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Abstract Adenosine triphosphate (ATP) plays the role of an
autocrine/paracrine signal molecule in a variety of cells. So
far, however, the membrane machinery in the export of
intracellular ATP remains poorly understood. Activation of
B2-receptor with bradykinin-induced massive release of ATP
from cultured taenia coli smooth muscle cells. The evoked
release of ATP was unaffected by gap junction hemi-
channel blockers, such as 18α-glycyrrhetinic acid and Gap
26. Furthermore, the cystic fibrosis transmembrane regu-
lator (CFTR) coupled Cl− channel blockers, CFTR(inh)
172, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, Gd3+

and glibenclamide, failed to suppress the export of ATP by

bradykinin. On the other, the evoked release of ATP was
greatly reduced by multidrug resistance protein (MRP)
transporter inhibitors, MK-571, indomethacin, and benz-
bromarone. From western blotting analysis, blots of MRP 1
protein only, but not MRP 2 andMRP 3 protein, appeared at
190 kD. However, the MRP 1 protein expression was not
enhanced after loading with 1 μM bradykinin for 5 min.
Likewise, niflumic acid and fulfenamic acid, Ca2+-activat-
ed Cl− channel blockers, largely abated the evoked release
of ATP. The possibility that the MRP transporter system
couples with Ca2+-activated Cl− channel activities is
discussed here. These findings suggest that MRP trans-
porters, probably MRP 1, unlike CFTR-Cl− channels and
gap junction hemichannels, may contribute as membrane
machinery to the export of ATP induced by G-protein-
coupled receptor stimulation.

Keywords ATP export . Bradykinin B2 receptor
stimulation .MRP-1 protein expression .

CFTR-Cl− channels . Cultured taenia coli smoothmuscle cells

Abbreviations
ABC ATP-binding cassette
α-GA 18-α-glycyrrhetinic acid
CFTR cystic fibrosis transmembrane regulator
CFTR(inh)
172

4-[[4-Oxo-2-thioxo-3-(3-trifluoromethyl)
phenyl]-5-thiazo lidinylidene]methyl]benzoic
acid

Gap 26 Val-Cys-Tyr-Asp-Lys-Ser-Phe- Pro-Ile-Ser-
His-Val-Arg

MK-571 3-[[[3-[(1E)-2-(7-chloro-2-quinolinyl)ethenyl]
phenyl] [[3-(dimethylamino)-3oxopropyl]
thio]methyl]thio]propanoic acid
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MRP multidrug resistance protein
NPPB 5-nitro-2-(3-phenylpropylamino)-benzoic

acid
SMCs smooth muscle cells

Introduction

It has been well-accepted that, in addition to an intracellular
energy supplier, adenosine triphosphate (ATP) acts as an
extracellular signal molecule via P2X and P2Ypurinoceptors
in modulating cellular functions (Ralevic and Burnstock
1998). Our studies with rodent smooth muscle cells (SMCs)
have revealed that various agonists for G-protein coupled
receptors, including ATP per se, are capable of releasing
ATP from vas deferens and ileal SMCs (Katsuragi et al.
1996, 2008; Matsuo et al. 1997; Tamesue et al. 1998).
Furthermore, we provided evidence that adenosine, a
metabolite of ATP, also releases ATP from Madin-Darby
canine kidney epithelial cells through a process regulated by
a type of positive feedback system (Migita et al. 2005, 2007)
and that the angiotensin AT1 receptor-mediated ATP secre-
tion is triggered by Ins(1,4.5)P3-signaling (Katsuragi et al.
2002; Zhao et al. 2007). Aside from the SMCs, it has been
shown that cardiac endothelial cells and glial cells release
ATP in response to the stimulation of drug receptors with
peptide and glutamate (Queiroz et al. 1997). So far, however,
the mechanism underlying the autocrine/paracrine type of
ATP release by receptor stimulation remains unknown.
Recent studies have showed findings that ATP is released
extracellularly by mechanical and hypotonic stress from
epithelial (Hazama et al. 1999; Walsh et al. 2000), hepatic
(Schlosser et al. 1996; Feranchak et al. 2000), and red blood
cells (Sprague et al. 2001). In cultured epithelial cells, it has
been revealed that the release of ATP induced by hypotonic
stress is suppressed by 5-nitro-2-(3-phenylpropylamino)-
benzoic acid (NPPB) and 4,4'-diisothiocyanatostilbene-2,2'-
disulphonic acid (DIDS), Cl− channel blockers, and Gd3+, a
blocker of stretch-activated channel (Hazama et al. 1999;
Mitchell, 2001; Braunstein et al. 2001). Therefore, it is
presumed that ATP moves out of the cells through a type of
anionic channels after ionization to ATP4− or [Mg ATP]2−

