St. Louis, MO, USA). Aliskiren was pro-
vided as 150 mg tablets from Novartis Company. For in vivo
experiments, gliclazide was suspended in 2 % Tween 80 and
administered in a dose of 10 mg/kg/day I.P. for 1 month
(Pushparaj et al. 2007). For in vitro experiments, 1 mmol/L
was prepared by dissolving 0.16 g gliclazide in 10 mL saline
using a sonicator. Aliskiren tablets were crushed, dissolved in
normal saline, and filtered. Aliskiren was administered in a
dose of 50 mg/kg/d I.P. for 1 month (De Mello 2015) or used
as 100 μmol/L for in vitro experiments.

Induction of experimental diabetic nephropathy

Rats were fasted for 18 h; diabetes was induced by intraperi-
toneal injection of 65 mg/kg STZ (Pushparaj et al. 2007). STZ
was freshly prepared in 0.1 M citrate buffer just before injec-
tion. After injection of STZ, rats were fed on 5 % glucose
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solution for 24 h to prevent hypoglycemia during the
hyperinsul inemic phase caused by β cel l lyses .
Hyperglycemia was tested by measuring glucose using blood
from the tail and OneTouch Glucometer (LifeScan, Inc.,
Milpitas, CA, USA). Only rats with glucose levels more than
250 mg/dL were selected and considered as diabetic animals
and left for 3weeks for induction of DN (Barzegar-Fallah et al.
2015).

Islet isolation

Islets of Langerhans were isolated from normal rats by colla-
genase digestion technique according to the method men-
tioned before (Lacy and Kostianovsky 1967). It was isolated
from non-fasting normal rats since fasting would diminish the
responsiveness of the islets to stimulation of insulin secretion
in vitro. Rats were pretreated with pilocarpine nitrate (20 mg/
kg) I.P. 2–3 h before islet isolation. Pilocarpine depletes zy-
mogens from the exocrine pancreatic tissues and thus mini-
mizes the destruction of islet membranes which could occur
during collagenase digestion of the tissue.

In vivo experiments

Three weeks after STZ injection, rats were divided into four
groups. The first is the normal control group, two to four groups,
composed of STZ-diabetic rats. The second group served as a
diabetic control group and treated with normal saline. The third
group was treated with gliclazide (10 mg/kg I.P.). The fourth
group was treated with aliskiren (50 mg/kg I.P.). Drug treat-
ments were done for 1 month. At the end of the experiment,
animals were euthanized 1 h after the last drug dose.

In vitro experiments

Isolatedβ cells were divided into four groups: normal control,
20 μL gliclazide (40 μmol/L), 20 μL aliskiren (100 μmol/L),
and a combination of 20 μL gliclazide and 20 μL aliskiren.
Drugs were incubated with isolated islets for 1 h, then 0.5 mL
of the supernatant was separated and kept frozen for measure-
ment of insulin concentration. The number of experiments
was prespecified as six per group before the start of the exper-
imental series.

Biochemical analysis

Serum glucose level

Fasting serum glucose level was determined by colorim-
etry at 546 nm at the end of the experiment just after
animals were euthanized according to the method of
Trinder (1969) using a commercial reagent kit and was
expressed as milligrams per deciliter.

Insulin immunoassay

Fasting rats’ serum insulin level and insulin concentration in
supernatant of isolated islets were determined using a com-
mercial ELISA Kit (Li Ka Shing Faculty of Medicine,
University of Hong Kong, AIS). Insulin was expressed as
micro international units per milliliter serum and micro inter-
national units per hour per islet. Serum samples were collected
after animals were euthanized and kept frozen at −20 till in-
sulin measurements.

Kidney function tests

Blood urea nitrogen (BUN), serum creatinine, and albumin
were determined according to the methods described before
(Urea 1984; Murray 1984). BUN and creatinine were
expressed as milligrams per deciliter, and serum albumin
was expressed as grams per deciliter.

Oxidative stress biomarkers

Kidney GSH content was determined at 405 nm by a spectro-
photometer using Ellman’s reagent according to the method
described by Beutler et al. (1963) and was expressed as milli-
grams per gram of kidney (Beutler et al. 1963).

