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Abstract We aim to evaluate the protective role of the
central angiotensin-converting enzyme (ACE) inhibitor
perindopril, compared with the standard reactive oxygen
s p e c i e s ( ROS ) s c a v e n g e r t em p o l , a g a i n s t

lipopolysaccharide (LPS)-induced cognition impairment
and amyloidogenesis in a simulation to Alzheimer’s dis-
ease (AD). Mice were allocated into a control group, an
LPS control group (0.8 mg/kg, i.p., once), a tempol
(100 mg/kg/day, p.o., 7 days) treatment group, and
two perindopril (0.5 and 1 mg/kg/day, p.o., 7 days)
treatment groups. A behavioral study was conducted to
evaluate spatial and nonspatial memory in mice, follow-
ed by a biochemical study involving assessment of brain
l e v e l s o f Aβ and BDNF a s A l zh e ime r and
neuroplasticity markers; tumor necrosis factor-alpha
(TNF-α), nitric oxide end-products (NOx), neuronal ni-
tric oxide synthase (nNOS), and inducible nitric oxide
synthase (iNOS) as inflammatory markers; and superox-
ide dismutase (SOD), malondialdehyde (MDA), glutathi-
one reduced (GSH), and nitrotyrosine (NT) as oxido-
nitrosative stress markers. Finally, histopathological ex-
amination of cerebral cortex, hippocampus, and cerebel-
lum sections was performed using both routine and spe-
cial staining. Tempol and perindopril improved spatial
and nonspatial memory in mice without affecting loco-
motor activity; decreased brain Aβ deposition and
BDNF depletion; decreased brain TNF-α, NOx, nNOS,
iNOS, MDA, and NT levels; and increased brain SOD
and GSH contents, parallel to confirmatory histopatho-
logical findings. Tempol and perindopril may be prom-
ising agents against AD progression via suppression of
Aβ deposition and BDNF decline, suppression of TNF-α
production, support of brain antioxidant status, and ameliora-
tion of oxido-nitrosative stress and NT production.
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Highlights
• Administration of LPS to mice in a single i.p. dose causes AD simulation.
• Tempol and perindopril may be protected against experimental AD
progression.
• Both agents act through inhibition of Aβ deposition and BDNF decline.
• Both agents also suppress brain TNF-α production and oxido-nitrosative
stress.

About the current study
We are interested in investigating beneficial effects of drugs interfering with
the renin-angiotensin system on noncardiovascular disorders, including re-
spiratory, musculoskeletal, immunological, and CNS disorders. I have just
coauthored a manuscript in the European Journal of Pharmacology
concerning the effect of angiotensin-converting enzyme inhibition by
ramipril on experimental rheumatoid arthritis (doi:10.1016/
j.ejphar.2015.08.026), another one in Pharmacological Reports concerning
the role of angiotensin receptor blockade by telmisartan on the progression
of bronchial asthma (doi:10.1016/j.pharep.2015.02.010), and a third one in
Saudi Pharmaceutical Journal concerning the hepatoprotective role of
ACE inhibition by lisinopril (doi:10.1016/j.jsps.2015.04.004).
In the present investigation, we evaluated the protective effect of
perindopril, a centrally acting angiotensin-converting enzyme inhibitor,
compared with tempol, a well-known superoxide scavenger, on LPS-
induced cognition impairment and amyloidogenesis in mice in a simulation
to Alzheimer disease. We focused on mechanisms not studied before re-
garding the effect of tempol or perindopril on this model, including partic-
ularly the role of brain-derived neurotropic factor, nitrotyrosine production,
and cerebellar amyloidogenesis.
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Introduction

Alzheimer’s disease (AD), the most common form of demen-
tia, is a severe neurodegenerative disorder with massive and
permanent loss of memory and ultimately complete intellectual
incapability (Araujo et al. 2014; Dhikav et al. 2014). Five years
ago, 35.6 million people worldwide suffered from dementia,
with the numbers doubled every 20 years (Prince et al. 2013).

The neurodegenerative process in the course of AD is asso-
ciated with the deposition of beta amyloid (Aβ) plaques, a
process termed amyloidogenesis (Kugaevskaya 2011; Zhang
et al. 2015). Experimentally, lipopolysaccharide (LPS) admin-
istrat ion to normal or transgenic rodents causes
amyloidogenesis and ultimate cognition impairment in a simu-
lation to AD (Arai et al. 2001; Sheng et al. 2003; El-Sayed and
Bayan 2015). Amyloidogenesis, in turn, increases brain levels
of tumor necrosis factor alpha (TNF-α), while the latter was
reported to cause death of human cortical neurons (Barichello
et al. 2009; Packer and Hoffman-Goetz 2015). Aβ was also
reported to be included in the activation of free radical genera-
tion through the nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase complex, resulting in increased production
of reactive oxygen species (ROS), malondialdehyde (MDA),
and nitrotyrosine (NT; Hardy and Selkoe 2002; Han et al. 2015;
Mota et al. 2015). ROS is also released through catalysis from
extracellular iron and copper ions attached to Aβ (Collingwood
et al. 2008; Graham et al. 2014). Immunologically, microglial
cells recognize and attack Aβ plaques, starting a circle of ROS
formation and cytokine production (Gallagher et al. 2012).
Alternatively, the brain-derived neurotropic factor (BDNF) is
a neuroprotective protein encoded by BDNF gene and claimed
to suppress Aβ toxicity (Mattson 2000). Oxido-nitrosative
stress was reported to suppress BDNF expression (Eraldemir
et al. 2015; Psotta et al. 2015).