(Roman and Fitz 1999; Dutta et al. 2004). There seems to be
some candidates for the membrane machinery in ATP
transport across the cell membrane. ATP binding cassette
family, P-glycoprotein, multidrug resistance protein (MRP)
and cystic fibrosis transmembrane regulator (CFTR) as well
as gap junction hemichannels have been considered as ATP
carriers. Accordingly, the present study was designed to
clarify the membrane machinery that is responsible for the
bradykinin-inducible release of ATP from cultured guinea-
pig taenia coli (T. coli) SMCs.

Materials and methods

Materials

Alpha-GA, indomethacin and benzbromarone were pur-
chased from Wako Pure Chemical (Osaka, Japan). MK-571,
Gap 26, and CFTR(inh)172 were obtained from Tocris
(Ellisville, MO, USA). All other reagents were obtained
from Sigma (St. Louis, MO, USA).

Cell culture

The study protocols were approved by Fukuoka University,
Animal Care Committee. For a successful cell culture,
neonatal, immature male guinea pigs within one day of
birth were purchased from KBT-Oriental (Tosu, Japan) and
used here. The guinea pigs were stunned and bled. Then,
taenia coli was removed and cut into segments in phosphate
buffered saline (PBS) supplemented with 0.25 mg/mL of
collagenase. The segments were then moved to a CO2

incubator (37°C) and maintained there for 40 min. Under a
microscope, the longitudinal muscle layer was separated
from the circular muscles and plexus with a pair of fine
tweezers. After mincing, the small pieces were transferred
to a PBS dish supplemented with 0.125% trypsin and
placed in the incubator. Following trituration, the content
was moved to a tube with 10% fetal bovine serum (FBS)
and centrifuged at 180×g for 5 min. The resulting pellet
was dispersed in a culture medium, M-199 (Life Technol-
ogies, Rockville, MD, USA) with 10% FBS and culturing
in the incubator was started. On the third day, the cells were
rinsed with a fresh medium. After 4 days of culturing, the
cells were used for the release experiment. The purity of
SMCs cultured in this manner was checked by staining
them with anti-α-actin (mouse monoclonar anti-actin α-
smooth muscle antibody, Sigma) under fluorescence mi-
croscopy (data not shown).

ATP release and luciferase assay

The cells collected from two dishes were trapped in a
Millipore filter (pore size 3 µm) and superfused at 0.5 mL/
min using a peristaltic pump with oxygenated Krebs
solution (37°C) of the following composition (mM): NaCl
122, KCl 5.2, CaCl2 2.4, MgSO4 1.2, NaHCO3 25.6, D-
glucose 11, EDTA 0.03, and ascorbic acid 0.1. After 20 min
of equilibration, the superfusate was collected every 90 s
for 15 min. The agonist was applied to the medium from
the fifth to the seventh fractions and antagonists were
present in the superfusion medium throughout the experi-
ment. Superfusate (200 µL in each fraction) was transferred
into microtubes and ATP measured with 100 µL of ATP
reagent solution (Lucifel-LU; Kikkoman, Noda, Japan).
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The cells’ protein content was determined using Bio-Rad
protein assay kit II following cell lysis after overnight
incubation (4°C) in deionized water containing 0.1% Triton
X-100. Values for ATP released are expressed as pmol/mL/
mg protein in the cultured cells.