Kidney MDA was determined at 534 nm using a spectro-
photometer according to the method of Satoh (1978) using a
commercial reagent kit (Satoh 1978).

Serum SOD activity was determined by colorimetry at
450 nm according to the pyrogallol autoxidation method of
Marklund and Marklund (1974) and was expressed as units
per milliliter (Marklund and Marklund 1974).

Serum nitric oxide

Nitric oxide (NO) was determined by colorimetry at 450 nm
using Griess reagent after reduction of nitrate to nitrite by
vanadium trichloride and expressed in serum as micromoles
per microliter (Miranda et al. 2001).

Kidney tumor necrosis factor-alpha

Tumor necrosis factor-alpha (TNF-α) level was assessed using
rat TNF-α ELISA kit (BD Biosciences, San Diego, USA). The
procedure of the used kit was performed according to the man-
ufacturer’s instructions, and the results are expressed as nano-
grams per milligram of protein (Petrovas et al. 1999).

Serum adiponectin

Adiponectin was measured in serum using a commercial
ELISA kit and expressed as micrograms per milliliter
(Mehany et al. 2013).
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Measurement of hemodynamic parameters

Blood pressure and heart rate were assessed by CODA™, a
computerized non-invasive blood pressure system (Kent
Scientific, Torrington, CT, USA). It measures tail blood pres-
sure by means of volume pressure.

Rats were held in a restrainer on a preheated platform with
the tail exposed. Both an occlusion cuff and a volume-
pressure recording cuff were placed close to the tail base.
The digital value for the systolic and diastolic blood pressures
and heart rate were recorded. Readings were taken for 20 cy-
cles from each rat, and the highest and lowest odd values were
excluded. Measurements were taken in the same peaceful en-
vironment at the same time of the day to minimize stress
according to Kurtz et al. (2005). Heart rate was expressed as
beats per minute (bpm), and mean arterial blood pressure was
expressed as millimeters of mercury.

Histopathology

Kidney sections were stained with periodic acid-Schiff’s re-
agent to assess glomerulosclerosis and tubulointerstitial fibro-
sis (Banchroft et al. 1996).Caspase-3 and transforming growth
factor-beta (TGF-β) were determined by immunohistochemis-
try as described before (El Nahas 1992), using anti-caspase-3
antibody (ab52181), unconjugated rabbit polyclonal caspase-3
and anti-TGF-β2 antibodies (ab66045), and unconjugated
rabbit polyclonal TGF-β2 antibody. The person scoring the
histology slides had been blinded regarding group allocation.

Statistical analysis

All data obtained were presented as mean ± SD. Results were
analyzed using one-way analysis of variance test (one-way
ANOVA) followed by Tukey-Kramer multiple comparison
test, using SPSS software, version 16. For all the statistical
tests, the level of significance was fixed at p < 0.05 (Sendecor
and Cochran 1980).

Results

Serum glucose and insulin

STZ (65 mg/kg) resulted in hyperglycemia accompanied by
significant decrease in serum insulin concentration. Treatment
with gliclazide (10 mg/kg) for 4 weeks after induction of dia-
betes resulted in a significant decrease in serum glucose to
36.7 % and a significant increase in serum insulin concentra-
tion to 256 % as compared to the diabetic control group.
However, aliskiren treatment significantly decreases serum
glucose to 30.8 % and increase serum insulin to 640 % as
compared to diabetic control rats (Table 1).

Kidney function tests

STZ resulted in a significant increase in BUN and serum cre-
atinine and a significant decrease in serum albumin. Gliclazide
treatment resulted in a significant decrease in BUN to 79.2 %
and serum creatinine to 71.3 %, but did not change serum
albumin as compared to diabetic control rats. Aliskiren treat-
ment resulted in a significant decrease in BUN to 74.2 % and
serum creatinine to 38.3 % and a significant increase in serum
albumin to 125.7 % as compared to diabetic control rats.
However, aliskiren was more effective than gliclazide in re-
lieving kidney damage (Table 2).