Oxidative stress could be not only a result of Aβ deposition
but also a starting factor for the progression of brain neuroin-
flammation and amyloidogenesis (Pearson et al. 2015; Abdel
Mon e im 20 1 5 ) . Tempo l , 4 - h y d r o x y - 2 , 2 , 6 , 6 -
tetramethylpiperidin-1-oxyl, was selected in the current study
based on its ability to catalyze the detoxification of ROS,
particularly superoxide (Wilcox and Pearlman 2008; Mizera
et al. 2015). Interestingly, tempol was reported by Yamada
et al. (2003) to be a cell-permeable ROS scavenger.
Although tempol is not applied clinically up to now, it seems
a promising agent for themanagement of a variety of ailments.
Tempol administrationwas recently reported to prevent chron-
ic sleep deprivation-induced cognition impairment in experi-
mental rats via its ability to improve hippocampus levels of
antioxidant enzymes (Alzoubi et al. 2016). Being a

membrane-permeable ROS scavenger and superoxide dismut-
ase (SOD)-mimetic, tempol was reported by many authors to
improve redox homeostasis in different animal models
(Chatterjee et al. 2000; Aksu et al. 2014; Dornas et al. 2015;
Lewis et al. 2015). According to the results of Silswal et al.
(2015), the antioxidant effect of tempol may be partially at-
tributed to activation of peroxisome proliferator activated
receptor-α (PPAR-α) receptors.

Angiotensin II produced from the activated renin-
angiotensin system (RAS) was reported to mediate pro-
oxidant and pro-inflammatory effects, at least by stimulating
NADPH oxidase and uncoupling endothelial nitric oxide syn-
thase (Benigni et al. 2010; de Cavanagh et al. 2010). The brain
is now known to have its own RAS (von Bohlen und Halbach
and Albrecht 2006; Claflin and Grobe 2015), reported to play a
role in amyloidogenesis (Zhu et al. 2011). We have recently
reported that interference with the renin-angiotensin system
may have beneficial outcomes in different animal models,
namely experimental bronchial asthma (Abdel-Fattah et al.
2015), hepatotoxicity (Mohammed et al. 2015), and rheumatoid
arthritis (Fahmy Wahba et al. 2015), based on modulation of
oxidative stress and immuno-inflammatory progression.
Accordingly, the centrally acting angiotensin-converting en-
zyme (ACE) inhibitor perindopril was selected in the current
study. The drug was previously reported to have good central
antioxidant and anti-inflammatory activities (Marchesi et al.
2008; Mashhoody et al. 2014). Perindopril was recently report-
ed to attenuate LPS-induced amyloidogenesis and cognition
impairment in spontaneously hypertensive rats (Goel et al.
2015). According to Jawaid et al. (2015), ACE inhibitors might
protect experimental rats against scopolamine-induced memory
impairment, with the centrally acting member perindopril being
significantly better than other members of the class, namely
enalapril and ramipril. Interestingly, Yang et al. (2014) conclud-
ed that perindopril could protect experimental mice against d-
galactose/aluminum trichloride-induced neurotoxicity via inhi-
bition of neuronal apoptosis in the hippocampus.

Based on the aforementioned background, the current in-
vestigation was carried out to elucidate the possible beneficial
effects of tempol and perindopril on LPS-induced AD simu-
lation in mice. A preliminary compound behavioral study was
performed to evaluate cognition impairment, followed by a
biochemical study to explore the underlying mechanisms of
cognition impairment. This was finally confirmed by a
multipanel histopathological study.

Material and methods

Animals

Adult 12-week-old male albino mice of the BALB/c strain,
weighing 22–25 g, were purchased from the animal house of
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the National Research Center. Mice were kept in the labora-
tory animal center of the Faculty of Pharmacy, Beni-Suef
University under a controlled temperature (22–23 °C), on
12-h light/dark cycles, and were supplied with standard chow
and tap water ad libitum. The study was carried out according
to the guidelines of the Ethics Committee, Faculty of
Pharmacy, Beni-Suef University, which followed the recom-
mendations of the National Institutes of Health Guide for Care
and Use of Laboratory Animals (publication no. 85–23, re-
vised 1985).

Drugs, chemicals, and reagent kits

Tempol, LPS, thiobarbituric acid (TBA), 1,1,3,3-
tetramethoxypropane (MDA standard), 5,5′-dithio-bis-(2-
nitrobenzoic acid) (DTNB), and glutathione reduced (GSH)
standard were purchased from Sigma Chemicals Co. (USA).
Perindopril was obtained from Servier Pharmaceutical Co.
(Egypt). Murine Aβ and BDNF ELISA kits were obtained
from MyBioSource Co. and Kamiya BioMedical Co.
(USA), respectively. Murine TNF-α ELISA kit was obtained
from RayBiotec Co. (USA). Murine neuronal nitric oxide
synthase (nNOS) and inducible nitric oxide synthase (iNOS)
ELISA kits were obtained from Cloude-Clone Co. (USA) and
ShangHai Crystal Day Biotech Co. (China), respectively.
Nitrate/nitrite assay ELISA kit was obtained from Assay
Designs Co. (USA). Murine SOD and NT ELISA kits were
obtained from Trevigen Co. (USA) and Uscn Life Science Co.
(China). All other chemicals, solvents, and reagents used were
obtained from certified sources and were of analytical grade.

Experimental design

Mice were randomly divided into five groups, namely a nor-
mal control group, an LPS control group, a tempol treatment
group, and two perindopril treatment groups. Tempol and
perindopril were administered as solutions in normal saline
via the i.p. route on a daily basis for seven consecutive days,
where tempol was given in a dose of 100 mg/kg/day (Hahn
et al. 1992) and perindopril was given in doses of 0.5 and
1 mg/kg/day (Hou et al. 2008; El-Sayed et al. 2009; Yamada
et al. 2010).