Western blotting

SMCs treated with and without bradykinin were collected
in a sample tube containing an ice cold buffer [50 mM Tris-
HCl (pH 7.5) containing a protease-inhibitor cocktail after
being washed with PBS. Cells were then centrifuged at
3,000×g for 10 min at 4°C. Pellets were homogenized by a
lysis buffer (50 mM Tris-HCl (pH 7.5), 5 mM EDTA,
5 mM EGTA, 1% Triton X-100) supplemented with a
protease-inhibitor cocktail on ice. Then, the crude mem-
brane proteins were obtained by centrifugation at 20,000×g
for 1 h at 4°C. Total protein was determined by the Bio-Rad
protein assay kit II. Protein samples (10 and 20 µg per lane)
were resolved by 7% sodium dodecyl sulfate polyacryl-
amide gel electrophoresis and transferred to nitrocellulose
membrane (Millipore, Bedford, MA, USA) using 25 mM
Tris base, 192 mM glycine, and 20% methanol buffer.
Blocking was performed with 5% skim milk in
150 mM NaCl, 10 mM Tris, pH 7.5, 0.1% Tween 20
(TBST) buffer for 1 h. The membrane was then incubated
for 1 h with the rat anti-MRP1 antibody at 1:500 (clone
MRPr1, Alexis Biochemicals, CA, USA), anti-MRP2
monoclonal antibody at 1:100 (clone M2III-6 Chemicon),
anti-MRP3 monoclonal antibody at 1:100 (clone M3II-9,
Alexis Biochemicals, CA, USA) and anti-β-actin monoclo-
nal antibody at 1:10,000 (Sigma) dilution with 1% skim
milk in TBST. The blot was then incubated for 1 h with
horseradish peroxidase conjugated goat anti-rat IgG and
anti-mouse IgG (Jackson Immunoresearch, West Grove,
PA, USA) diluted 1:4,000 in 1% skim milk-TBST, and
developed using an ECL system (Amersham Biosciences,
Piscataway, NJ, USA) and then exposed to Kodak films.

Statistics

Differences between multiple means were tested for
statistical significance by one-way analysis of variance
followed by Dunnett’s test. A value of P<0.05 was
considered to be significant.

Results

In the superfusing experiment with cultured taenia coli
SMCs, 1 μM bradykinin caused a sizable release of ATP.
The evoked release of ATP was clearly diminished by HOE
140, a B2 receptor antagonist, however, not by [des-Arg10]

HOE 140, a B1 receptor antagonist. The basal and the peak
releases of ATP with and without 1 μM bradykinin were
54.48±5.60 pmol ml−1 mg protein−1 (n=5) and 295.71±
40.55 pmol ml−1 mg protein−1 (n=5), respectively.

In the presence of 3 μM HOE 140, these releases
became 43.89±10.34 pmol ml−1 mg protein−1 (N=6) and
88.67±16.19 pmol ml−1 mg protein−1 (*p<0.01, N=6),
respectively. In the presence of 3 μM [des-Arg10] HOE
140, however, these releases amounted to 77.07±7.91 pmol
ml−1 mg protein−1 (N=4) and 308.31±8.91 pmol mg−1 mg
protein−1 (N=4), indicating no prevention of ATP release.
Further experiments were arranged to reveal the membrane
machinery underlying the export of ATP.

First, the role of the MRP transporters in the release of
ATP were assessed by using MRP inhibitors. The
bradykinin-induced release of ATP was markedly inhibited
by MK-571, indomethacin, and benzbromarone, thus,
suggesting that the activation of MRP transporters contrib-
utes to the outflux of ATP (Fig. 1). MRP transporter
proteins in human consist of nine superfamilies (MRP 1-
MRP 9). In the present western blot study, three super-
families (MRP 1, MRP 2, and MRP 3), which have been
reported to distribute to intestinal smooth muscles, were
examined. Blots of MRP 1 protein only, but not MRP 2 and
MRP 3 proteins, with and without bradykinin, appeared at
190 kD from the crude membrane proteins of guinea pig
taenia coli SMCs (Fig. 2a). However, the enhancement in
the protein level of the MRP 1 transporter in the presence of
bradykinin was not shown after the 5-min loading with
1 μM bradykinin (Fig. 2b,c).