Oxidative stress biomarkers

Induction of DN by STZ resulted in a state of oxidative stress
as shown by a significant decrease in kidney GSH, a signifi-
cant increase in kidney MDA, a significant decrease in serum
SOD, and a significant increase in kidney NO. Treatment with
gliclazide resulted in a significant increase in kidney GSH to
143.2% and serum SOD to 127.5 % and a significant decrease
in kidney MDA to 78.8 % and kidney NO to 73.5 % as com-
pared to diabetic control rats. Treatment with aliskiren resulted
in a significant increase in kidney GSH to 142.2 % and serum
SOD to 193 % and a significant decrease in kidney MDA to
73.8 % and kidney NO to 73.2 % as compared to diabetic
control rats (Table 3).

MAP and HR

STZ resulted in hypertension and tachycardia. Treatment with
gliclazide resulted in a significant decrease in mean arterial
pressure (MAP) to 90.7 % and heart rate (HR) to 90 % as
compared to the diabetic control group. Treatment with
aliskiren resulted in a significant decrease in MAP to 79.4 %
and HR to 86.2 % as compared to the diabetic control group.

Table 1 Effect of one month treatment with gliclazide and aliskiren on
serum glucose and insulin in STZ-induced diabetic nephropathy in
female rats

Parameters Serum glucose
(mg/dL)

Serum insulin
(μIU/mL)Treatments

Normal control 120 ± 1.4 61.17 ± 1.9

Diabetic control 400 ± 5.4a 23.5 ± 1a

Gliclazide (10 mg/kg) 146.7 ± 12a,b 60.33 ± 1.8b

Aliskiren (50 mg/kg) 123.3 ± 4.3b,c 150.33 ± 2a,b,c

The values are the means ± S.D. from eight animals in each group
a p< 0.05 vs. normal group
b p< 0.05 vs. diabetic group
c p< 0.05 vs. gliclazide-treated group
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However, aliskiren was more effective than gliclazide
(Table 4).

Adiponectin

STZ resulted in a significant decrease in serum adiponectin.
Both gliclazide and aliskiren resulted in a significant increase
in serum adiponectin to 129 and 138 % as compared to the
diabetic control group (Table 4).

TNF-α

STZ resulted in a significant increase in kidney TNF-α
(2.27 ± 0.06 vs. 1.62 ± 0.04 ng/mL). Gliclazide and aliskiren
resulted in a significant decrease in kidney TNF-α to 75.8 and
48.5 % as compared to the diabetic control group. However,
aliskiren was more effective than gliclazide (Table 4).

In vitro study

The mean value of insulin secreted from isolated islets in-
cubated in 3 mM glucose was 37.5 ± 1.2 (μIU/h/islet).
Incubation of islets for 1 h with 20 μL gliclazide (1 mmol/
L) resulted in a significant increase in insulin secretion to
253 % compared to normal control. Incubation of islets for

1 h with 20 μL aliskiren (100 nM) leads to a significant
increase in insulin secretion to 206 % as compared to normal
control. Aliskiren combination with gliclazide resulted in a
significant increase in insulin secretion to 345 % as com-
pared to normal control (Fig. 1).

Histopathological findings

DN resulted in degenerative changes and coagulative necrosis
(nephrosis) detected in the lining epithelium of these individ-
ual tubules at the cortex (Fig. 2b) vs. normal control (Fig. 2a).
Gliclazide and aliskiren improved the histopathological alter-
ation in the tubules of both cortex and corticomedullary parts
induced by STZ (Fig. 2c, d).

Induction of DN by STZ resulted in a severe elevation in
caspase-3 immunoreactivity (Fig. 3b) vs. normal control
(Fig. 3a). Gliclazide resulted in a mild elevation in caspase-3
immunoreactivity (Fig. 3c). Aliskiren resulted in a faint ex-
pression of caspase-3 immunoreactivity (Fig. 3d).

STZ (65mg/kg) resulted in a significant elevation in TGF-β
immunoreactivity (Fig. 4b) as compared to the normal control
group (Fig. 4a). This elevation was suppressed by concomitant
administration of gliclazide (Fig. 4c) or aliskiren (Fig. 4d).