The doses of test agents were selected based on pilot trials
guided with the published literature. Doses of perindopril
were particularly critical and were carefully selected to ensure
there would be no hypotensive effect sufficient to cause vas-
cular dementia secondary to cerebral hypoperfusion (Washida
et al. 2010; Kennelly and Collins 2012). Doses of 0.5 and
1 mg/kg of perindopril were reported to be safe and even to
improve cognition of mice in different experimental models
(Yamada et al. 2010; Wiesmann et al. 2013; Yang et al. 2013).
In support, Lu et al. (2008) showed that administration of
perindopril to ApoE knockout mice in a dose of 1.5 mg/kg/

day for 20 weeks did not cause significant lowering of blood
pressure.

One hour after the last drug dose, the test phase of all the
behavioral studies was carried out, and 24 h later animals were
sacrificed with brain tissues withdrawn as indicated.

Alzheimer simulation induction

Induction of brain neuroinflammation and amyloidogenesis,
in a simulation to AD, was performed by a single i.p. dose of
LPS (0.8 mg/kg) dissolved in 1 % Tween 80 solution in nor-
mal saline. Such dose in experimental mice was reported to
cause memory impairment (Arai et al. 2001; El-Sayed and
Bayan 2015) and amyloidogenesis (El-Sayed et al. 2009;
Maher et al. 2014). Test agents were administered on a daily
basis for seven consecutive days starting from the day of LPS
injection (2 h after LPS administration).

Behavioral study

On the day of the behavioral experiments, mice were
transported to the experimental facility (Behavioral Lab,
Faculty of Pharmacy, Beni-Suef University). Morris maze
and Y-maze tests were performed to evaluate spatial memory,
while novel object recognition test was performed to evaluate
nonspatial memory in experimental mice. The sequence of
behavioral training and test phases is illustrated in Fig. 1.

The Morris maze test

This was used to evaluate spatial memory in mice ac-
cording to the method described by Vorhees and
Williams (2006). The maze apparatus was a metal cage
122 cm in diameter with black sides, 50 cm high, con-
taining water with a temperature of 19–22 °C which
was turned turbid using milk. The area inside the maze
was divided into four quadrants, where a platform (mice
target), 10–12 cm in diameter, was submerged under
water at 1-cm depth in one quadrant. Each animal was
exposed to three training trials with different three
starting points (in the three quadrants not containing
the platform) every day for 5 days. On the day of the
test (probe trial), the platform was removed and each
animal was placed on the position that was facing the
fourth quadrant and the total time that the animal spent
in the fourth quadrant (Q4 time) was calculated through
1 min. The animal had better memory when it spent a
higher duration in the fourth quadrant.

A learning curve during the training days was pre-
pared through daily assessment of Q4 values to evaluate
gradual loss of learning and memory in the mice.
Additionally, swimming speed was calculated to evalu-
ate locomotor activity in mice.
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The Y-maze test

It was used to evaluate spatial memory in mice to assess spon-
taneous alternation behavior according to the method de-
scribed by Sarter et al. (1988). The apparatus was a 3-arm Y-
shaped maze made of black-painted wood, where each arm
was 25 cm long, 14 cm high, and 5 cm wide and adjusted at
equal angles. Each mouse was placed in the center of the Y-
maze and allowed to explore during an 8-min session without
any re-enforcers such as food, water, or electrical stimuli. The
series of arm entries were recorded visually and an arm entry
was considered to be completed as long as the hind paws of
the mouse were completely placed in the arm. The alternation
behavior (actual alternations) was defined as the consecutive
entry into three arms. The maximum number of alternations
was thus the total number of arms entered minus 2, and the
percentage of alternation behavior, known as spontaneous al-
ternation percentage (SAP), was calculated as (actual
alternations/maximum alternations) × 100 %. The animal
had better memory when it had a higher alternation ratio.

The novel object recognition test

It was used to evaluate nonspatial memory in mice according
to the method described by Leger et al. (2013). The apparatus
w a s m a d e o f a b l a c k - p a i n t e d w o o d e n b o x ,
30 cm × 30 cm × 30 cm. In the first day, each mouse was
allowed to explore the empty apparatus as a familiarization
phase for 4 min; then, it was allowed to explore two similar
objects for another 4 min. On the second day, the mouse was
subjected to the test phase, where one of the two similar ob-
jects was replaced by a novel one and the animal was allowed
to explore the objects for four minutes. A discrimination ratio

(DR) was calculated for each mouse, being equal to the num-
ber of attempts to the novel object/total number of attempts to
the both objects. The animal had better memory when it
achieved a higher DR.

The open field test

This test was performed to confirm that results of behavioral
tests are not affected by changes in mice locomotor activity, as
open field test was extensively applied to evaluate locomotor
behavior (Kafkafi et al. 2003; Onaolapo et al. 2015). The
study was performed according to method described by
Cunha and Masur (1978). Briefly, mice were placed for
3 min in an open field of wooden box (80 × 80 × 40 cm) with
red walls and white floor divided into 16 equal squares 4 × 4
by black lines. Latency is the time in seconds taken from
dropping the animal in the center of the field until it decides
to move. Ambulation frequency is the number of squares
crossed by the animal. Grooming frequency is the number of
face washings and scratching with the hind limbs. Rearing
frequency is the number of times the animal stood stretched
on hind limbs.

Sampling

Twenty-four hours after the last dose of test agent administra-
tion, animals were sacrificed by decapitation and the brains
were removed rapidly on ice-cold saline. Three brains of each
group were kept in 10% formalin solution in normal saline for
histopathological examination, and the other brains were ho-
mogenized in cold saline using a tissue homogenizer (yellow
line, DI18 basic, Germany) and centrifuged at 4000 rpm at
4 °C for 15 min using a cooling centrifuge (Sigma 3-30 k,

Fig. 1 A schematic diagram
showing schedules of LPS and
test agents administration,
training and test phases, as well as
sampling
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USA). The supernatant was withdrawn and kept at −80 °C in a
deep freezer (Als Angelantoni Life Science, Italy) for the time
of assay of Aβ, BDNF, TNF-α, nNOS, iNOS, NOx, SOD,
NT, MDA, and GSH levels.