Second, the involvement of gap junction hemichannels
in the bradykinin-inducible release of ATP was evaluated.
The release of ATP was unaffected by 18α-glycyrrhetinic
acid (α-GA) and Gap-26, both being hemichannel blockers.
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Fig. 1 Effects of MRP tranporter inhibitors on the release of ATP
evoked by 1 μM bradykinin. Cells were exposed to bradykinin during
the fifth, sixth, and seventh fractions and to antagonist 15 min before
bradykinin. The time interval of one fraction is 90 s. Values are
expressed as mean ± SEM of pmol−1 ml−1 mg protein−1 of ATP (n=3-
5). *p<0.05, **p<0.01 compared with the corresponding evoked
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Gap-26 was likely to increase rather than decrease the
release (Fig. 3a).

Third, the contribution of the CFTR coupled Cl−

channels to the evoked release of ATP was elucidated.
CFTR (inh) 172, NPPB, Gd3+ and glibenclamide failed to
prevent the release of ATP (Fig. 3b). This casts doubt on
the possibility that the transport of ATP is mediated by
CFTR-Cl− channels.

Finally, however, niflumic acid and flufenamic acid, Ca2+-
activated Cl− channel blockers, largely abolished the release
of ATP (Fig. 3c).

The concentrations of all antagonists were used in a
range of effective concentrations confirmed in a pile of
studies.

Discussion

Bradykinin is capable of releasing the intracellular ATP via
the activation of G-protein coupled B2 receptor and then,

via the Ins(1,4,5)P3 sensitive- Ca2+-signaling as shown
previously (Zhao et al. 2007). Similarly, a G-protein
coupled NK-2 receptor agonist, neurokinin-A induced
ATP release via Ins(1,4,5)P3-sensitive Ca2+ release from
the endoplasmic reticulum, then as further signals, via
activations of protein kinase C and Ca2+/calmodulin. The
neurokinin A-inducible ATP release was also mediated by
MRP transporters (unpubished observation). Accordingly, it
is assumed that the bradykinin-inducible ATP release may
also be mediated by activations of protein kinase C and Ca2+/
calumodulin. However, so far, there is no information how
ATP is transported across the cell membrane following the
signal pathway. Therefore, the present work aims to clarify
the membrane machinery involved in the bradykinin-
inducible transport of ATP. Recent investigations provide
much evidence that the activities of gap junction hemi-
channels enhance the release of ATP from rat brain
endothelial cell lines (Braet et al. 2003a, b), rodent
cultured astrocytes (Cotrina et al. 1998; Stout et al.
2002; Coco et al. 2003), and retinal pigment epithelium
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from chicken embryos (Pearson et al. 2005). In the present
study, however, the bradykinin-evoked release of ATP was
unaffected by the typical hemichannel blockers, α-GA and
Gap 26, indicating a lesser role of gap junction hemi-
channels in the membrane transport of ATP. The relevance
of CFTR as another ABC (ATP-binding cassette) trans-
porter in ATP transport is a matter of dispute (Abraham et
al. 1997). Cantiello et al. (1998), on the basis of their
patch-clamp study, postulated that CFTR is a dual ATP
and Cl− channel (Reisin et al. 1994; Lader et al. 2000). In
wild-type CFTR-expressing cells, the basal and hypotonic
stress-evoked release of ATP was attenuated by CFTR-Cl−