Discussion

Diabetic nephropathy is one of the major microvascular com-
plications of both type 1 and 2 DM. It is considered the major
cause of end-stage renal disease worldwide which causes pre-
mature death in diabetic patients. It is found that between 20 and
40% of all diabetic patients are prone to developing renal failure
(Sheela et al. 2013), so more effective therapies are needed.

In the present study, nephropathy was resulted from type 1
diabetes which was induced in adult female albino rats by a
single I.P. injection of STZ, at 65 mg/kg. Nephropathy was
noted in rats 4 weeks after administering STZ as assessed in
terms of a significant increase in BUN, serum creatinine, and
albuminuria. Besides, hypertension, tachycardia, and distur-
bance in oxidant/antioxidant balance were observed by the

Table 2 Effect of one month treatment with gliclazide and aliskiren on
kidney function tests in STZ-induced diabetic nephropathy in female rats

Parameters BUN
(mg/dL)

Serum creatinine
(mg/dL)

Serum
albumin
(g/dL)

Treatments

Normal control 25.9 ± 0.32 0.59 ± 0.08 4.7 ± 0.26

Diabetic control 33.7 ± 0.62a 0.94 ± 0.14a 3.5 ± 0.08a

Gliclazide (10 mg/kg) 26.7 ± 0.84b 0.67 ± 0.16b 3.3 ± 0.19a

Aliskiren (50 mg/kg) 25 ± 0.68b,c 0.36 ± 0.01a,b,c 4.4 ± 0.44b,c

The values are the means ± S.D. from eight animals in each group
a p< 0.05 vs. normal group
b p< 0.05 vs. diabetic group
c p< 0.05 vs. gliclazide-treated group

Table 3 Effect of one month
treatment with gliclazide and
aliskiren on oxidative stress
biomarkers in STZ-induced
diabetic nephropathy in female
rats

Parameters Kidney GSH
(mg/g kidney)

Kidney MDA
(nmol/g kidney)

Serum SOD
(U/mL)

Kidney NO
(μmol/μL)Treatments

Normal control 28.3 ± 1.9 26.7 ± 0.87 87.13 ± 2.3 25.8 ± 1.2

Diabetic control 19.9 ± 1.2a 38.6 ± 1.6a 50.33 ± 2.1 a 38.5 ± 1.9a

Gliclazide (10 mg/kg) 28.5 ± 1.5b 30.4 ± 1.5a,b 64.17 ± 1.4a,b 28.3 ± 1.5a,b

Aliskiren (50 mg/kg) 28.3 ± 1.7b 28.5 ± 1.3a,b,c 97.15 ± 1.8a,b,c 28.2 ± 1.4a,b

The values are the means ± S.D. from eight animals in each group
a p< 0.05 vs. normal group
b p< 0.05 vs. diabetic group
c p< 0.05 vs. gliclazide-treated group
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increase in kidney content of MDA and NO. Reduction of
kidney GSH and serum SOD, increased inflammatory
mediators as TNF-α and TGF-β, and increased caspase-3 also
were observed. In addition, degenerative changes and
coagulative necrosis (nephrosis) were detected in the lining
epithelium of some individual tubules at the cortex.

These results may be due to hemodynamic alterations
caused by STZ and hyperglycemia, as well as alterations in
the glomerular basement membrane composition, reactive ox-
ygen species (ROS), glycation of proteins, and podocyte biol-
ogy as explained by Pilmore (2010).

Various factors may be involved in the pathogenesis of DN.
It is believed that hyperglycemia induces a defect in the mito-
chondrial electron transport chain, resulting in increased pro-
duction of ROS and increased oxidative stress. This is a com-
mon mediator of the pathophysiological effects of hypergly-
cemia and subsequent DN (Ziyadeh 2004). The increased ox-
idative stress activates glycation and formation of advanced
glycation end products, cytokines, and growth factors. An
increased influx of glucose through the hexosamine pathway
leads to increased formation of the observed TGF-ß. TGF-ß
p lays an impor tan t pa r t in the deve lopment of
glomerulosclerosis and tubulointerstitial fibrosis by stimulat-
ing extracellular matrix protein collagen types I, III, and IV
and fibronectin (Kiran et al. 2012).