Biochemical estimations

Amyloidogenesis and neuroplasticity markers

The levels of the Alzheimer marker Aβ and the
neuroplasticity marker BDNF in brain tissue were measured
using ELISA diagnostic kits as described by manufacturer’s
instructions according to the principles described by Verges
et al. (2011) and Trajkovska et al. (2007), respectively.

Inflammatory markers

The levels of TNF-α in brain tissue were measured
using ELISA diagnostic kits as described by manufac-
turer’s instructions according to George et al. (1999)
and Wang et al. (2007). Brain tissue NOx was measured
using ELISA diagnostic kit as described by Sun et al.
(2003) and Tsikas (2007). The levels of nNOS and
iNOS in brain tissue were measured using ELISA diag-
nostic kits as described by Hevel and Marletta (1994).

Oxido-nitrosative markers

Brain tissue SOD was measured using ELISA diagnostic kits
as described by Robak and Gryglewski (1988). Brain tissue
MDA and GSH levels were assessed colorimetrically
according to the principles of Ohkawa et al. (1979) and
Ellman (1959), respectively. Brain tissue NT was measured
using ELISA diagnostic kits as described by ter Steege
et al. (1998).

Histopathological study

After hardening for at least 7 days, tissue specimens
were taken from the brain involving cerebral cortex,
cerebellum, and hippocampus and processed according
to the technique described by Bancroft and Gamble
(2008). Briefly, specimens were washed in running wa-
ter for 1 h, dehydrated in graded concentrations of ethyl
alcohol (50, 70, 75, and 100 %; 2 h each), then cleared
in xylene. After complete clearance, the specimens were
embedded in melted paraffin wax and dried in an oven
at 70 °C for 4–6 h. Paraffin blocks were exposed to
microtomy to prepare 5-μm sections, which were
stained by either the routine hematoxylin and eosin
(H&E) stain for examination of brain tissue degenera-
tion and neuronal plasticity, or the Congo red special
stain for Aβ plaque deposition.

Data presentation and statistical analysis

All data are expressed as means ± standard error of the mean
(SEM). Statistical analysis was done using Statistical Package
for Social Sciences (SPSS) computer software (version 22).
One-way analysis of variance (ANOVA) test was used to elu-
cidate significance among group means, followed by Tukey’s
post hoc test to compare mean values pairwise. Differences
were considered significant at p < 0.05.

Results

Behavioral study

Morris maze test

Lipopolysaccharide administration to mice significantly de-
creased Q4 time in Morris maze test compared with normal
mice. This reduction was significantly corrected in all treat-
ment groups, being all restored back to normal levels, where
no significant difference was reported among treatment
groups (Fig. 2). The time course learning curve (Fig. 3) shows
significant prolongation of the time taken by LPS control mice
to reach the visible platform in Q4, as compared with normal
control mice, starting from day 4 of the training phase.
Alternatively, this time was significantly shortened in all treat-
ment groups, being restored back to normal levels. The higher
dose of perindopril was significantly better than tempol or the
lower dose of perindopril, while tempol effect was not

Fig. 2 A graphical presentation of Q4 time in Morris maze (water maze)
test, where LPS stands for lipopolysaccharide, Q4 stands for time spent in
the fourth quadrant, F value = 6.486, df value between groups = 4, df
value within groups = 56, total df value = 60. aSignificantly different from
normal control value; bsignificantly different from LPS control value
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significantly different from that of the lower dose of
perindopril regarding the time required to reach the visible
platform in Q4.

Alternatively, the swimming speed was not affected by
either LPS or test agent administration (Table 1).

Y-maze test

In Y-maze test, SAP value was significantly decreased in LPS-
intoxicated mice, and was significantly corrected in all treat-
ment groups, being restored back to normal level only in the
tempol treatment group (Fig. 4).

Novel object recognition test

In novel object recognition test, LPS-treated animals
showed significantly lower DR values compared with
normal control mice, where the value was significantly
corrected, being restored back to normal level, in all
treatment groups (Fig. 5).

Open field test

Locomotor activity in mice was not significantly affected ei-
ther by LPS administration or by treatments with test agents.
This was evident from the observed values of latency time and
frequencies of ambulation, grooming, and rearing (Table 1).

Biochemical estimations

Amyloidogenesis and neuroplasticity markers

Administration of LPS to mice significantly increased
brain tissue level of Aβ compared with normal control
values. Treatment of mice with tempol or perindopril
in both dose levels significantly decreased Aβ levels
but not back to normal levels. The lower dose level of
perindopril showed significantly lower improvement of
Aβ levels compared with tempol, while the higher
dose level of perindopril showed a tissue Aβ level
not significantly different from that of tempol treatment
group (Fig. 6).

Side by side, brain tissue BDNF level was significantly
decreased in LPS group, and this decrease was significantly
corrected in tempol treatment and perindopril treatment in the
higher, but not the lower, dose level (Fig. 7).

Inflammatory markers

Mice exposed to LPS administration showed significantly
higher brain tissue levels of TNF-α, nNOS, iNOS, and
NOx, as compared with normal control mice.

Brain tissue TNF-α level was significantly reduced in all
treatment groups, being restored back to normal level only in
mice treated with the higher dose level of perindopril, as

Fig. 3 A time course learning
curve for Morris maze test
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compared with LPS group. Effect of the higher dose of
perindopril was significantly better than that of the lower dose
(Fig. 8).