channel blockers, Ga3+, and DIDS (Braunstein et al.
2001). Sprague et al. (2001) reported a deformation-
induced, glibenclamide-sensitive release of ATP from the
red blood cells of healthy humans but not from patients
with cystic fibrosis. On the other hand, a number of
objections to the hypothesis of the CFTR-related ATP
release have been raised (Reddy et al. 1996; Grygorczyk
and Hanrahan 1997; Watt et al. 1998). Besides, our current
study showed that a series of CFTR-Cl− channel blockers,
Gd3+, glibenclamide, CFTR (inh)-172, and NPPB failed to
attenuate the bradykinin-induced outflow of ATP from the
cells, thus, strongly indicating that the evoked release of
ATP is not mediated by a CFTR-channel. As to the other
ABC superfamilies, there is the possibility that the P-
glycoprotein (P-gp) and MRP are able to regulate ATP
release induced by hypotonic stress from hepatoma cells
(Roman et al. 2001) and cultured astrocyte cells (Darby et
al. 2003). Our study found that the extracellular release of
ATP with bradykinin was markedly suppressed by MRP
inhibitors, MK-571 (Prime-Chapman et al. 2004; Ji and
Morris 2005), indomethacin (Darby et al., 2003), and
benzbromarone (Hooijberg et al. 2004; Prime-Chapman et
al. 2004). We failed to obtain antibodies for MRPs against
guinea pig. Thus, in the present study, all antibodies were
applied to against rat. As in western blot analysis, a clear
band from MRP 1 protein appeared at 190 kD, MRP 1
protein was defined, at least, to exist on the smooth muscle
cells in spite of the species mismatch. However, it is
necessary to be considered that the negative expressions of
MRP 2 and MRP 3 proteins may be due to a matter of
specificity of antibodies. The release of ATP with bradyki-
nin is a transient and instantaneous because the peak release
occurred around 3 min after the addition. Nevertheless, the
5-min loading with bradykinin did not enhance the
expression of MRP 1 protein. At present, the reason
remains uncertain whether it comes from a transient
response to the peptide or from the species mismatch of
antibodies.

Our study provided evidence that niflumic acid and
flufenamic acid, Ca2+-activated Cl− channel blockers,
strongly suppressed the evoked release of ATP. There are

several findings indicating that activities for MRP trans-
porters and Ca2+-activated Cl− channels are involved in
facilitating the outflux of ATP. Niflumic acid and flufe-
namic acid blocked the release of the nucleotide triggered
by zero calcium from brain endothelial cells (Braet et al.
2003a, b). Similarly, niflumic acid significantly inhibited
the release of ATP from multicellular tumor spheroids
evoked by electrical field stimulation (Sauer et al. 2002).
ATP release and Cl−-current induced by hypotonic stress
was reversibly prevented by MRP transporter inhibitors,
MK-571 and indomethacin in rat cultured astrocytes (Darby
et al. 2003). These findings suggest that the MRP transport
system may also couple with the Ca2+-activated Cl− channel
activities in the release of ATP, by analogy that the CFTR
transport is mediated by coupling with Cl− channels.
Supportingly, it has been postulated that MRP and CFTR
are closely related ABC proteins and both transporters may
share a structurally similar binding site on the cytoplasmic
membrane (Linsdell and Hanrahan 1999). The release of ATP
was blocked by Ca2+-activated Cl− channel blockers such as
niflumic acid, whereas a volume-sensitive outwardly recti-
fying (VSOR) Cl−channel blocker, NPPB, and a Maxi Cl−

channel blocker, Gd3+ were incapable to inhibit the release.
There may be a different nature in ATP release between G-
protein-coupled receptor stimulation and hypotonic or
mechanical stimulation. The meaning of the dissimilar
effects shown with these Cl− channel blockers might be
clarified by a patch-clamp analysis in future studies.

In conclusion, the membrane transport of ATP induced
by B2 receptor-stimulation with bradykinin is enhanced by
the activation of MRP, presumably MRP 1 transporter, in
coupling with Cl− channels, and not by the activations of
CFTR-Cl−channels and jap junction hemichannels, How-
ever, the possibility that P-gp as the member of MDR
group, similar to MRP, may be involved in operating the
membrane transport of ATP via receptor- stimulation
remains to be clarified (Roman et al. 2001)
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