Administration of gliclazide (10 mg/kg, I. P) normalized
hyperglycemia and increased serum insulin concentration as
compared to diabetic control rats. These effects are empha-
sized by the in vitro measurements of insulin secretion from
isolated beta cells of normal rats. Gliclazide also increased
serum adiponectin level.

The hypoglycemic effect of gliclazide is through pancreatic
action by stimulating endogenous insulin secretion in response
to physiologic secretagogues (Kumar et al. 2015), besides
extrapancreatic action through increasing the glucose utiliza-
tion in muscles and adipose tissues (Al-Salami et al. 2008).
These effects are related to its ability to restore insulin-
stimulated glucose transporter 4 translocation in peripheral tis-
sues (Shimoyama et al. 2006). In addition, gliclazide decreased
BUN and serum creatinine as compared to diabetic control rats.
These actions may be a cause of the observed normalization of
BP and HR. The improved BP and HR with gliclazide have
been observed in a previous study of Pagano et al. (1998) who
reported that treatment with gliclazide enhances ACh-induced
relaxation in isolated aortic segments of alloxan-induced dia-
betic rabbits. In addition, the improvement in endothelial func-
tion has been reported in STZ-induced diabetic rats receiving
gliclazide (Vallejo et al. 2000).

Gliclazide resulted in a significant increase in renal GSH
and serum SOD and a decrease in renal MDA and NO. This

Table 4 Effect of one month
treatment with gliclazide and
aliskiren on MAP, HR, serum
adiponectin and kidney TNF-α in
STZ-induced diabetic
nephropathy in female rats

Parameters MAP (mmHg) Heart rate
(bpm)

Serum adiponectin
(μg/mL)

Kidney TNF-α
(ng/mL)Treatments

Normal control 141.7 ± 1.57 345 ± 7.1 3 ± 0.17 1.62 ± 0.1

Diabetic control 163.5 ± 4.3a 400 ± 1.9a 2.27 ± 0.15a 2.27 ± 0.1a

Gliclazide (10 mg/kg) 148.3 ± 2.2b 360 ± 1.5a,b 2.93 ± 0.25b 1.72 ± 0.14b

Aliskiren (50 mg/kg) 129.9 ± 2.3a,b,c 345 ± 2.6b,c 3.13 ± 0.21b 1.1 ± 0.23a,b,c

The values are the means ± S.D. from eight animals in each group
a p < 0.05 vs. normal group
b p < 0.05 vs. diabetic group
c p < 0.05 vs. gliclazide-treated group
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Fig. 1 Effect of gliclazide and
aliskiren each in 20 μL on insulin
secretion from isolated pancreatic
islets of normal female rats. The
values are the means ± SD from
eight animals in each group.
Statistical analysis was done
using one-way ANOVA followed
by Tukey’s post hoc test. ap < 0.05
vs. normal group, bp < 0.05 vs.
diabetic group, cp < 0.05 vs.
gliclazide-treated group
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finding also was consistent with the idea that gliclazide
improves diabetic endothelial dysfunction by an antioxidant
mechanism (Sena et al. 2009; Desfaits et al. 1997). Another
study has also reported that gliclazide has antioxidant
properties in vitro, perhaps reversing the endothelial
dysfunction caused by glycosylated oxyhemoglobin in
human mesenteric microvessels (O’brien and Luo 1997).
Gliclazide resulted in a significant decrease in kidney
TNF-α, TGF-β, and caspase-3 as compared to diabetic
control rats. STZ-induced histopathological and ultrastructural
changes were reversed by treatment with gliclazide; these
support its renoprotective effects, and these results are
compatible with earlier studies (Vallejo et al. 2000; Desfaits
et al. 1997).

Treatment with aliskiren (50 mg/kg, I. P) for 1 month after
induction of DN by STZ resulted in normalized hyperglyce-
mia and increased serum insulin concentration as compared to
diabetic control rats. This effect was supported by the in vitro
study where aliskiren stimulated insulin secretion from beta
cells of normal rats; however, aliskiren was more effective
than gliclazide. In addition, aliskiren synergized gliclazide-
induced insulin secretion in this in vitro study. Furthermore,
aliskiren resulted in a significant increase in serum
adiponectin as compared to diabetic control rats, which was
associated with enhanced insulin sensitivity.