All treatment groups showed significantly lower
nNOS activity in brain tissue compared with LPS
group. Only the higher dose level of perindopril could
significantly restore nNOS activity back to normal level.
The effect of the higher dose level of perindopril was
significantly better than the effect of tempol or that of
the lower dose level of perindopril regarding brain tis-
sue nNOS (Fig. 9).
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Fig. 4 A graphical presentation of SAP value in Y-maze test, where LPS
stands for lipopolysaccharide, SAP stands for spontaneous alternation
percentage, F value = 27.442, df value between groups = 4, df value
within groups = 67, total df value = 71. aSignificantly different from
normal control value; bsignificantly different from LPS control value

Fig. 5 A graphical presentation of DR value in novel object recognition
test, where DR stands for discrimination ratio, LPS stands for
lipopolysaccharide, F value = 13.289, df value between groups = 4, df
value within groups = 67, total df value = 71. aSignificantly different from
normal control value; bsignificantly different from LPS control value
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Brain tissue iNOS activity was significantly improved in all
treatment groups, but not restored back to normal levels. The
effects of tempol and the higher dose level of perindopril were
significantly better than that of the lower dose level of
perindopril (Fig. 10).

Brain tissue NOx level was significantly reduced in all
treatment groups compared with LPS group, where the effect
of the higher dose level of perindopril was significantly better
than the effect of tempol or that of the lower dose level of
perindopril (Fig. 11).

Oxidative stress markers

Mice injected with LPS showed significantly lower brain tis-
sue levels of SOD and GSH, coupled with significantly higher
NT and MDA levels as compared with normal mice.

Brain tissue SOD activity was significantly improved
in all treatment groups. The effect of the higher dose
level of perindopril was significantly better than the
effect of either tempol or the lower dose level of
perindopril (Fig. 12).

Fig. 6 A graphical presentations of brain tissue Aβ1–42 level in different
groups, where Aβ stands for amyloid beta, F value = 228.297, df value
between groups = 4, df value within groups = 51, total df value = 55.
aSignificantly different from normal control value; bsignificantly different
from LPS control value; csignificantly different from tempol treatment
value at p < 0.05

Fig. 7 A graphical presentations of brain tissue BDNF level in different
groups, where BDNF stands for brain-derived neurotropic factor, F
value = 110.804, dfvalue between groups = 4,df valuewithin groups = 51,
total df value = 55. aSignificantly different from normal control value;
bsignificantly different from LPS control value; csignificantly different
from tempol treatment value; dsignificantly different from perindopril
(0.5 mg/kg/day) treatment value at p < 0.05

Fig. 8 A graphical presentations of brain tissue TNF-α level in different
groups, where TNF-α stands for tumor necrosis factor alpha, F
value = 96.218, df value between groups = 4, df value within groups = 39,
total df value = 43. aSignificantly different from normal control value;
bsignificantly different from LPS control value; dsignificantly different
from perindopril (0.5 mg/kg/day) treatment value at p < 0.05

Fig. 9 A graphical presentations of brain tissue nNOS level in different
groups, where nNOS stands for neuronal nitric oxide synthase, F
value = 95.947, df value between groups = 4, df value within
groups = 51, total df value = 55. aSignificantly different from normal
control value; bsignificantly different from LPS control value;
csignificantly different from tempol treatment value; dsignificantly
different from perindopril (0.5 mg/kg/day) treatment value at p < 0.05
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Brain tissue NT level was also significantly improved
in all treatment groups but the effect of the higher dose
level of perindopril or that of tempol was significantly
better than the effect of the lower dose level of
perindopril (Fig. 13).

Brain tissue MDA level was significantly corrected in all
treatment groups, with the effect of the higher dose level of
perindopril being significantly better than the effect of tempol
or of the lower dose level of perindopril (Fig. 14).

Brain tissue store of GSH was significantly increased in all
treatment groups compared with LPS group, again with the
effect of the higher dose level of perindopril being

significantly better than that of tempol or of the lower dose
level of perindopril (Fig. 15).

Histopathological study

Routine H&E stain

Cerebral cortex, hippocampus, and cerebellum sections
obtained from normal control mice showed histological-
ly intact neurons and normal histological architecture,

Fig. 10 A graphical presentations of brain tissue iNOS level in different
groups, where iNOS stands for inducible nitric oxide synthase, F
value = 135.288, df value between groups = 4, df value within
groups = 51, total df value = 55. aSignificantly different from normal
control value; bsignificantly different from LPS control value;
csignificantly different from tempol treatment value; dsignificantly
different from perindopril (0.5 mg/kg/day) treatment value at p < 0.05

Fig. 11 A graphical presentations of brain tissue NOx level in different
groups, where NOx stands for nitric oxide end products, F
value = 158.089, df value between groups = 4, df value within
groups = 39, total df value = 43. aSignificantly different from normal
control value; bsignificantly different from LPS control value;
csignificantly different from tempol treatment value; dsignificantly
different from perindopril (0.5 mg/kg/day) treatment value at p < 0.05

Fig. 12 A graphical presentations of brain tissue SOD level in different
groups, where SOD stands for superoxide dismutase, F value = 114.189,
df value between groups = 4, df value within groups = 51, total df
value = 55. aSignificantly different from normal control value;
bsignificantly different from LPS control value; csignificantly different
from tempol treatment value; dsignificantly different from perindopril
(0.5 mg/kg/day) treatment value at p < 0.05

Fig. 13 A graphical presentations of brain tissue NT level in different
groups, where NT stands for nitrotyrosine, F value = 107.740, df value
between groups = 4, df value within groups = 51, total df value = 55.
aSignificantly different from normal control value; bsignificantly different
from LPS control value; csignificantly different from tempol treatment
value; dsignificantly different from perindopril (0.1 mg/kg/day)
treatment value at p < 0.05
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while sections obtained from LPS control mice showed
many eosinophilic deposits, degenerated neurons, Hirano
bodies and hemorrhagic regions. Alternatively, cerebral
cortex, hippocampus, and cerebellum sections obtained
from tempol-treated mice showed more or less normal
neuronal integrity with nearly absence of abnormal de-
posits or hemorrhagic lesions. Cerebral cortex, hippo-

campus, and cerebellum sections obtained from LPS-
intoxicated mice treated with the lower dose level of
perindopril showed few degenerated neurons with only
few Hirano bodies. Treatment with the higher dose level
of perindopril nearly normalized cerebral cortical, hip-
pocampal, and cerebellar sections evidenced by nearly
normalized neuronal integrity and brain tissue architec-
ture except for just a few neuronal degenerations and
some Hirano bodies (Figs. 16, 17, and 18).

Special Congo red stain

Normal sections obtained from cerebral cortex, hippo-
campus or cerebellum did not show any amyloid de-
posits with Congo red stain, while LPS sections from
the same regions showed massive amounts of stained
amyloid deposits. Sections obtained from tempol-
treated mice showed little or no amyloid deposits.
Treatment of mice with the lower dose level of
perindopril showed a low level of amyloid deposition,
while this level was massively declined with the higher
dose level (Figs. 19, 20, and 21).

Discussion

The present investigation aims at elucidating mechanis-
tically the possible protective effects of tempol and
perindopril against LPS-induced AD in mice. Our re-
sults revealed that LPS caused memory impairment
(Figs. 2, 4, and 5), coming in agreement with El-
Sayed and Bayan (2015) and Wu et al. (2015a). In this
model, LPS seems to impair learning capability in ex-
perimental mice, not only memory. Control mice
showed good learning behavior in the training trials
and the test day toward the visible platform in Morris
maze test. Alternatively, mice in the LPS group seem to
lose their ability to learn after the third day (Fig. 3). It
seems that this is the time where significant effects of
LPS on the brain become evident. Interestingly, LPS
showed no significant changes regarding the open field
test or the swimming speed in Morris maze test
(Table 1), indicating no effect on locomotor activity,
again in agreement with previous studies (Xu et al.
2014; Zhao et al. 2015a, b).

In agreement with our results too (Figs. 6, 7, 19, 20,
and 21), Jaeger et al. (2009) reported that LPS admin-
istration to experimental animals enhanced brain
amyloidogenesis (Maher et al. 2014), while Kirsten
et al. (2015) reported that LPS administration to ro-
dents downregulated brain BDNF. LPS administration

Fig. 14 A graphical presentations of brain tissue MDA level in different
groups, where MDA stands for malondialdehyde, F value = 190.236, df
value between groups = 4, df value within groups = 39, total df value = 43.
aSignificantly different from normal control value; bsignificantly different
from LPS control value; csignificantly different from tempol treatment
value; dsignificantly different from perindopril (0.5 mg/kg/day)
treatment value at p < 0.05

Fig. 15 A graphical presentations of brain tissue GSH level in different
groups, where GSH stands for glutathione reduced, F value = 142.863, df
value between groups = 4, df value within groups = 39, total df value = 43.
aSignificantly different from normal control value; bsignificantly different
from LPS control value; csignificantly different from tempol treatment
value; dsignificantly different from perindopril (0.5 mg/kg/day)
treatment value at p < 0.05
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enhanced immunological inflammation evidenced by
upregulation of brain TNF-α (Fig. 8), which was also
reported to play a mechanistic role in the pathogenesis
of AD (Bhaskar et al. 2014). Excessive NOx produc-
tion emerged by nNOS and iNOS overexpression was
also evident (Fig. 11), again supported by with previ-
ous investigations showing excessive NOx production
as a result of amyloidogenesis (Li et al. 2010; Choi
et al. 2015). Alternatively, excessive NOx production
was reported to enhance AD progression through en-
hanced neuronal degeneration (Malinski 2007; Hu and
Zhu 2014). Similarly, brain tissue oxidative stress,

evidenced by increased levels of MDA and NT coupled
with decreased levels of GSH and SOD (Figs. 12, 13,
14, and 15), was considered, at least partially, as a
result of Aβ deposition (Kim et al. 2015) and also as
a pathogenic factor enhancing neurodegeneration
(Dubinina et al. 2015).

Although most studies on AD focused on the in-
volvement of cerebral cortex and hippocampus, the cer-
ebellum seems to be involved too. In the current study,
amyloidogenesis was evident in cerebellum in addition
to cerebral cortex and hippocampus (Fig. 21). Previous
invest igat ions supported our f indings showing

Fig. 16 Photomicrographs of cerebral cortex sections, stained with
routine H&E stain (×400), obtained from different groups. Normal
control section (a) shows histologically intact neurons (black arrows)
embedded in a framework of neuroglial cells (white arrows). Note
intensely stained Bdark^ neurons (arrowheads), following manipulation
of the unfixed brain. Both neurons and glial cells synapse through
neurobil (astrix). LPS control section (b) shows many neurons with
abnormal cellular deposits (black arrows) with many Hirano bodies
(white arrows). Tempol (100 mg/kg/day) treatment section (c) shows

normal neurons with vesicular nucleus and prominent nucleolus (black
arrow) and glial cells (white arrow). Perindopril (0.5 mg/kg/day)
treatment section (d) shows some degenerated neurons with vacuolated
cytoplasm and pyknotic nuclei (black arrows). Hirano bodies can be also
observed. Perindopril (1 mg/kg/day) treatment section (e) shows that
many neurons are normal with basophilic cytoplasm, vesicular nucleus,
and prominent nucleolus (black arrow). Hirano bodies can be also
observed (white arrow)
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amyloidogenesis in mouse cerebellum in different
models of AD (Brugg et al. 1995; Hu et al. 2000;
Deng et al. 2014). Clinically, Baldaçara et al. (2011)
concluded that the cerebellum may provide useful infor-
mation related to AD prognosis. Interestingly, a number
of recent investigations revealed the role of cerebellum
in cognition and spatial memory (Rochefort et al. 2013;
Tan et al. 2015; Weier et al. 2015).