The observed glucose lowering effect of aliskiren in the
present study is novel and may be due to its ability to stimulate
insulin secretion or decreased insulin resistance by decreasing
serum adiponectin or increase insulin sensitivity by its
antioxidant and anti-inflammatory effects.

The anti-diabetic effect of aliskiren is proven in the study of
Gandhi et al. (2013) who found that diabetic rats experienced
approximately an 81 % decrease in plasma/serum pancreatic
insulin content. However, aliskiren treatment significantly re-
duced blood glucose and increased total body weight as com-
pared to diabetic rats. They explained the improved insulin
sensitivity effect of aliskiren by the improved liver and muscle
glucotransporter expression levels (Gandhi et al. 2013). This
effect was explained by the study which demonstrated that
renin inhibition attenuates insulin resistance and improves
systemic insulin sensitivity in transgenic Ren2 rats that over-
express renin (Habibi et al. 2008). Thus, a possible link be-
tween renin activation and insulin resistance was suggested.

Another study of Kang et al. (2010) found an improvement in
insulin resistance and lipid abnormality, as well as direct anti-
fibrotic effect in target organs in db/db mice by aliskiren treat-
ment. They explained this effect by the significant decrease in
plasma levels of the homeostasis model assessment index, lipid
abnormalities, and insulin sensitivity confirmed by insulin toler-
ance test with aliskiren treatment (Kang et al. 2010).

ca b d

Fig. 2 Photomicrographs of kidney sections from rats treated with
gliclazide and aliskiren for 1 month in STZ-induced nephrotoxicity
(H&E-stained)(×200). a Kidney of rat in the normal control group:
showing normal histological structures of the glomeruli and tubules of
the cortex. b Kidney of rat in the diabetic control group: showing
degeneration and coagulative necrosis in lining epithelial cells of some

individual tubules at the cortex. c Kidney of rat in the gliclazide-treated
group: showing normal histological structure. d Kidney of rat in the
aliskiren-treated group: showing normal histopathological structure with
less degeneration and necrosis in lining epithelial cells in some tubules of
the cortex

a b c d

Fig. 3 Effect of 1-month treatment with gliclazide and aliskiren on
caspase-3 immunohistochemical staining of rats’ kidney tissues in STZ-
induced diabetic nephropathy in female rats (×200). aKidney of rat in the
normal control group showing negative immunoreaction using caspase-3.
b Kidney of rat in the diabetic control group showing positive

immunoreaction using caspase-3. c Kidney of rat in the gliclazide-
treated group showing positive immunoreaction using caspase-3. d
Kidney of rat in the aliskiren-treated group showing positive
immunoreaction using caspase-3
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Renoprotective effects of aliskiren were manifested by its
ability to normalize BUN, serum creatinine, and serum albu-
min as compared to diabetic control rats, in addition to nor-
malized BP and HR. Aliskiren also showed antioxidant effects
which were manifested by a significant decrease in renal
MDA and NO and an increase in GSH and SOD. In this study,
the anti-inflammatory effect for aliskiren was manifested by a
significant decrease in kidney TNF-α and TGF-β as com-
pared to diabetic control rats, and an anti-apoptotic effect
was seen by reduction of caspase-3. STZ-induced histopatho-
logical and ultrastructural changes were reversed by treatment
with aliskiren.

The renoprotective effect of aliskiren was suggested before
by Hamed et al. (2013) who found that aliskiren (150 mg/day)
treatment in hypertensive patients significantly reduced the
urinary albumin excretion rate after 6 and 9 months of treat-
ment. The mechanism of these actions is inhibition of the rate-
limiting step in the RAS (conversion of angiotensinogen to
angiotensin I via renin) by aliskiren leading to a potent
renoprotect ive effect by blocking angiotensin II
(Schernthaner 2008; Rashikh et al. 2013). This also leads to
preservation of podocyte architecture, mitochondrial function,
and epithelial integrity (Huby et al. 2009).