Our behavioral study revealed that tempol or
perindopril significantly improved spatial and nonspa-
tial memory without affecting locomotor activity as ev-
ident from the results of open field test and swimming
speed (Table 1). Biochemically, both agents significant-
l y im p r o v e d b r a i n l e v e l s o f Aβ ( F i g . 6 ) .
Histopathological findings strongly supported behavior-
al and biochemical findings (Figs. 16, 17, 18, 19, 20,
and 21).

Attractively, administration of test agents resulted in
more or less complete protection against LPS-induced
cognitive impairment. However, test agents caused

only partial protection regarding amyloidogenesis and
other biochemical markers. There seems to be a thresh-
old level of amyloidegenesis that must be reached to
cause significant impairment of cognition. Otherwise,
this asymmetry may be merely attributed to statistical
factors.

Little research results are available regarding the ef-
fect of tempol on AD, but Rama Rao et al. (2013)
revealed that tempol could suppress expression of the
matrix proteins thrombospondins in cultured astrocytes,
while Han et al. (2015) reported that tempol could de-
crease cerebral amyloid angiopathy and Aβ deposition
in mice th rough ROS scaveng ing . Regard ing
perindopril, Hou et al. (2008); Yamada et al. (2010),
and Dong et al. (2011) reported that it could improve
impaired cognition induced by intracerebroventricular
injection of Aβ in mice, while Yang et al. (2013) re-
ported that perindopril could protect mice against d-ga-
lactosamine/aluminum chloride-induced AD. Local RAS
was reported to be present in different tissues including

Fig. 17 Photomicrographs of
hippocampus sections, stained
with routine H&E stain (×400),
obtained from different groups.
Normal control section (a) shows
hippocampus formed of three
layers; molecular (M), pyramidal
(P), and polymorphic (not seen).
LPS control section (b) shows
many degenerated neurons with
vacuolated cytoplasm and
pyknotic nuclei (black arrows) in
all layers. Tempol (100 mg/kg/
day) treatment section (c) shows
that most of neurons are normal in
molecular (M), pyramidal (P), and
polymorphic (PM) layers.
Perindopril (0.5 mg/kg/day)
treatment section (d) shows few
degenerated neurons with
vacuolated cytoplasm and
pyknotic nuclei (black arrows) in
all layers. Hirano bodies can be
also observed (white arrow).
Perindopril (1 mg/kg/day)
treatment section (e) shows
molecular layer (M) with
degenerated cells with pyknotic
nuclei (black arrow)
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nervous system (McKinley et al. 2003; Paul et al.
2006). Mateos et al. (2011) reported that upregulation
of brain RAS is strongly linked with neuronal dysregu-
lation and AD progression.

I t is clear from our results that tempol and
perindopril significantly improved brain tissue BDNF
levels (Fig. 7). This offers an interesting neuroprotec-
tive mechanism for both agents. Although this result is
not supported by any previous investigations regarding
the effects of tempol or perindopril on experimentally-
induced AD, Tsai et al. (2012) showed that upregula-
tion of BDNF by antioxidants had a neuroprotective
potent ial in a rat model of s tatus epi lept icus.
According to the results obtained by Xiong et al.
(2015), long-term exercise could improve spatial mem-
ory in mice through an increase in BDNF-positive cells
in the hippocampus and cerebral cortex. In another
study, BDNF upregulation was found to counteract
cognitive deficits induced by ethanol in mice through
enhancement of hippocampus neurogenesis (Stragier

et al. 2015). Side by side, exposure of developing rat
brains to anesthesia was reported to yield memory de-
ficiency through epigenetic inhibition of BDNF expres-
sion (Wu et al. 2015b).

Concerning our results, tempol and perindopril could
suppress brain tissue TNF-α production, indicating anti-
inflammatory and immunomodulatory potential (Fig. 8).
TNF-α production is a major contributing factor in AD
progression (Bhaskar et al. 2014). Kang et al. (2014)
reported a strong link between genetic TNF-α
overproduction and AD incidence, while Wang (2015)
investigated the link between TNF-α polymorphism
and AD progression. Similarly, Cantarella et al. (2015)
reported that neutralization of TNFSF10, a proapoptotic
cytokine s imilar to TNF-α , may suppress AD
progression.

Tempol and perindopril could also decrease NOx pro-
duction and consequently NT formation, which was ex-
plained by suppression of nNOS and iNOS activities
(Figs. 9, 10, 11, and 13). Although NOx overproduction

Fig. 18 Photomicrographs of
cerebellum sections, stained with
routine H&E stain (×400),
obtained from different groups.
Normal control section (a). The
cerebellar cortex contains three
well-defined layers, which are,
from inside to outside, the
granular layer (G), the Purkinje
cell layer (P), and the molecular
layer (M). LPS control section (b)
shows molecular layer with
spongiform changes (black
arrow) and many Hirano bodies,
with hemorrhage within Purkinje
cell layer (white arrow). Tempol
(100 mg/kg/day) treatment
section (c) shows normal neurons
of molecular (M), Purkinje (P),
and granular (G) layers of cortex.
Perindopril (0.5 mg/kg/day)
treatment section (d) shows no
detected abnormality except for
Hirano bodies can be observed
(white arrows). Perindopril
(1 mg/kg/day) treatment section
(e) shows no abnormality
detected except for Hirano bodies
can be observed (white arrows)
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and NOS upregulation was reported to occur as a result
of intracerebroventricular injection of Aβ in experimen-
tal animals (Cetin et al. 2013), NOx overproduction was
reported by many authors to stimulate neuronal degen-
eration (Díaz et al. 2014; Jiang et al. 2014). Guix et al.
(2012) reported that nitrosative stress may increase Aβ
deposition in brain, while Eraldemir et al. (2015) report-
ed that nitrosative stress could progress AD via suppres-
sion of BDNF. This comes in agreement with our re-
sults concerning the effect of tempol or perindopril on
Aβ and BDNF (Figs. 6 and 7).

Regarding oxido-nitrosative stress markers, tempol
and perindopril significantly decreased MDA produc-
tion and increased GSH stores compared with LPS
control values, indicating amelioration of oxidative
stress (Figs. 14 and 15). Both agents could enhance
endogenous antioxidant defense capacity evidenced
by significantly increased brain tissue SOD activity.
As mentioned above, oxidative and nitrosative stress
play significant pathogenic roles in neuronal damage

and AD progression, and this may explain, at least
partly, the protective effect of tempol and perindopril
in AD (Dubinina et al. 2015). Brain exposure to ox-
idative stress was reported to precipitate Aβ forma-
tion as a compensatory response (Nunomura et al.
2006; Abdel Moneim 2015). Support of antioxidant
status was claimed by many authors to suppress AD
progression in different models (Braidy et al. 2015;
Leirós et al. 2015; Persichilli et al. 2015). Different
pathways may explain the correlation between oxida-
tive stress and cognition impairment evident in the
current study. Lipid peroxidation caused by ROS
y i e l d s a p e r o x i d a t i o n p r o d u c t t e r m e d 4 -
hydroxnonenal, which differentially affects β- and
γ-secretase activities, causing elevation of Aβ42/
Aβ 4 0 r a t i o , i n t h e d i r e c t i o n o f h a r m f u l
amyloidogenesis (Arimon et al. 2015). Recently,
oxysterol, produced from the interaction of cholester-
ol with ROS, is considered a key factor in the path-
ogenesis of AD via enhancement of amyloidogenesis

Fig. 19 Photomicrographs of
cerebral cortex sections, stained
with Congo red (×400), obtained
from different groups. Normal
control section (a) shows no
abnormal amyloid deposits. LPS
control section (b) shows
excessive orange-red-stained
amyloid deposits. Tempol
(100 mg/kg/day) treatment
section (c) shows little or no
amyloid deposition. Perindopril
(0.5 mg/kg/day) treatment section
(d) shows few scattered amyloid
deposits. Perindopril (1 mg/kg/
day) treatment section (e) shows
very few deposits of amyloid
plaques
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(Gamba et al. 2015). Side by side, tempol, owing to
its potent antioxidant effect, was reported to suppress
pathological glutamate release which precedes neuro-
nal damage (Dohare et al. 2014). This is particularly
important when we know that exogenous glutamate
was reported earlier to enhance amyloidogenesis in
rat hippocampus (Rogers 2015). This further explains
the effect of the ROS scavenger tempol regarding
amyloidogenesis evident in the current study.

Nitrotyrosine is a very important marker of oxido-
nitrosative stress as it is a product of tyrosine nitration
by peroxynitrite and other reactive nitrogen species
(RNS), while peroxynitrite is the product of interaction
between nitrite and hydrogen peroxide (Beckman and
Koppenol 1996; Pacher et al. 2007). Peroxynitrite and
other RNS are particularly causative factors of neuronal
loss and hence suppression of their production may be
of particular value in the progression of brain neuronal
damage (Tajes et al. 2013; Awooda and Lutfi 2015).
Amelioration of NT production by tempol or perindopril

in the current study is attractively important (Fig. 13).
Although this result is not supported by any previous
investigation regarding the effects of tempol or
perindopril on NT production in animal models of
LPS-induced neuroinflammation, the effects of test
agents on NT and RNS production may offer another
protective mechanism for test agents. Attractively, NT
itself was reported to play a key role in the pathogen-
esis of AD via nitrotyrosination of the γ-secretase cata-
lytic site, shifting towards harmful amyloidogenesis
(Guix et al. 2012).

Several signaling pathways were reported to link
oxidative stress with neurodegeneration, of which the
most prominent are mitogen-activated protein kinase
(MAPK) and NADPH oxidase (Rowan et al. 2004).
Oxidative stress causes activation of MAPK and
NADPH oxidase mostly through hydrogen peroxide
and other ROS (Cao et al. 2014). The activated
MAPK in particular was reported to play a role in
neuroinflammation, neurodegenerat ion, and Aβ

Fig. 20 Photomicrographs of
hippocampus, stained with Congo
red (×400), obtained from
different groups. Normal control
section (a) shows that amyloid
deposits are not evident. LPS
control section (b) shows
excessive amyloid deposits.
Tempol (100 mg/kg/day)
treatment section (c) shows nearly
absence of amyloid deposits.
Perindopril (0.5 mg/kg/day)
treatment section (d) shows few
scattered amyloid deposits.
Perindopril (1 mg/kg/day)
treatment section (e) shows a very
low level of amyloid deposition
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internalization in cortical neurons in the early stages
of AD (Liu et al. 2014; Bellaver et al. 2015; Yang
et al. 2015). Moreover, MAPK was reported to play
an important role in tau phosphorylation during the
course of AD progression (Giraldo et al. 2014). Side
by side, Li et al. (2015) concluded that MAPK down-
regulation could protect rats against Aβ-induced cogni-
tion impairment. On the other hand, NADPH oxidase
stimulated by oxidative stress was reported to play a
role in neurobehavioral impairment in mice (Yuan
et al. 2015). The reverse is also true, as NADPH oxi-
dase activation triggers oxidative stress via superoxide
anion production (Chen et al. 2012; Zhang et al. 2012).
This is a further guide to explain the neuroprotective
effects of the SOD mimetic tempol and the NADPH
oxidase indirect inhibitor perindopril.

In conclusion, tempol and perindopril are promising
agents against amyloidogenesis and cognition impair-
ment. The protective mechanisms may include sup-
pression of BDNF decline, suppression of TNF-α pro-
duction, support of brain antioxidant status, and

amelioration of oxido-nitrosative stress and NT
production.
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