Similar results were obtained by Dong et al. (2010), who
found that aliskiren protected against DN and enhanced the
protective effects of valsartan against DN by decreasing albu-
minuria and glomerular mesangial matrix expansion in db/db
mice. This is associated with increased glomerular TGF-β and
type IV collagen expressions and macrophage infiltration, be-
sides decreased glomerular nephrin expression in db/db mice.
They explained that the protective effects of aliskiren attributed
to the attenuation of p22phox-related nicotinamide adenine di-
nucleotide phosphate oxidase-induced superoxide (Dong et al.
2010). Aliskiren showed also protective effects against
tacrolimus-induced nephrotoxicity in rats through an antioxi-
dant mechanism (Naif et al. 2014). STZ-induced histopatho-
logical and ultrastructural changes were reversed by treatment
with aliskiren. Aliskiren attenuated glumerosclerosis and

tubulointerstitial fibrosis, which are considered as another im-
portant predictors of renal dysfunction (Kelly et al. 2007).

Likewise, decreased blood pressure after aliskiren treat-
ment also offers renoprotective activity. This action is simply
explained via inhibition of renin and RAAS by aliskiren
(Feldman et al. 2008). Esch et al. (2010) also reported that
aliskiren improves coronary endothelial function and de-
creases cardiac hypertrophy in spontaneous hypertensive rats;
this was confirmed in the present study by normalization of
HR in diabetic rats (Esch van et al. 2010). Another possible
explanation is the antioxidant properties of aliskiren as seen in
this study and reported before (Lee et al. 2013). Moreover,
aliskiren reduced nitric oxide which was suggested to increase
in the renal expression of the p47phox component of
NAD(P)H oxidase and eNOS. These decrease the indices of
systemic and renal oxidative/ nitrosative stress leading to
renoprotection (Sonta et al. 2005).

The observed anti-inflammatory activity in the present study
confirms that obtained before (Gandhi et al. 2013), where
aliskiren significantly reduced TGF-β1, which is further sup-
ported by a significant reduction in glomerulosclerosis. The
anti-inflammatory effect may be due to inhibition of the bind-
ing of renin and prorenin to the prorenin receptor. This stimu-
lates inflammatory mediators as TGF-β, fibronectin, and col-
lagen through the angiotensin-independent extracellular signal-
regulated kinase 1 and 2 pathways (Abassi et al. 2009).
Furthermore, the observed anti-apoptotic effect of aliskiren is
related to its antioxidant activity. This is because oxidative
stress disturbs the proapoptotic-anti-apoptotic balance and ac-
tivated mitochondria-dependent apoptosis via caspase-3 (Pal
et al. 2014).

Therefore, aliskiren (rennin inhibitor) has a protective
effect on kidney against DN like other ACEIs and ARBs
through inhibition of RAS and oxidative stress and en-
hancement of anti-apoptosis activity. Besides, it has a dif-
ferent potent anti-diabetic effect as shown by the ability to
decrease serum glucose, stimulate insulin secretion from
isolated β cells, and increase insulin sensitivity. However,

a b c d

Fig. 4 Effect of 1-month treatment with gliclazide and aliskiren, on
transforming growth factor beta (TGF-β) immunohistochemical staining
of rats’ kidney tissues in STZ-induced diabetic nephropathy in female
rats. (×200). aKidney of rat in the normal control group showing negative
immunoreaction using TGF-β. b Kidney of rat in the diabetic control

group showing positive immunoreaction using TGF-β. c Kidney of rat
in the gliclazide-treated group showing negative immunoreaction using
TGF-β. d Kidney of rat in the aliskiren-treated group showing negative
immunoreaction using TGF-β
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aliskiren was more effective than gliclazide in treating DN
as observed in the present study by its more potent antiox-
idant, anti-inflammatory, anti-apoptotic, and renoprotective
effects.

Limitations of the present study include the use of aliskiren
in tablet form and absence of metabolic parameters.

Conclusion

This study provides an additional evidence of the beneficial
effects of aliskiren treatment in STZ-induced DN in rats. The
curative effect of aliskiren could be attributed to its anti-dia-
betic, renoprotective, antioxidant, anti-inflammatory, and anti-
apoptotic effects. Moreover, clinical studies are required to
establish the effectiveness of aliskiren treatment in patients
suffering from hypertension and diabetes.
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